精選高中數學(xué)說(shuō)課稿范文錦集7篇
作為一位兢兢業(yè)業(yè)的人民教師,通常需要準備好一份說(shuō)課稿,借助說(shuō)課稿可以更好地組織教學(xué)活動(dòng)。那要怎么寫(xiě)好說(shuō)課稿呢?以下是小編為大家收集的高中數學(xué)說(shuō)課稿7篇,希望對大家有所幫助。
高中數學(xué)說(shuō)課稿 篇1
一、教材分析
1· 教材的地位和作用
在學(xué)習這節課以前,我們已經(jīng)學(xué)習了振幅變換。本節知識是學(xué)習函數圖象變換綜合應用的基礎,在教材地位上顯得十分重要。
y=asin(ωx+φ)圖象變換的學(xué)習有助于學(xué)生進(jìn)一步理解正弦函數的圖象和性質(zhì),加深學(xué)生對函數圖象變換的理解和認識,加深數形結合在數學(xué)學(xué)習中的應用的認識。同時(shí)為相關(guān)學(xué)科的學(xué)習打下扎實(shí)的基礎。
、步滩牡闹攸c(diǎn)和難點(diǎn)
重點(diǎn)是對周期變換、相位變換規律的理解和應用。
難點(diǎn)是對周期變換、相位變換先后順序的調整,對圖象變換的影響。
、辰滩膬热莸陌才藕吞幚
函數y=asin(ωx+φ)圖象這部分內容計劃用3課時(shí),本節是第2課時(shí),主要學(xué)習周期變換和相位變換,以及兩種變換的綜合應用。
二、目的分析
、敝R目標
掌握相位變換、周期變換的變換規律。
、材芰δ繕
培養學(xué)生的觀(guān)察能力、動(dòng)手能力、歸納能力、分析問(wèn)題解決問(wèn)題能力。
、车掠繕
在教學(xué)中努力培養學(xué)生的“由簡(jiǎn)單到復雜、由特殊到一般”的辯證思想,培養學(xué)生的探究能力和協(xié)作學(xué)習的能力。
、辞楦心繕
通過(guò)學(xué)數學(xué),用數學(xué),進(jìn)而培養學(xué)生對數學(xué)的興趣。
三、教具使用
、俦菊n安排在電腦室教學(xué),每個(gè)學(xué)生都擁有一臺計算機,所有的計算機由一套多媒體演示控制系統連接,以實(shí)現師生、生生的相互溝通。
、谡n前應先把本課所需要的幾何畫(huà)板課件通過(guò)多媒體演示系統發(fā)送到每一臺學(xué)生電腦。
四、教法、學(xué)法分析
本節課以“探究——歸納——應用”為主線(xiàn),通過(guò)設置問(wèn)題情境,引導學(xué)生自主探究,總結規律,并能應用規律分析問(wèn)題、解決問(wèn)題。
以學(xué)生的自主探究為主要方式,把計算機使用的主動(dòng)權交給學(xué)生,讓學(xué)生主動(dòng)去學(xué)習新知、探究未知,在活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能數學(xué)地提出問(wèn)題、解決問(wèn)題。
五、教學(xué)過(guò)程
教學(xué)過(guò)程設計:
預備知識
一、問(wèn)題探究
、艓熒献魈骄恐芷谧儞Q
、茖W(xué)生自主探究相位變換
二、歸納概括
三、實(shí)踐應用
教學(xué)程序
設計說(shuō)明
〖預備知識
1我們已經(jīng)學(xué)習了幾種圖象變換?
2這些變換的規律是什么?
幫助學(xué)生鞏固、理解和歸納基礎知識,為后面的學(xué)習作鋪墊。促使學(xué)生學(xué)會(huì )對知識的歸納梳理。
〖問(wèn)題探究
。ㄒ唬⿴熒献魈骄恐芷谧儞Q
(1)自己動(dòng)手,在幾何畫(huà)板中分別觀(guān)察①y=sinx→y=sin2x;②y=sinx→y=sin
x圖象的變換過(guò)程,指出變換過(guò)程中圖象上每一個(gè)點(diǎn)的坐標發(fā)生了什么變化。
(2) 在上述變換過(guò)程中,橫坐標的伸長(cháng)和縮短與ω之間存在怎樣的關(guān)系?
。ǘ⿲W(xué)生自主探究相位變換
(1)我們初中學(xué)過(guò)的由y=f(x)→y=f(x+a)的圖象變換規律是怎樣的?
(2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規律呢?請動(dòng)手用幾何畫(huà)板加以驗證。
設計這個(gè)問(wèn)題的主要用意是讓學(xué)生通過(guò)觀(guān)察圖象變換的過(guò)程,了解周期變換的基本規律。
設計這個(gè)問(wèn)題意圖是引導學(xué)生再次認真觀(guān)察圖象變換的過(guò)程,以便總結周期變換的規律。
師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此基礎上,由學(xué)生自主探究相位變換規律,提高學(xué)生的綜合能力。
〖歸納概括
通過(guò)以上探究,你能否總結出周期變換和相位變換的一般規律?
設計這個(gè)環(huán)節的意圖是通過(guò)對上述變換過(guò)程的探究,進(jìn)而引導學(xué)生歸納概括,從現象到本質(zhì),總結出周期變換和相位變換的一般規律。
〖實(shí)踐應用
。ㄒ唬⿷门e例
(1)用五點(diǎn)法作出y=sin(2x+)一個(gè)周期內的簡(jiǎn)圖。
(2)我們可以通過(guò)哪些方法完成y=sinx到y=sin(2x+)的圖象變換
(3)請動(dòng)手驗證上述方法,把幾何畫(huà)板所得圖象與用五點(diǎn)法作出的簡(jiǎn)圖作比較,觀(guān)察哪些方法是正確的,哪些方法是錯誤的。
(4)歸納總結
從上述的變換過(guò)程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規律得從y=sin2x →y= sin(2x+)的變換應該是_____.
。ǘ┓謱佑柧
a組題(基礎題)
如何完成下列圖象的變換:
、賧=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
b組題(中等題)
如何完成下列圖象的變換:
、賧=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
、踶=sinx →y=sin(3x+1)
c組題(拓展題)
、偃绾瓮瓿上铝袌D象的變換:
y=sinx →y=sin(3x+1)
、谖覀冎,從f(x)到f(x)+k的變換可通過(guò)圖象的上下平移(k>0上移)(k<0下移)|k|個(gè)單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過(guò)實(shí)例加以驗證。
讓學(xué)生用五點(diǎn)法作出這個(gè)圖象是為了驗證變換方法是否正確。
給出這個(gè)問(wèn)題的用意是開(kāi)拓學(xué)生的思維,讓學(xué)生從多角度思考問(wèn)題。
這個(gè)步驟主要目的是培養學(xué)生的探究能力和動(dòng)手能力。
這個(gè)問(wèn)題的解決,是突破本課難點(diǎn)的關(guān)鍵。通過(guò)問(wèn)題的解決,讓學(xué)生理解如果先進(jìn)行周期變換,而后進(jìn)行相位變換,應特別關(guān)注x的變化量。
a組題重在基礎知識的掌握,
由基礎較薄弱的同學(xué)完成。
b組比a組增加了第③小題,
重在對兩種變換的綜合應用。
c組除了考查知識的綜合應用,
還要求學(xué)生對新問(wèn)題進(jìn)行探究,
有較大難度,適合基礎較好的
同學(xué)完成。
作業(yè):
。1)必做題
。2)選做題
作業(yè)分為兩種形式,體現作業(yè)的鞏固性和發(fā)展性原則。選做題不作統一要求,供學(xué)有余力的學(xué)生課后研究。
六、評價(jià)分析
在本節的教與學(xué)活動(dòng)中,始終體現以學(xué)生的發(fā)展為本的教育理念。在學(xué)生已有的認知基礎上進(jìn)行設問(wèn)和引導,關(guān)注學(xué)生的認知過(guò)程,注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動(dòng)手能力的培養,重視問(wèn)題探究意識和能力的培養。同時(shí),考慮不同學(xué)生的個(gè)性差異和發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現因材施教原則。
調節與反饋:
、膨炞C兩種變換的綜合時(shí),可能會(huì )出現有些學(xué)生無(wú)法觀(guān)察到兩種變換的區別這種情況,此時(shí),教師除了加以引導外,還需通過(guò)教師演示和詳細講解加以解決。
、平虒W(xué)中可能出現個(gè)別學(xué)生無(wú)法正確操作課件的情況,這種情況下一定要強調學(xué)生的協(xié)作意識。
附:板書(shū)設計
高中數學(xué)說(shuō)課稿 篇2
高中數學(xué)第三冊(選修)Ⅱ第一章第2節第一課時(shí)
一、教材分析
教材的地位和作用
期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學(xué)習期望將為今后學(xué)習概率統計知識做鋪墊。同時(shí),它在市場(chǎng)預測,經(jīng)濟統計,風(fēng)險與決策等領(lǐng)域有著(zhù)廣泛的應用,為今后學(xué)習數學(xué)及相關(guān)學(xué)科產(chǎn)生深遠的影響。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):離散型隨機變量期望的概念及其實(shí)際含義。
難點(diǎn):離散型隨機變量期望的實(shí)際應用。
[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對離散性隨機變量期望的概念的教學(xué)作為本節課的教學(xué)重點(diǎn)。此外,學(xué)生初次應用概念解決實(shí)際問(wèn)題也較為困難,故把其作為本節課的教學(xué)難點(diǎn)。
二、教學(xué)目標
[知識與技能目標]
通過(guò)實(shí)例,讓學(xué)生理解離散型隨機變量期望的概念,了解其實(shí)際含義。
會(huì )計算簡(jiǎn)單的離散型隨機變量的期望,并解決一些實(shí)際問(wèn)題。
[過(guò)程與方法目標]
經(jīng)歷概念的建構這一過(guò)程,讓學(xué)生進(jìn)一步體會(huì )從特殊到一般的思想,培養學(xué)生歸納、概括等合情推理能力。
通過(guò)實(shí)際應用,培養學(xué)生把實(shí)際問(wèn)題抽象成數學(xué)問(wèn)題的能力和學(xué)以致用的數學(xué)應用意識。
[情感與態(tài)度目標]
通過(guò)創(chuàng )設情境激發(fā)學(xué)生學(xué)習數學(xué)的情感,培養其嚴謹治學(xué)的態(tài)度。在學(xué)生分析問(wèn)題、解決問(wèn)題的過(guò)程中培養其積極探索的精神,從而實(shí)現自我的價(jià)值。
三、教法選擇
引導發(fā)現法
四、學(xué)法指導
“授之以魚(yú),不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習中學(xué)會(huì )怎樣發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題。
五、教學(xué)的基本流程設計
高中數學(xué)第三冊《離散型隨機變量的期望》說(shuō)課教案.rar
高中數學(xué)說(shuō)課稿 篇3
各位評委老師好:今天我說(shuō)課的題目是
是必修章第節的內容,我將以新課程標準的理念指導本節課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過(guò)程,教學(xué)評價(jià)四個(gè)方面加以說(shuō)明。
一、 教材分析
是在學(xué)習了基礎上進(jìn)一步研究 并為后面學(xué)習 做準備,在整個(gè)
高中數學(xué)中起著(zhù)承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標
1、 知識能力目標:使學(xué)生理解掌握
2、 過(guò)程方法目標:通過(guò)觀(guān)察歸納抽象概括使學(xué)生構建領(lǐng)悟 數學(xué)思想,培養 能力
3、 情感態(tài)度價(jià)值觀(guān)目標:通過(guò)學(xué)習體驗數學(xué)的科學(xué)價(jià)值和應用價(jià)值,培養善于
觀(guān)察勇于思考的學(xué)習習慣和嚴謹 的科學(xué)態(tài)度
根據教學(xué)目標、本節特點(diǎn)和學(xué)生實(shí)際情況本節重點(diǎn)是 ,由于學(xué)生對 缺少感性認識,所以本節課的重點(diǎn)是
二、教法學(xué)法
根據教師主導地位和學(xué)生主體地位相統一的規律,我采用引導發(fā)現法為本節課的.主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來(lái)尋求解決問(wèn)題的方法。
三、 教學(xué)過(guò)程
四、 教學(xué)程序及設想
1、由……引入:
把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。 在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
對于本題:……
2、由實(shí)例得出本課新的知識點(diǎn)是:……
3、講解例題。
我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓練。
課后練習……
使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
5、總結結論,強化認識。
知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。
6、變式延伸,進(jìn)行重構。
重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
五、教學(xué)評價(jià)
學(xué)生學(xué)習的學(xué)習結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià),教師應
當高度重視學(xué)生學(xué)習過(guò)程中的參與度、自信心、團隊精神合作意識數學(xué)能力的發(fā)現,以及學(xué)習的興趣和成就感。
高中數學(xué)說(shuō)課稿 篇4
一、教材分析:
1、教材的地位與作用:
線(xiàn)性規劃是運籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著(zhù)廣泛的應用。本節內容是在學(xué)習了不等式、直線(xiàn)方程的基礎上,利用不等式和直線(xiàn)方程的有關(guān)知識展開(kāi)的,它是對二元一次不等式的深化和再認識、再理解。通過(guò)這一部分的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,體驗數形結合和轉化的思想方法,培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。
2、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):畫(huà)可行域;在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。
難點(diǎn):在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。
二、目標分析:
在新課標讓學(xué)生經(jīng)歷“學(xué)數學(xué)、做數學(xué)、用數學(xué)”的理念指導下,本節課的教學(xué)目標分設為知識目標、能力目標和情感目標。
知識目標:
1、了解線(xiàn)性規劃的意義,了解線(xiàn)性約束條件、線(xiàn)性目標函數、可行解、可行
域和最優(yōu)解等概念;
2、理解線(xiàn)性規劃問(wèn)題的圖解法;
3、會(huì )利用圖解法求線(xiàn)性目標函數的最優(yōu)解.
能力目標:
1、在應用圖解法解題的過(guò)程中培養學(xué)生的觀(guān)察能力、理解能力。
2、在變式訓練的過(guò)程中,培養學(xué)生的分析能力、探索能力。
3、在對具體事例的感性認識上升到對線(xiàn)性規劃的理性認識過(guò)程中,培養學(xué)生運用數形結合思想解題的能力和化歸能力。
情感目標:
1、讓學(xué)生體驗數學(xué)來(lái)源于生活,服務(wù)于生活,體驗數學(xué)在建設節約型社會(huì )中的作用,品嘗學(xué)習數學(xué)的樂(lè )趣。
2、讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索與創(chuàng )造,培養學(xué)生勤于思考、勇于探索的精神;
3、讓學(xué)生學(xué)會(huì )用運動(dòng)觀(guān)點(diǎn)觀(guān)察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。
高中數學(xué)說(shuō)課稿 篇5
今天我說(shuō)課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對本課的教學(xué)設計進(jìn)行說(shuō)明。
一、說(shuō)教材
1、本節在教材中的地位和作用:
本節是棱柱的后續內容,又是學(xué)習球的必要基礎。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎知識,同時(shí)培養學(xué)生猜想、類(lèi)比、比較、轉化的能力。著(zhù)名的生物學(xué)家達爾文說(shuō):“最有價(jià)值的知識是關(guān)于方法和能力的知識”,因此,應該利用這節課培養學(xué)生學(xué)習方法、提高學(xué)習能力。
2. 教學(xué)目標確定:
(1)能力訓練要求
、偈箤W(xué)生了解棱錐及其底面、側面、側棱、頂點(diǎn)、高的概念。
、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標
、倥囵B學(xué)生善于通過(guò)觀(guān)察分析實(shí)物形狀到歸納其性質(zhì)的能力。
、谔岣邔W(xué)生對事物的感性認識到理性認識的能力。
、叟囵B學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀(guān)點(diǎn)。
3. 教學(xué)重點(diǎn)、難點(diǎn)確定:
重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點(diǎn):培養學(xué)生善于比較,從比較中發(fā)現事物與事物的區別。
二、說(shuō)教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標志,以啟迪學(xué)生思維,培養學(xué)生創(chuàng )新能力為核心”。
在教學(xué)中根據高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設置一些啟發(fā)性題目,采用啟發(fā)式誘導法,講練結合,發(fā)揮教師主導作用,體現學(xué)生主體地位。
2、教學(xué)手段:
根據《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節課概念性強,思維量大,整節課以啟發(fā)學(xué)生觀(guān)察思考、分析討論為主,采用“多媒體引導點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學(xué)生沿著(zhù)積極的思維方向,逐步達到即定的教學(xué)目標,發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識,掌握規律、主動(dòng)發(fā)現、積極探索。
三、說(shuō)學(xué)法:
這節課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發(fā)學(xué)生反復思考,不斷內化成為自己的認知結構。
四、 學(xué)程序:
[復習引入新課]
1.棱柱的性質(zhì):
。1)側棱都相等,側面是平行四邊形
。2)兩個(gè)底面與平行于底面的截面是全等的多邊形
。3)過(guò)不相鄰的兩條側棱的截面是平行四邊形
2.幾個(gè)重要的四棱柱:
平行六面體、直平行六面體、長(cháng)方體、正方體
思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì )是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
。1).棱錐及其底面、側面、側棱、頂點(diǎn)、高、對角面的概念
。2).棱錐的表示方法、分類(lèi)
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:
如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
、俑鱾壤庀嗟,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;
棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形
引申:
、僬忮F的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。
引申:
、儆^(guān)察圖中三棱錐S-OBM的側面三角形狀有何特點(diǎn)?
。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)
、谌舴謩e假設正棱錐的高SO= h,斜高SM= h’,底面邊長(cháng)的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過(guò)三角形得出以上各元素間的關(guān)系式。
。ㄕn后思考題)
[例題分析]
例1.若一個(gè)正棱錐每一個(gè)側面的頂角都是600,則這個(gè)棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
。ù鸢福篋)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過(guò)SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。
﹙解析及圖略﹚
例3.已知正四棱錐的棱長(cháng)和底面邊長(cháng)均為a,求:
。1)側面與底面所成角α的余弦(2)相鄰兩個(gè)側面所成角β的余弦
﹙解析及圖略﹚
[課堂練習]
1、 知一個(gè)正六棱錐的高為h,側棱為L(cháng),求它的底面邊長(cháng)和斜高。
﹙解析及圖略﹚
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結]
一:棱錐的基本概念及表示、分類(lèi)
二:棱錐的性質(zhì)
截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質(zhì)
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
。2)棱錐的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形
引申: ①正棱錐的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
、壅忮F中各元素間的關(guān)系
[課后作業(yè)]
1:課本P52 習題9.8 : 2、 4
2:課時(shí)訓練:訓練一
高中數學(xué)說(shuō)課稿 篇6
尊敬的各位專(zhuān)家、評委:
大家好!
我是盧龍縣木井中學(xué)數學(xué)教師xx,我今天說(shuō)課的題目是:人教A版普通高中課程標準實(shí)驗教科書(shū) 數學(xué)必修5第一章第一節的第一課時(shí)《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個(gè)方面說(shuō)明我的設計和構思。
一、教材分析
“解三角形”既是高中數學(xué)的基本內容,又有較強的應用性,在這次課程改革中,被保留下來(lái),并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問(wèn)題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數及向量知識的基礎上,通過(guò)對三角形邊角關(guān)系作量化探究,發(fā)現并掌握正弦定理(重要的解三角形工具),通過(guò)這一部分內容的學(xué)習,讓學(xué)生從“實(shí)際問(wèn)題”抽象成“數學(xué)問(wèn)題”的建模過(guò)程中,體驗 “觀(guān)察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問(wèn)題的過(guò)程中,感受數學(xué)的力量,進(jìn)一步培養學(xué)生對數學(xué)的學(xué)習興趣和“用數學(xué)”的意識。
二、學(xué)情分析
我所任教的學(xué)校是我縣一所農村普通中學(xué),大多數學(xué)生基礎薄弱,對“一些重要的數學(xué)思想和數學(xué)方法”的應用意識和技能還不高。但是,大多數學(xué)生對數學(xué)的興趣較高,比較喜歡數學(xué),尤其是象本節課這樣與實(shí)際生活聯(lián)系比較緊密的內容,相信學(xué)生能夠積極配合,有比較不錯的表現。
三、教學(xué)目標
1、知識和技能:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的內容,推證正弦定理及簡(jiǎn)單運用正弦定理解決一些簡(jiǎn)單的解三角形問(wèn)題。
過(guò)程與方法:學(xué)生參與解題方案的探索,嘗試應用觀(guān)察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現實(shí)世界的一些數學(xué)模型進(jìn)行思考。
情感、態(tài)度、價(jià)值觀(guān):培養學(xué)生合情合理探索數學(xué)規律的數學(xué)思想方法,通過(guò)平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯(lián)系來(lái)體現事物之間的普遍聯(lián)系與辯證統一。同時(shí),通過(guò)實(shí)際問(wèn)題的探討、解決,讓學(xué)生體驗學(xué)習成就感,增強數學(xué)學(xué)習興趣和主動(dòng)性,鍛煉探究精神。樹(shù)立“數學(xué)與我有關(guān),數學(xué)是有用的,我要用數學(xué),我能用數學(xué)”的理念。
2、教學(xué)重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):正弦定理的發(fā)現與證明;正弦定理的簡(jiǎn)單應用。
教學(xué)難點(diǎn):正弦定理證明及應用。
四、教學(xué)方法與手段
為了更好的達成上面的教學(xué)目標,促進(jìn)學(xué)習方式的轉變,本節課我準備采用“問(wèn)題教學(xué)法”,即由教師以問(wèn)題為主線(xiàn)組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來(lái)激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導學(xué)生采取自主探究與相互合作相結合的學(xué)習方式參與到問(wèn)題解決的過(guò)程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。
五、教學(xué)過(guò)程
為了很好地完成我所確定的教學(xué)目標,順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著(zhù)貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設計了這樣的教學(xué)過(guò)程:
(一)創(chuàng )設情景,揭示課題
問(wèn)題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì )不會(huì )想要知道:那遙不可及的月亮離我們究竟有多遠呢?
1671年兩個(gè)法國天文學(xué)家首次測出了地月之間的距離大約為 385400km,你知道他們當時(shí)是怎樣測出這個(gè)距離的嗎?
問(wèn)題2:在現在的高科技時(shí)代,要想知道某座山的高度,沒(méi)必要親自去量,只需水平飛行的飛機從山頂一過(guò)便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車(chē)的速度呢?要想解決這些問(wèn)題, 其實(shí)并不難,只要你學(xué)好本章內容即可掌握其原理。(板書(shū)課題《解三角形》)
[設計說(shuō)明]引用教材本章引言,制造知識與問(wèn)題的沖突,激發(fā)學(xué)生學(xué)習本章知識的興趣。
(二)特殊入手,發(fā)現規律
問(wèn)題3:在初中,我們已經(jīng)學(xué)習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實(shí)力,請你根據初中知識,解決這樣一個(gè)問(wèn)題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達式表示出來(lái)嗎?
引導啟發(fā)學(xué)生發(fā)現特殊情形下的正弦定理
(三)類(lèi)比歸納,嚴格證明
問(wèn)題4:本題屬于初中問(wèn)題,而且比較簡(jiǎn)單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫(xiě)成了銳角⊿ABC,其它沒(méi)有變,你說(shuō)這個(gè)結論還成立嗎?
[設計說(shuō)明]此時(shí)放手讓學(xué)生自己完成,如果感覺(jué)自己解決有困難,學(xué)生也可以前后桌或同桌結組研究,鼓勵學(xué)生用不同的方法證明這個(gè)結論,在巡視的過(guò)程中讓不同方法的學(xué)生上黑板展示,如果沒(méi)有用向量的學(xué)生,教師引導提示學(xué)生能否用向量完成證明。
問(wèn)題5:好根據剛才我們的研究,說(shuō)明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個(gè)結論仍然成立?我們光說(shuō)成立不行,必須有能力進(jìn)行嚴格的理論證明,你有這個(gè)能力嗎?下面我希望你能用實(shí)力告訴我,開(kāi)始。(啟發(fā)引導學(xué)生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)
[設計說(shuō)明] 放手給學(xué)生實(shí)踐的機會(huì )和時(shí)間,使學(xué)生真正的參與到問(wèn)題解決的過(guò)程中去,讓學(xué)生在學(xué)數學(xué)的實(shí)踐中去感悟和提高數學(xué)的思維方法和思維習慣。同時(shí),考慮到有部分同學(xué)基礎較差,考個(gè)人或小組可能無(wú)法完成探究任務(wù),教師在學(xué)生動(dòng)手的同時(shí),通過(guò)巡查,讓提前證明出結論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進(jìn)性,鍛煉了上黑板同學(xué)的解題過(guò)程的書(shū)寫(xiě)規范性,同時(shí),也讓從無(wú)從下手的同學(xué)有個(gè)參考,不至于閑呆著(zhù)浪費時(shí)間。
問(wèn)題6:由此,你能否得到一個(gè)更一般的結論?你能用比較精煉的語(yǔ)言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時(shí)板書(shū)課題并用紅色粉筆標示出正弦定理內容)
教師講解:告訴大家,其實(shí)這個(gè)大名鼎鼎的正弦定理是由伊朗著(zhù)名的天文學(xué)家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個(gè)證明。也有說(shuō)正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說(shuō)在1000年以前,人們就發(fā)現了這個(gè)充滿(mǎn)著(zhù)數學(xué)美的結論,不能不說(shuō)也是人類(lèi)數學(xué)史上的一個(gè)奇跡。老師希望21世紀的你能在今后的學(xué)習中也研究出一個(gè)被后人景仰的某某定理來(lái),到那時(shí)我也就成了數學(xué)家的老師了。當然,老師的希望能否變成現實(shí),就要看大家的了。
[設計說(shuō)明] 通過(guò)本段內容的講解,滲透一些數學(xué)史的內容,對學(xué)生不僅有數學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習科學(xué)文化知識的熱情。
(四)強化理解,簡(jiǎn)單應用
下面請大家看我們的教材2-3頁(yè)到例題1上邊,并自學(xué)解三角形定義。
[設計說(shuō)明] 讓學(xué)生看看書(shū),放慢節奏,有利于學(xué)生消化和吸收剛才的內容,同時(shí)教師可以利用這段時(shí)間對個(gè)別學(xué)困生進(jìn)行輔導,以減少掉隊的同學(xué)數量,同時(shí)培養學(xué)生養成自覺(jué)看書(shū)的好習慣。
我們學(xué)習了正弦定理之后,你覺(jué)得它有什么應用?在三角形中他能解決那些問(wèn)題呢? 我們先小試牛刀,來(lái)一個(gè)簡(jiǎn)單的問(wèn)題:
問(wèn)題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。
(本題簡(jiǎn)單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習本上完成,同學(xué)可以小聲音討論,完成后教師根據學(xué)生實(shí)踐中發(fā)現的問(wèn)題給予必要的講評)
[設計說(shuō)明] 充分給學(xué)生自己動(dòng)手的時(shí)間和機會(huì ),由于本題是唯一解,為將來(lái)學(xué)生感悟什么情況下三角形有唯一解創(chuàng )造條件。
強化練習
讓全體同學(xué)限時(shí)完成教材4頁(yè)練習第一題,找兩位同學(xué)上黑板。
問(wèn)題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。
[設計說(shuō)明]例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時(shí),引導學(xué)生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學(xué)有余力的同學(xué)鼓勵他們自學(xué)探究與發(fā)現教材8頁(yè)得內容:《解三角形的進(jìn)一步討論》
(五)小結歸納,深化拓展
1、正弦定理
2、正弦定理的證明方法
3、正弦定理的應用
4、涉及的數學(xué)思想和方法。
[設計說(shuō)明] 師生共同總結本節課的收獲的同時(shí),引導學(xué)生學(xué)會(huì )自己總結,讓學(xué)生進(jìn)一步回顧和體會(huì )知識的形成、發(fā)展、完善的過(guò)程。
(六)布置作業(yè),鞏固提高
1、教材10頁(yè)習題1.1A組第1題。
2、學(xué)有余力的同學(xué)探究10頁(yè)B組第1題,體會(huì )正弦定理的其他證明方法。
證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC
[設計說(shuō)明] 對不同水平的學(xué)生設計不同梯度的作業(yè),尊重學(xué)生的個(gè)性差異,有利于因材施教的教學(xué)原則的貫徹。
高中數學(xué)說(shuō)課稿 篇7
大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。
一 教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的內容,推證正弦定理及簡(jiǎn)單運用正弦定理與三角形的內角和定理解斜三角形的兩類(lèi)問(wèn)題。
能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習的興趣。
教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。
二 教法
根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當的提示和指導。突破難點(diǎn)的方法:抓住學(xué)生的能力線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過(guò)例題和練習來(lái)突破難點(diǎn)
三 學(xué)法:
指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四 教學(xué)過(guò)程
第一:創(chuàng )設情景,大概用2分鐘
第二:實(shí)踐探究,形成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
。ㄒ唬﹦(chuàng )設情境,布疑激趣
“興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。
。ǘ┨綄ぬ乩,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。
2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。
3.讓學(xué)生總結實(shí)驗結果,得出猜想:
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。
。ㄈ┻壿嬐评,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明
。ㄋ模w納總結,簡(jiǎn)單應用
1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。
2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
3.運用正弦定理求解本節課引引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
。ㄎ澹┲v解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
【精選高中數學(xué)說(shuō)課稿范文錦集7篇】相關(guān)文章:
精選高中數學(xué)說(shuō)課稿范文錦集五篇08-12
精選高中數學(xué)說(shuō)課稿范文錦集8篇08-07
精選高中數學(xué)說(shuō)課稿范文錦集十篇08-18
關(guān)于高中數學(xué)說(shuō)課稿范文錦集六篇08-11
關(guān)于高中數學(xué)說(shuō)課稿范文錦集9篇08-10