實(shí)用的高中數學(xué)說(shuō)課稿3篇
作為一位無(wú)私奉獻的人民教師,時(shí)常需要用到說(shuō)課稿,說(shuō)課稿有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。那么問(wèn)題來(lái)了,說(shuō)課稿應該怎么寫(xiě)?以下是小編收集整理的高中數學(xué)說(shuō)課稿3篇,僅供參考,希望能夠幫助到大家。
高中數學(xué)說(shuō)課稿 篇1
一、說(shuō)教材
1.從在教材中的地位與作用來(lái)看
《等比數列的前n項和》是數列這一章中的一個(gè)重要內容,它不僅在現實(shí)生活中有著(zhù)廣泛的實(shí)際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習和工作中必備的數學(xué)素養.
2.從學(xué)生認知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節內容與等差數列前n項和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著(zhù)本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯.
3.學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.
4.重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導、公式的特點(diǎn)和公式的運用.
教學(xué)難點(diǎn):公式的推導方法和公式的靈活運用.
公式推導所使用的“錯位相減法”是高中數學(xué)數列求和方法中最常用的方法之一,它蘊含了重要的數學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).
二、說(shuō)目標
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過(guò)程、公式的特點(diǎn),在此基礎上能初步應用公式解決與之有關(guān)的問(wèn)題.
過(guò)程與方法目標:
通過(guò)對公式推導方法的探索與發(fā)現,向學(xué)生滲透特殊到一般、類(lèi)比與轉化、分類(lèi)討論等數學(xué)思想,培養學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態(tài)度價(jià)值觀(guān):
通過(guò)對公式推導方法的探索與發(fā)現,優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉化和理論聯(lián)系實(shí)際的辯證唯物主義觀(guān)點(diǎn).
三、說(shuō)過(guò)程
學(xué)生是認知的主體,設計教學(xué)過(guò)程必須遵循學(xué)生的認知規律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程,結合本節課的特點(diǎn),我設計了如下的教學(xué)過(guò)程:
1.創(chuàng )設情境,提出問(wèn)題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當時(shí)的印度國王大為贊賞,對他說(shuō):我可以滿(mǎn)足你的任何要求.西薩說(shuō):請給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數學(xué)家計算,結果出來(lái)后,國王大吃一驚.為什么呢?
設計意圖:設計這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調動(dòng)學(xué)習的積極性.故事內容緊扣本節課的主題與重點(diǎn).
此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導學(xué)生寫(xiě)出麥?倲.帶著(zhù)這樣的問(wèn)題,學(xué)生會(huì )動(dòng)手算了起來(lái),他們想到用計算器依次算出各項的值,然后再求和.這時(shí)我對他們的這種思路給予肯定.
設計意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉過(guò)彎來(lái),因而在教學(xué)中應舍得花時(shí)間營(yíng)造知識形成過(guò)程的氛圍,突破學(xué)生學(xué)習的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆.
2.師生互動(dòng),探究問(wèn)題
在肯定他們的思路后,我接著(zhù)問(wèn):1,2,22,…,263是什么數列?有何特征?應歸結為什么數學(xué)問(wèn)題呢?
探討1:,記為(1)式,注意觀(guān)察每一項的特征,有何聯(lián)系?(學(xué)生會(huì )發(fā)現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現?
設計意圖:留出時(shí)間讓學(xué)生充分地比較,等比數列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應著(zhù)力在這兒做文章,從而抓住培養學(xué)生的辯證思維能力的良好契機.
經(jīng)過(guò)比較、研究,學(xué)生發(fā)現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經(jīng)過(guò)繁難的計算之苦后,突然發(fā)現上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗,從而增強學(xué)習數學(xué)的興趣和學(xué)好數學(xué)的信心.
3.類(lèi)比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢引導學(xué)生將結論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個(gè)別學(xué)生進(jìn)行指導.
設計意圖:在教師的指導下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習的愉快和成就感.
對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時(shí)是什么數列?此時(shí)sn=?(這里引導學(xué)生對q進(jìn)行分類(lèi)討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎.)
再次追問(wèn):結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導學(xué)生得出公式的另一形式)
設計意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對知識的認識,完善知識結構,另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷χR的主動(dòng)認識,從而進(jìn)一步提高分析、類(lèi)比和綜合的能力.這一環(huán)節非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話(huà),然而卻有畫(huà)龍點(diǎn)睛之妙用.
4.討論交流,延伸拓展
高中數學(xué)說(shuō)課稿 篇2
各位同仁,各位專(zhuān)家:
我說(shuō)課的課題是《任意角的三角函數》,內容取自蘇教版高中實(shí)驗教科書(shū)《數學(xué)》第四冊 第1。2節
先對教材進(jìn)行分析
教學(xué)內容:任意角三角函數的定義、定義域,三角函數值的符號。
地位和作用: 任意角的三角函數是本章教學(xué)內容的基本概念對三角內容的整體學(xué)習至關(guān)重要。同時(shí)它又為平面向量、解析幾何等內容的學(xué)習作必要的準備,通過(guò)這部分內容的學(xué)習,又可以幫助學(xué)生更加深入理解函數這一基本概念。所以這個(gè)內容要認真探討教材,精心設計過(guò)程。
教學(xué)重點(diǎn):任意角三角函數的定義
教學(xué)難點(diǎn):正確理解三角函數可以看作以實(shí)數為自變量的函數、初中用邊長(cháng)比值來(lái)定義轉變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀(guān)念的轉換以及坐標定義的合理性的理解;
學(xué)情分析:
學(xué)生已經(jīng)掌握的內容,學(xué)生學(xué)習能力
1。初中學(xué)生已經(jīng)學(xué)習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見(jiàn)的知識和求法。
2。我們南山區經(jīng)過(guò)多年的初中課改,學(xué)生已經(jīng)具備較強的自學(xué)能力,多數同學(xué)對數學(xué)的學(xué)習有相當的興趣和積極性。
3。在探究問(wèn)題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進(jìn)行
針對對教材內容重難點(diǎn)的和學(xué)生實(shí)際情況的分析我們制定教學(xué)目標如下
知識目標:
。1)任意角三角函數的定義;三角函數的定義域;三角函數值的符號,
能力目標:
。1)理解并掌握任意角的三角函數的定義;
。2)正確理解三角函數是以實(shí)數為自變量的函數;
。3)通過(guò)對定義域,三角函數值的符號的推導,提高學(xué)生分析探究解決問(wèn)題的能力。
德育目標:
。1)學(xué)習轉化的思想,(2)培養學(xué)生嚴謹治學(xué)、一絲不茍的科學(xué)精神;
針對學(xué)生實(shí)際情況為達到教學(xué)目標須精心設計教學(xué)方法
教法學(xué)法:溫故知新,逐步拓展
。1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發(fā)展新知識,形成新的概念;
。2)通過(guò)例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
。1)提高直觀(guān)性增強趣味性。
教學(xué)過(guò)程分析
總體來(lái)說(shuō), 由舊及新,由易及難,
逐步加強,逐步推進(jìn)
先由初中的直角三角形中銳角三角函數的定義
過(guò)度到直角坐標系中銳角三角函數的定義
再發(fā)展到直角坐標系中任意角三角函數的定義
給定定義后通過(guò)應用定義又逐步發(fā)現新知識拓展完善定義。
具體教學(xué)過(guò)程安排
引入: 復習提問(wèn):初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學(xué)生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。
我們知道,隨著(zhù)角的概念的推廣,研究角時(shí)多放在直角坐標系里, 那么三角函數的定義能否也放到坐標系去研究呢?
引導學(xué)生發(fā)現B的坐標和邊長(cháng)的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現由于相似三角形的相似比導致OB上任一P點(diǎn)都可以代換B,把三角函數的定義發(fā)展到用終邊上任一點(diǎn)的坐標來(lái)表示, 從而銳角三角函數可以使用直角坐標系來(lái)定義,自然地,要想定義任意一個(gè)角三角函數,便考慮放在直角坐標中進(jìn)行合理進(jìn)行定義了
從而得到
知識點(diǎn)一:任意一個(gè)角的三角函數的定義
提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個(gè)比值的大小和P點(diǎn)在角的終邊上的位置無(wú)關(guān)。
精心設計例題,引出新內容深化概念,完善定義
例1已知角A 的終邊經(jīng)過(guò)P(2,—3),求角A的三個(gè)三角函數值
。ù祟}由學(xué)生自己分析獨立動(dòng)手完成)
例題變式1,已知角A 的大小是30度,由定義求角A的三個(gè)三角函數值
結合變式我們發(fā)現三個(gè)三角函數值的大小與角的大小有關(guān),只會(huì )隨角的大小而變化,符合當初函數的定義,而我們又一直稱(chēng)呼為三角函數,
提出問(wèn)題:這三個(gè)新的定義確實(shí)問(wèn)是函數嗎?為什么?
從而引出函數極其定義域
由學(xué)生分析討論,得出結論
知識點(diǎn)二:三個(gè)三角函數的定義域
同時(shí)教師強調:由于弧度制使角和實(shí)數建立了一一對應關(guān)系,所以三角函數是以實(shí)數為自變量的函數
例題變式2, 已知角A 的終邊經(jīng)過(guò)P(—2a,—3a)( a不為0),求角A的三個(gè)三角函數值
解答中需要對變量的正負即角所在象限進(jìn)行討論, 讓學(xué)生意識到三角函數值的正負與角所在象限有關(guān),從而導出第三個(gè)知識點(diǎn)
知識點(diǎn)三:三角函數值的正負與角所在象限的關(guān)系
由學(xué)生推出結論,教師總結符號記憶方法,便于學(xué)生記憶
例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA
求cosA,tanA
綜合練習鞏固提高,更為下節的同角關(guān)系式打下基礎
拓展,如果不限制A的象限呢,可以留作課外探討
小結回顧課堂內容
課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解
課堂作業(yè)P16 1,2,4
。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)
課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)
必作P23 1(2),5(2),6(2)(4) 選作P23 3,4
板書(shū)設計(見(jiàn)PPT)
高中數學(xué)說(shuō)課稿 篇3
【一】教學(xué)背景分析
1。教材結構分析
《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的'學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。
2。學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3。教學(xué)目標
。1) 知識目標:①掌握圓的標準方程;
、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;
、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。
。2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W(xué)生用數學(xué)的意識。
。3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;
、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。
根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4。 教學(xué)重點(diǎn)與難點(diǎn)
。1)重點(diǎn):圓的標準方程的求法及其應用。
。2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。
為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1。教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。
2。學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
【三】教學(xué)過(guò)程與設計
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:
創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。
首先:縱向敘述教學(xué)過(guò)程
。ㄒ唬﹦(chuàng )設情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?
通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
。ǘ┥钊胩骄俊@得新知
問(wèn)題二 1。根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2。如果圓心在,半徑為時(shí)又如何呢?
好學(xué)教育:
這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。
。ㄈ⿷门e例——鞏固提高
I。直接應用 內化新知
問(wèn)題三 1。寫(xiě)出下列各圓的標準方程:
。1)圓心在原點(diǎn),半徑為3;
。2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。
2。寫(xiě)出圓的圓心坐標和半徑。
我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。
II。靈活應用 提升能力
問(wèn)題四 1。求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。
2。求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。
3。已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?
我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮。
III。實(shí)際應用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。
好學(xué)教育:
我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。
。ㄋ模┓答佊柧殹纬煞椒
問(wèn)題六 1。求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。
2。求圓過(guò)點(diǎn)的切線(xiàn)方程。
3。求圓過(guò)點(diǎn)的切線(xiàn)方程。
接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。
。ㄎ澹┬〗Y反思——拓展引申
1。課堂小結
把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。
2。分層作業(yè)
。ˋ)鞏固型作業(yè):教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。
3。激發(fā)新疑
問(wèn)題七 1。把圓的標準方程展開(kāi)后是什么形式?
2。方程表示什么圖形?
在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計
。ㄒ唬┩怀鲋攸c(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
好學(xué)教育:
求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。
。ǘ⿲W(xué)生主體 教師主導 探究主線(xiàn)
本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。
。ㄈ┡囵B思維 提升能力 激勵創(chuàng )新
為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
【實(shí)用的高中數學(xué)說(shuō)課稿3篇】相關(guān)文章:
實(shí)用的高中數學(xué)說(shuō)課稿八篇07-28
實(shí)用的高中數學(xué)說(shuō)課稿四篇06-25
【實(shí)用】高中數學(xué)說(shuō)課稿3篇06-22
實(shí)用的高中數學(xué)說(shuō)課稿合集5篇08-09
實(shí)用的高中數學(xué)說(shuō)課稿集錦6篇08-06
實(shí)用的高中數學(xué)說(shuō)課稿集錦五篇08-06
實(shí)用的高中數學(xué)說(shuō)課稿匯總八篇07-31