激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频

初中數學(xué)《勾股定理》說(shuō)課稿

時(shí)間:2021-04-21 10:43:25 初中說(shuō)課稿 我要投稿

人教版初中數學(xué)《勾股定理》說(shuō)課稿(精選5篇)

  作為一名教學(xué)工作者,就難以避免地要準備說(shuō)課稿,說(shuō)課稿有助于順利而有效地開(kāi)展教學(xué)活動(dòng)?靵(lái)參考說(shuō)課稿是怎么寫(xiě)的吧!以下是小編整理的人教版初中數學(xué)《勾股定理》說(shuō)課稿(精選5篇),歡迎閱讀,希望大家能夠喜歡。

人教版初中數學(xué)《勾股定理》說(shuō)課稿(精選5篇)

  初中數學(xué)《勾股定理》說(shuō)課稿1

  一、教材分析:

 。ㄒ唬┙滩牡牡匚慌c作用

  從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關(guān)系,為后續學(xué)習解直角三角形提供重要的理論依據,在現實(shí)生活中有著(zhù)廣泛的應用。

  從學(xué)生認知結構上看,它把形的特征轉化成數量關(guān)系,架起了幾何與代數之間的橋梁;勾股定理又是對學(xué)生進(jìn)行愛(ài)國主義教育的良好素材,因此具有相當重要的地位和作用。

  根據數學(xué)新課程標準以及八年級學(xué)生的認知水平我確定如下學(xué)習目標:知識技能、數學(xué)思考、問(wèn)題解決、情感態(tài)度。其中情感態(tài)度方面,以我國數學(xué)文化為主線(xiàn),激發(fā)學(xué)生熱愛(ài)祖國悠久文化的情感。

 。ǘ┲攸c(diǎn)與難點(diǎn)

  為變被動(dòng)接受為主動(dòng)探究,我確定本節課的重點(diǎn)為:勾股定理的探索過(guò)程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現勾股定理確定為本節課的難點(diǎn),我將引導學(xué)生動(dòng)手實(shí)驗突出重點(diǎn),合作交流突破難點(diǎn)。

  二、教學(xué)與學(xué)法分析

  教學(xué)方法葉圣陶說(shuō)過(guò)"教師之為教,不在全盤(pán)授予,而在相機誘導。"因此教師利用幾何直觀(guān)提出問(wèn)題,引導學(xué)生由淺入深的探索,設計實(shí)驗讓學(xué)生進(jìn)行驗證,感悟其中所蘊涵的思想方法。

  學(xué)法指導為把學(xué)習的主動(dòng)權還給學(xué)生,教師鼓勵學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習方法,讓學(xué)生親自感知體驗知識的形成過(guò)程。

  三、教學(xué)過(guò)程

  我國數學(xué)文化源遠流長(cháng)、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節課設計為以下五個(gè)環(huán)節。

  首先,情境導入古韻今風(fēng)

  給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。讓學(xué)生觀(guān)察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著(zhù)怎么樣數學(xué)奧秘呢?寓教于樂(lè ),激發(fā)學(xué)生好奇、探究的欲望。

  第二步追溯歷史解密真相

  勾股定理的探索過(guò)程是本節課的重點(diǎn),依照數學(xué)知識的循序漸進(jìn)、螺旋上升的原則,我設計如下三個(gè)活動(dòng)。

  從上面低起點(diǎn)的問(wèn)題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現,在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉化為邊長(cháng)之間的關(guān)系,體現了轉化的思想。觀(guān)察發(fā)現雖然直觀(guān),但面積計算更具說(shuō)服力。將圖形轉化為邊在格線(xiàn)上的圖形,以便于計算圖形面積,體現了數形結合的思想。學(xué)生會(huì )想到用"數格子"的方法,這種方法雖然簡(jiǎn)單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學(xué)生利用"割"和"補"的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了"從特殊到一般"的認知規律。教師給出邊長(cháng)單位長(cháng)度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準確而產(chǎn)生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節的鋪墊,有效地分散了難點(diǎn)。在求正方形C的面積時(shí),學(xué)生將展示"割"的方法,"補"的方法,有的學(xué)生可能會(huì )發(fā)現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表?yè)P,肯定學(xué)生的研究成果,培養學(xué)生的類(lèi)比、遷移以及探索問(wèn)題的能力。

  使用幾何畫(huà)板動(dòng)態(tài)演示,使幾何與代數之間的關(guān)系可視化。當為直角三角形時(shí),改變三邊長(cháng)度三邊關(guān)系不變,當∠α為銳角或鈍角時(shí),三邊關(guān)系就改變了,進(jìn)而強調了命題成立的前提條件必須是直角三角形。加深學(xué)生對勾股定理理解的同時(shí)也拓展了學(xué)生的視野。

  以上三個(gè)環(huán)節層層深入步步引導,學(xué)生歸納得到命題1,從而培養學(xué)生的合情推理能力以及語(yǔ)言表達能力。

  感性認識未必是正確的,推理驗證證實(shí)我們的猜想。

  第三步推陳出新借古鼎新

  教材中直接給出"趙爽弦圖"的證法對學(xué)生的思維是一種禁錮,教師創(chuàng )新使用教材,利用拼圖活動(dòng)解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點(diǎn)也是重點(diǎn),教師應給學(xué)生充分的自主探索的時(shí)間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習中完善。教師深入到學(xué)生中間,觀(guān)察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現出"學(xué)生是學(xué)習的主體,教師是組織者、引導者與合作者"這一教學(xué)理念。學(xué)生會(huì )發(fā)現兩種證明方案。

  方案1為趙爽弦圖,學(xué)生講解論證過(guò)程,再現古代數學(xué)家的探索方法。

  方案2為學(xué)生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個(gè)探索過(guò)程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過(guò)程,體會(huì )數學(xué)的嚴謹性。對比"古"、"今"兩種證法,讓學(xué)生體會(huì )"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書(shū)勾股定理,進(jìn)而給出字母表示,培養學(xué)生的符號意識。

  教師對"勾、股、弦"的'含義以及古今中外對勾股定理的研究做一個(gè)介紹,使學(xué)生感受數學(xué)文化,培養民族自豪感和愛(ài)國主義精神。利用勾股樹(shù)動(dòng)態(tài)演示,讓學(xué)生欣賞數學(xué)的精巧、優(yōu)美。

  第四步取其精華古為今用

  我按照"理解—掌握—運用"的梯度設計了如下三組習題。

 。1)對應難點(diǎn),鞏固所學(xué)。

 。2)考查重點(diǎn),深化新知。

 。3)解決問(wèn)題,感受應用。

  第五步溫故反思任務(wù)后延

  在課堂接近尾聲時(shí),我鼓勵學(xué)生從"四基"的要求對本節課進(jìn)行小結。進(jìn)而總結出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗。

  然后布置作業(yè),分層作業(yè)體現了教育面向全體學(xué)生的理念。

  初中數學(xué)《勾股定理》說(shuō)課稿2

  一、教材分析:

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎上進(jìn)行學(xué)習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數量關(guān)系,它可以解決直角三角形中的計算問(wèn)題,是解直角三角形的主要根據之一,在實(shí)際生活中用途很大。

  教材在編寫(xiě)時(shí)注意培養學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀(guān)的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運用。

  據此,制定教學(xué)目標如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、培養學(xué)生觀(guān)察、比較、分析、推理的能力。

  4、通過(guò)介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國與熱愛(ài)祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。

  二、教學(xué)重點(diǎn):

  勾股定理的證明和應用。

  三、教學(xué)難點(diǎn):

  勾股定理的證明。

  四、教法和學(xué)法:

  教法和學(xué)法是體現在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現如下特點(diǎn):

  以自學(xué)輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學(xué)生學(xué)習欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習全過(guò)程。

  切實(shí)體現學(xué)生的主體地位,讓學(xué)生通過(guò)觀(guān)察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。

  通過(guò)演示實(shí)物,引導學(xué)生觀(guān)察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  五、教學(xué)程序

 。罕竟潈热莸慕虒W(xué)主要體現在學(xué)生動(dòng)手、動(dòng)腦方面,根據學(xué)生的認知規律和學(xué)習心理,教學(xué)程序設計如下:

  (一)創(chuàng )設情境以古引新

  1、由故事引入,3000多年前有個(gè)叫商高的人對周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè )學(xué)狀態(tài)。

  3、板書(shū)課題,出示學(xué)習目標。

  (二)初步感知理解教材

  教師指導學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現了學(xué)生的自主學(xué)習意識,鍛煉學(xué)生主動(dòng)探究知識,養成良好的自學(xué)習慣。

  (三)質(zhì)疑解難、討論歸納:

  1、教師設疑或學(xué)生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現欲。

  2、教師引導學(xué)生按照要求進(jìn)行拼圖,觀(guān)察并分析;

 。1)這兩個(gè)圖形有什么特點(diǎn)?

 。2)你能寫(xiě)出這兩個(gè)圖形的面積嗎?

 。3)如何運用勾股定理?是否還有其他形式?

  這時(shí)教師組織學(xué)生分組討論,調動(dòng)全體學(xué)生的積極性,達到人人參與的效果,接著(zhù)全班交流。先有某一組代表發(fā)言,說(shuō)明本組對問(wèn)題的理解程度,其他各組作評價(jià)和補充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。

  (四)鞏固練習強化提高

  1、出示練習,學(xué)生分組解答,并由學(xué)生總結解題規律。課堂教學(xué)中動(dòng)靜結合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評價(jià),以加深對例題的理解與運用。針對例題再次出現鞏固練習,進(jìn)一步提高學(xué)生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

  (五)歸納總結練習反饋

  引導學(xué)生對知識要點(diǎn)進(jìn)行總結,梳理學(xué)習思路。分發(fā)自我反饋練習,學(xué)生獨立完成。

  本課意在創(chuàng )設愉悅和諧的樂(lè )學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習中創(chuàng )新精神和實(shí)踐能力得到培養。

  初中數學(xué)《勾股定理》說(shuō)課稿3

  一、教材分析

  (一)教材地位

  這節課是九年制義務(wù)教育初級中學(xué)教材北師大版八年級第一章第一節《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數量關(guān)系。它在數學(xué)的發(fā)展中起過(guò)重要的作用,在現時(shí)世界中也有著(zhù)廣泛的作用。學(xué)生通過(guò)對勾股定理的學(xué)習,可以在原有的基礎上對直角三角形有進(jìn)一步的認識和理解。

  (二)教學(xué)目標

  知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。

  過(guò)程與方法:經(jīng)歷探索及驗證勾股定理的過(guò)程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動(dòng)探究的習慣,感受數形結合和從特殊到一般的思想。

  情感態(tài)度與價(jià)值觀(guān):激發(fā)學(xué)生愛(ài)國熱情,讓學(xué)生體驗自己努力得到結論的成就感,體驗數學(xué)充滿(mǎn)探索和創(chuàng )造,體驗數學(xué)的美感,從而了解數學(xué),喜歡數學(xué)。

  (三)教學(xué)重點(diǎn):

  經(jīng)歷探索及驗證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗,讓學(xué)生在實(shí)驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:八年級學(xué)生已經(jīng)具備一定的觀(guān)察、歸納、猜想和推理的能力。他們在小學(xué)已學(xué)習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來(lái)解決問(wèn)題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強。

  教法分析:結合八年級學(xué)生和本節教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境————建立模型————解釋?xiě)谩卣轨柟獭钡哪J,選擇引導探索法。把教學(xué)過(guò)程轉化為學(xué)生親身觀(guān)察,大膽猜想,自主探究,合作交流,歸納總結的過(guò)程。

  學(xué)法分析:在教師的組織引導下,學(xué)生采用自主探究合作交流的研討式學(xué)習方式,使學(xué)生真正成為學(xué)習的主人。

  三、教學(xué)過(guò)程設計

  1、創(chuàng )設情境,提出問(wèn)題

  2、實(shí)驗操作,模型構建

  3、回歸生活,應用新知

  4、知識拓展,鞏固深化5。感悟收獲,布置作業(yè)

  (一)創(chuàng )設情境提出問(wèn)題

  樓房三樓失火,消防隊員趕來(lái)救火,了解到每層樓高3米,消防隊員取來(lái)6。5米長(cháng)的云梯,如果梯子的底部離墻基的距離是2。5米,請問(wèn)消防隊員能否進(jìn)入三樓滅火?

  設計意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現了知識的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數學(xué)化”的過(guò)程,從而引出下面的環(huán)節。

  實(shí)驗操作模型構建

  1、等腰直角三角形(數格子)

  2、一般直角三角形(割補)

  問(wèn)題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設計意圖:這樣做利于學(xué)生參與探索,利于培養學(xué)生的語(yǔ)言表達能力,體會(huì )數形結合的思想。

  問(wèn)題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補法是本節的難點(diǎn),組織學(xué)生合作交流)

  設計意圖:不僅有利于突破難點(diǎn),而且為歸納結論打下基礎,讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。

  通過(guò)以上實(shí)驗歸納總結勾股定理。

  設計意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗了從特殊——一般的認知規律。

  回歸生活應用新知

  讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應,增強學(xué)生學(xué)數學(xué)、用數學(xué)的意識,增加學(xué)以致用的樂(lè )趣和信心。

  四、知識拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習,照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識的運用得到升華。

  基礎題:直角三角形的一直角邊長(cháng)為3,斜邊為5,另一直角邊長(cháng)為X,你可以根據條件提出多少個(gè)數學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設計意圖:這道題立足于雙基。通過(guò)學(xué)生自己創(chuàng )設情境,鍛煉了發(fā)散思維。

  情境題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長(cháng)和46厘米寬,他覺(jué)得一定是售貨員搞錯了。你同意他的想法嗎?

  設計意圖:增加學(xué)生的生活常識,也體現了數學(xué)源于生活,并用于生活。

  探索題:做一個(gè)長(cháng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(cháng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識說(shuō)明。

  設計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè):

  這節課你的收獲是什么?

  1、課本習題。

  2、搜集有關(guān)勾股定理證明的資料。

  板書(shū)設計探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時(shí)說(shuō)課稿

  設計說(shuō)明:

  1、探索定理采用面積法,為學(xué)生創(chuàng )設一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì )數形結合及從特殊到一般的思想方法。

  2、讓學(xué)生人人參與,注重對學(xué)生活動(dòng)的評價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現出來(lái)的思維水平、表達水平。

  初中數學(xué)《勾股定理》說(shuō)課稿4

  一、教材分析

  教材所處的地位與作用

  “探索勾股定理”是人教版八年級《數學(xué)》下冊?xún)热!肮垂啥ɡ怼笔前才旁趯W(xué)生學(xué)習了三角形、全等三角形、等腰三角形等有關(guān)知識之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數與形密切聯(lián)系起來(lái),在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。

  二、教學(xué)目標

  綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標制定如下:

  1、知識目標

  知道勾股定理的由來(lái),初步理解割補拼接的面積證法。

  掌握勾股定理,通過(guò)動(dòng)手操作利用等積法理解勾股定理的證明過(guò)程。

  2、能力目標

  在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀(guān)察——合理猜想——歸納——驗證”的數學(xué)思想,并體會(huì )數形結合以及由特殊到一般的思想方法,培養學(xué)生的觀(guān)察力、抽象概括能力、創(chuàng )造想象能力以及科學(xué)探究問(wèn)題的能力。

  3、情感目標

  通過(guò)觀(guān)察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數學(xué)知識的發(fā)生、發(fā)展過(guò)程。

  介紹“趙爽弦圖”,讓學(xué)生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數學(xué)激情及愛(ài)國情感。

  三、教學(xué)重難點(diǎn)

  本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級學(xué)生構造能力較低以及對面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。

  四、教學(xué)問(wèn)題診斷

  本節主要攻克的問(wèn)題就是本節的難點(diǎn):勾股定理的證明。我打算采用面積法來(lái)講解,但這種借助于圖形的面積來(lái)探索、驗證數學(xué)結論的數形結合思想,對于學(xué)生來(lái)說(shuō),有些陌生,難以理解,又加之數學(xué)課本身的課程特征,在講解時(shí),沒(méi)有文科那么深動(dòng)形象,所以針對這一現狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

  五、教法與學(xué)法分析

  [教學(xué)方法與手段]針對八年級學(xué)生的知識結構和心理特征,本節課選擇引導探索法,由淺入深,由特殊到一般地提出問(wèn)題,引導學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

  [學(xué)法分析]在教師組織引導下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗,自己獲取知識,并感悟學(xué)習方法,借此培養學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習的主體。讓學(xué)生感受到自己是學(xué)習的主體,增強他們的主動(dòng)感和責任感,這樣對掌握新知會(huì )事半功倍。

  六、教學(xué)流程設計

  1、創(chuàng )設情境,引入新課

  本節課開(kāi)始利用多媒體介紹了在北京召開(kāi)的2002年國際數學(xué)家大會(huì )的會(huì )標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)!昂玫拈_(kāi)始是成功的一半”,在課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習情境中,激發(fā)學(xué)生濃厚的學(xué)習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開(kāi)啟學(xué)生思維的閘門(mén),激勵探究,使學(xué)生的學(xué)習狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識。

  2、觀(guān)察發(fā)現,類(lèi)比猜想

  讓學(xué)生仔細觀(guān)察畢達哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著(zhù)由特殊到一般,讓學(xué)生合理猜測:是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結論?同學(xué)們很輕易的得到了結論。最后對此結論通過(guò)在網(wǎng)格中數格子進(jìn)行驗證,讓學(xué)生經(jīng)歷了“觀(guān)察——合理猜測——歸納——驗證”的這一數學(xué)思想。在數格子的驗證過(guò)程中,發(fā)現任意直角三角形(圖2)斜邊上長(cháng)出的正方形中網(wǎng)格不規則,沒(méi)法數出。通過(guò)同學(xué)們的討論,發(fā)現數不出來(lái)的原因是格子不規則,從而想到了用補或割的方法進(jìn)行計算,其原則就是由不規則經(jīng)過(guò)割補變?yōu)橐巹t。

  3、實(shí)驗探究,證明結論

  因為勾股定理的出現,使數學(xué)從單一的純計算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數形結合這一數學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規則的平面圖形經(jīng)割補,變?yōu)橐巹t的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2=c2,也因此引入了“等積法”證明勾股定理。

  4、練兵之際

  這是“總統證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數學(xué)的地位之高,第三在沒(méi)有講解的情況下,學(xué)生自己得出了“總統證法”,大大增強了學(xué)生的自信心和自豪感。

  5、自己動(dòng)手,拼出弦圖

  讓同學(xué)們拿出了提前準備好的四個(gè)全等的邊長(cháng)為a、b、c的直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛(ài)的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們在數學(xué)的海洋中馳騁,提供這種學(xué)習方式就是為了讓孩子們更加開(kāi)闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。

  6、總結反思

  通過(guò)這一堂課,我認為數學(xué)教學(xué)的核心不是知識本身,而是數學(xué)的思維方式,而培養這種數學(xué)思維方式需要豐富的數學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng )造與體驗的方法來(lái)學(xué)習數學(xué),這樣才能真正的掌握數學(xué),真正擁有數學(xué)的思維方式,這一課的學(xué)習就是通過(guò)讓學(xué)生自主探索知識,從而將其轉化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習,教學(xué)模式也從教師講授為主轉為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習討論交流為主,把數學(xué)課堂轉化為“數學(xué)實(shí)驗室”,學(xué)生通過(guò)自己活動(dòng)得出結論,使創(chuàng )新精神與實(shí)踐能力得到了發(fā)展。

  七、設計說(shuō)明

  1、根據學(xué)生的知識結構,我采用的數學(xué)流程是:創(chuàng )設情境引入新課——觀(guān)察發(fā)現類(lèi)比猜想——實(shí)驗探究證明結論——自己動(dòng)手拼出弦圖——總結反思這五部分。這一流程體現了知識的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生經(jīng)歷了觀(guān)察——猜想——歸納——驗證的思想和數形結合的思想。

  2、探索定理采用了面積法,引導學(xué)生利用實(shí)驗由特殊到一般的數學(xué)思想對直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結論。這種方法是認識事物規律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好的思維品質(zhì)的形成有重要作用,對學(xué)生終身發(fā)展也有很大作用。

  初中數學(xué)《勾股定理》說(shuō)課稿5

  一、教材分析

  1、教材的地位和作用

  它也是幾何中最重要的定理,它將形和數密切聯(lián)系起來(lái),在數學(xué)的發(fā)展中起著(zhù)重要的作用。

  因此他的教育教學(xué)價(jià)值就具體體現在如下三維目標中:

  知識與技能:

  1、經(jīng)歷勾股定理的探索過(guò)程,體會(huì )數形結合思想。

  2、理解直角三角形三邊的關(guān)系,會(huì )應用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  過(guò)程與方法:

  1、經(jīng)歷觀(guān)察—猜想—歸納—驗證等一系列過(guò)程,體會(huì )數學(xué)定理發(fā)現的過(guò)程,由特殊到一般的解決問(wèn)題的方法。

  2、在觀(guān)察、猜想、歸納、驗證等過(guò)程中培養學(xué)生們的數學(xué)語(yǔ)言表達能力和初步的邏輯推理能力。

  情感、態(tài)度與價(jià)值觀(guān):

  1、通過(guò)對勾股定理歷史的了解,感受數學(xué)文化,激發(fā)學(xué)習興趣。

  2、在探究活動(dòng)中,體驗解決問(wèn)題方法的多樣性,培養學(xué)生們的合作意識和然所精神。

  3、讓學(xué)生們通過(guò)動(dòng)手實(shí)踐,增強探究和創(chuàng )新意識,體驗研究過(guò)程,學(xué)習研究方法,逐步養成一種積極的生動(dòng)的,自助合作探究的學(xué)習方式。

  由于八年級的學(xué)生們具有一定分析能力,但活動(dòng)經(jīng)驗不足,所以

  本節課教學(xué)重點(diǎn):勾股定理的探索過(guò)程,并掌握和運用它。

  教學(xué)難點(diǎn):分割,補全法證面積相等,探索勾股定理。

  二、教法學(xué)法分析:

  要上好一堂課,就是要把所確定的三維目標有機地溶入到教學(xué)過(guò)程中去,所以我采用了“引導探究式”的教學(xué)方法:

  先從學(xué)生們熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數學(xué)化,然后由特殊到一般地提出問(wèn)題,引導學(xué)生們在自主探究與合作交流中解決問(wèn)題,同時(shí)也真正體現了數學(xué)課堂是學(xué)生們自己的課堂。

  學(xué)法:我想通過(guò)“操作+思考”這樣方式,有效地讓學(xué)生們在動(dòng)手、動(dòng)腦、自主探究與合作交流中來(lái)發(fā)現新知,同時(shí)讓學(xué)生們感悟到:學(xué)習任何知識的最好方法就是自己去探究。

  三、教學(xué)程序設計

  1、故事引入新課,激起學(xué)生們學(xué)習興趣。

  牛頓,瓦特的故事,讓學(xué)生們科學(xué)家的偉大成就多數都是在看似平淡無(wú)奇的現象中發(fā)現和研究出來(lái)的;生活中處處有數學(xué),我們應該學(xué)會(huì )觀(guān)察、思考,將學(xué)習與生活緊密結合起來(lái)。畢達哥拉斯的發(fā)現引入新課。

  2、探索新知

  在這里我設計了四個(gè)內容:

 、偬剿鞯妊苯侨切稳叺年P(guān)系

 、谶呴L(cháng)為3、4、5為邊長(cháng)的直角三角形的三邊關(guān)系

 、蹖W(xué)生們畫(huà)兩直角邊為2,6的直角三角形,探索三邊的關(guān)系

 、苋厼閍、b、c的直角三角形的三邊的關(guān)系,(證明)

 、莨垂啥ɡ須v史介紹,讓學(xué)生們體會(huì )勾股定理的文化價(jià)值。

  體現從特殊到一般的發(fā)現問(wèn)題的過(guò)程。

  3、新知運用:

 、倥e出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

 、谠谥苯侨切沃,已知∠B=90°,AB=6,BC=8,求AC。

 、垡鲆粋(gè)人字梯,要求人字梯的跨度為6米,高為4米,請問(wèn)怎么做?

 、苋鐖D,學(xué)校有一塊長(cháng)方形花鋪,有極少數人為了避開(kāi)拐角走“捷徑”,在花鋪內走出了一條“路”。他們僅僅少走了步路(假設2步為1米),卻踩傷了花草。

  4、小結本課:

  學(xué)完了這節課,你有什么收獲?

  老師補充:科學(xué)家的偉大成就多數都是在看似平淡無(wú)奇的現象中發(fā)現和研究出來(lái)的;生活中處處有數學(xué),我們應該學(xué)會(huì )觀(guān)察、思考,將學(xué)習與生活緊密結合起來(lái)。數學(xué)來(lái)源于實(shí)踐,而又應用于實(shí)踐。解決一個(gè)問(wèn)題的方法是多樣性的,我們要多思考。勾股定是數學(xué)史上的明珠,證明方法有很多種,我們將在下一節課學(xué)習它。

【人教版初中數學(xué)《勾股定理》說(shuō)課稿(精選5篇)】相關(guān)文章:

初中數學(xué)《勾股定理》優(yōu)秀說(shuō)課稿(通用5篇)05-29

人教版初中數學(xué)教學(xué)反思10-16

數學(xué)必考的勾股定理考點(diǎn)08-30

人教版初中語(yǔ)文《秋天》說(shuō)課稿11-05

【精選】人教版初中語(yǔ)文說(shuō)課稿4篇05-22

【精選】人教版初中語(yǔ)文說(shuō)課稿四篇05-21

小學(xué)數學(xué)人教版《小數加法》說(shuō)課稿08-18

初中數學(xué)說(shuō)課稿-《數軸》12-12

初中數學(xué)優(yōu)秀說(shuō)課稿《垂線(xiàn)》11-11

精選數學(xué)說(shuō)課稿初中合集10篇07-10

激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频