激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频

高中數學(xué)說(shuō)課稿

時(shí)間:2021-08-13 08:52:00 高中說(shuō)課稿 我要投稿

關(guān)于高中數學(xué)說(shuō)課稿模板匯編十篇

  作為一名為他人授業(yè)解惑的教育工作者,編寫(xiě)說(shuō)課稿是必不可少的,認真擬定說(shuō)課稿,那要怎么寫(xiě)好說(shuō)課稿呢?以下是小編精心整理的高中數學(xué)說(shuō)課稿10篇,僅供參考,希望能夠幫助到大家。

關(guān)于高中數學(xué)說(shuō)課稿模板匯編十篇

高中數學(xué)說(shuō)課稿 篇1

  說(shuō)教學(xué)目標

  A、知識目標:

  掌握等差數列前n項和公式的推導方法;掌握公式的運用。

  B、能力目標:

 。1)通過(guò)公式的探索、發(fā)現,在知識發(fā)生、發(fā)展以及形成過(guò)程中培養學(xué)生觀(guān)察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

 。2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認知規律,讓學(xué)生在實(shí)踐中通過(guò)觀(guān)察、嘗試、分析、類(lèi)比的方法導出等差數列的求和公式,培養學(xué)生類(lèi)比思維能力。

 。3)通過(guò)對公式從不同角度、不同側面的剖析,培養學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

  C、情感目標:(數學(xué)文化價(jià)值)

 。1)公式的發(fā)現反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。

 。2)通過(guò)公式的運用,樹(shù)立學(xué)生"大眾教學(xué)"的思想意識。

 。3)通過(guò)生動(dòng)具體的現實(shí)問(wèn)題,令人著(zhù)迷的數學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹(shù)立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數學(xué)的心理體驗,產(chǎn)生熱愛(ài)數學(xué)的情感。

  說(shuō)教學(xué)重點(diǎn):

  等差數列前n項和的公式。

  說(shuō)教學(xué)難點(diǎn):

  等差數列前n項和的公式的靈活運用。

  說(shuō)教學(xué)方法

  啟發(fā)、討論、引導式。

  教具:

  現代教育多媒體技術(shù)。

  教學(xué)過(guò)程

  一、創(chuàng )設情景,導入新課。

  師:上幾節,我們已經(jīng)掌握了等差數列的概念、通項公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數列的前n項和公式。提起數列求和,我們自然會(huì )想到德國偉大的數學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時(shí),一次教師布置了一道數學(xué)習題:"把從1到100的自然數加起來(lái),和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計算出來(lái)的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀(guān)察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。

  例1,計算:1+2+3+4+5+6+7+8+9+10。

  這道題除了累加計算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。

  生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個(gè)11,得到55。

  生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫(xiě)成 S=10+9+8+7+6+5+4+3+2+1。

  上面兩式相加得2S=11+10+。。。。。。+11=10×11=110

  10個(gè)

  所以我們得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學(xué)的方法相類(lèi)似。

  理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個(gè)101,所以1+2+3+。。。。。。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數列的哪一個(gè)性質(zhì)呢?

  生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq。

  二、教授新課(嘗試推導)

  師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質(zhì),如何來(lái)導出它的前n項和Sn計算公式呢?根據上面的例子同學(xué)們自己完成推導,并請一位學(xué)生板演。

  生4:Sn=a1+a2+。。。。。。an—1+an也可寫(xiě)成

  Sn=an+an—1+。。。。。。a2+a1

  兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

  n個(gè)

  =n(a1+an)

  所以Sn=(I)

  師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n—1)d代入公式(1)得

  Sn=na1+ d(II)

  上面(I)、(II)兩個(gè)式子稱(chēng)為等差數列的前n項和公式。公式(I)是基本的,我們可以發(fā)現,它可與梯形面積公式(上底+下底)×高÷2相類(lèi)比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學(xué)生總結:這些公式中出現了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應用。

  三、公式的應用(通過(guò)實(shí)例演練,形成技能)。

  1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計算:

 。1)1+2+3+。。。。。。+n

 。2)1+3+5+。。。。。。+(2n—1)

 。3)2+4+6+。。。。。。+2n

 。4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

  請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。

  生5:直接利用等差數列求和公式(I),得

 。1)1+2+3+。。。。。。+n=

 。2)1+3+5+。。。。。。+(2n—1)=

 。3)2+4+6+。。。。。。+2n==n(n+1)

  師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學(xué)生發(fā)言解答。

  生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開(kāi),可看成兩個(gè)等差數列,所以

  原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

  =n2—n(n+1)=—n

  生7:上題雖然不是等差數列,但有一個(gè)規律,兩項結合都為—1,故可得另一解法:

  原式=—1—1—。。。。。!1=—n

  n個(gè)

  師:很好!在解題時(shí)我們應仔細觀(guān)察,尋找規律,往往會(huì )尋找到好的方法。注意在運用Sn公式時(shí),要看清等差數列的項數,否則會(huì )引起錯解。

  例3、(1)數列{an}是公差d=—2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=—2,∴a1=6

  ∴S12=12 a1+66×(—2)=—60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+=145

  師:通過(guò)上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個(gè)變量。已知三個(gè)變量,可利用構造方程或方程組求另外兩個(gè)變量(知三求二),請同學(xué)們根據例3自己編題,作為本節的課外練習題,以便下節課交流。

  師:(繼續引導學(xué)生,將第(2)小題改編)

 、贁盗衶an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

 、谌舸祟}不求a1,d而只求S10時(shí),是否一定非來(lái)求得a1,d不可呢?引導學(xué)生運用等差數列性質(zhì),用整體思想考慮求a1+a10的值。

  2、用整體觀(guān)點(diǎn)認識Sn公式。

  例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)

  師:來(lái)看第(1)小題,寫(xiě)出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現了什么?

  生10:根據等差數列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  師:對。ê(jiǎn)單小結)這個(gè)題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質(zhì)可求a1與an的和,于是這個(gè)問(wèn)題就得到解決。這是整體思想在解數學(xué)問(wèn)題的體現。

  師:由于時(shí)間關(guān)系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學(xué)生觀(guān)察當d≠0時(shí),Sn是n的二次函數,那么從二次(或一次)的函數的觀(guān)點(diǎn)如何來(lái)認識Sn公式后,這留給同學(xué)們課外繼續思考。

  最后請大家課外思考Sn公式(1)的逆命題:

  已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=。數列{an}是否為等差數列,并說(shuō)明理由。

  四、小結與作業(yè)。

  師:接下來(lái)請同學(xué)們一起來(lái)小結本節課所講的內容。

  生11:1、用倒序相加法推導等差數列前n項和公式。

  2、用所推導的兩個(gè)公式解決有關(guān)例題,熟悉對Sn公式的運用。

  生12:1、運用Sn公式要注意此等差數列的項數n的值。

  2、具體用Sn公式時(shí),要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

  3、當已知條件不足以求此項a1和公差d時(shí),要認真觀(guān)察,靈活應用等差數列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。

  師:通過(guò)以上幾例,說(shuō)明在解題中靈活應用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習方法。同時(shí)希望大家在學(xué)習中做一個(gè)有心人,去發(fā)現更多的性質(zhì),主動(dòng)積極地去學(xué)習。

  本節所滲透的數學(xué)方法;觀(guān)察、嘗試、分析、歸納、類(lèi)比、特定系數等。

  數學(xué)思想:類(lèi)比思想、整體思想、方程思想、函數思想等。

  作業(yè):P49:13、14、15、17

高中數學(xué)說(shuō)課稿 篇2

  尊敬的各位專(zhuān)家、評委:

  上午好!

  今天我說(shuō)課的課題是人教A版必修2第二章第二節《直線(xiàn)與圓的位置關(guān)系》。

  我嘗試利用新課標的理念來(lái)指導教學(xué),對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評價(jià)分析五個(gè)方面來(lái)談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設計,敬請各位專(zhuān)家、評委批評指正。

  一、教材分析

  地位和作用

  學(xué)生在初中的學(xué)習中已經(jīng)了解直線(xiàn)與圓的位置關(guān)系,并知道可以利用直線(xiàn)與圓的焦點(diǎn)的個(gè)數以及圓心與直線(xiàn)的距離d與半徑r的關(guān)系判斷直線(xiàn)與圓的位置關(guān)系。但是,在初中學(xué)習時(shí),利用圓心與直線(xiàn)的距離d與半徑r的關(guān)系判斷直線(xiàn)與圓的位置關(guān)系的方法卻以結論性的形式呈現。在高一學(xué)習了解析幾何后,要考慮的問(wèn)題是如何掌握由直線(xiàn)和圓的方程判斷直線(xiàn)與圓的位置關(guān)系的方法。解決問(wèn)題的方法主要是幾何法和代數法。其中幾何法應該是在初中學(xué)習的基礎上,結合高中所學(xué)的點(diǎn)到直線(xiàn)的距離公式求出圓心與直線(xiàn)的距離d后,比較與半徑r的關(guān)系。從而作出判斷,適可而止第引進(jìn)用聯(lián)立方程組轉化為二次方程判別根的“純代數判別法”,并與“幾何法”欣賞比較,以決優(yōu)劣,從而也深化了基本的“幾何法”。含參數的問(wèn)題、簡(jiǎn)單的弦的問(wèn)題、切線(xiàn)問(wèn)題等綜合問(wèn)題作為進(jìn)一步的拓展提高或綜合應用,也適度第引入課堂教學(xué)中,但以深化“判定直線(xiàn)與圓的位置關(guān)系”為目的,要控制難度。雖然學(xué)生學(xué)習解析幾何了,但是把幾何問(wèn)題代數化無(wú)論是思維習慣還是具體轉化方法,學(xué)生仍是似懂非懂,因此應不斷強化,逐漸內化為學(xué)生的習慣和基本素質(zhì)。

  二、目標分析

  (一)、教學(xué)目標

  1、知識與技能

  理解直線(xiàn)與圓的位置的種類(lèi);

  利用平面直角坐標系中點(diǎn)到直線(xiàn)的距離公式求圓心到直線(xiàn)的距離;

  會(huì )用點(diǎn)到直線(xiàn)的距離來(lái)判斷直線(xiàn)與圓的位置關(guān)系。

  2、過(guò)程與方法

  設直線(xiàn)L:ax+by+c=o,圓C:x2+y2+Dx+Ey+F=0,圓的半徑為r,圓心(- ,- )到直線(xiàn)的距離為d,則判別直線(xiàn)與圓的位置關(guān)系的根據有以下幾點(diǎn):

  當d >r時(shí),直線(xiàn)l與圓c相離;

  當d =r時(shí),直線(xiàn)l與圓c相切;

  當d

  3、情態(tài)與價(jià)值觀(guān)

  讓學(xué)生通過(guò)觀(guān)察圖形,理解并掌握直線(xiàn)與圓的位置關(guān)系,培養學(xué)生數形結合的思想。

  (二)、教學(xué)重點(diǎn)與難點(diǎn)

  1、重點(diǎn):直線(xiàn)與圓的位置關(guān)系的幾何圖形及其判斷方法。

  2、難點(diǎn):用坐標判斷直線(xiàn)與圓的位置關(guān)系。

  三、教法學(xué)法分

  (一)、教法

  教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法:

  1、啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納。

  2、采用“從特殊到一般”、“從具體到抽象”的方法。

  3、體現“對比聯(lián)系”、“數形結合”及“分類(lèi)討論”的思想方法。

  4、投影儀演示法。

  在整個(gè)過(guò)程中,應以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細觀(guān)察、類(lèi)比、想象的基礎上通過(guò)問(wèn)題串的形式加以引導點(diǎn)撥,對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺(jué)地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。

  (二)、學(xué)法

  建構主義學(xué)習理論認為,學(xué)習是學(xué)生積極主動(dòng)地建構知識的過(guò)程,學(xué)習應該與學(xué)生熟悉的背景相聯(lián)系。在教學(xué)中,讓學(xué)生在問(wèn)題情境中,經(jīng)歷知識的形成和發(fā)展,通過(guò)觀(guān)察、操作、歸納、探索、交流、反思參與學(xué)習,認識和理解數學(xué)知識,學(xué)會(huì )學(xué)習,發(fā)展能力。

  四、教學(xué)過(guò)程分析

  (一)、教學(xué)過(guò)程設計

  問(wèn)題 設計意圖 師生活動(dòng)

  1、初中學(xué)過(guò)的平面幾何中,直線(xiàn)與圓的位置關(guān)系有幾類(lèi)? 啟發(fā)學(xué)生由圖形獲取判斷直線(xiàn)與圓的位置關(guān)系的直觀(guān)認知,引入新課 師:讓學(xué)生之間進(jìn)行討論,交流,引導學(xué)生觀(guān)察圖形,導入新課

  生:看圖,并說(shuō)出自己的看法

  2、直線(xiàn)與圓的位置關(guān)系有幾種? 得出直線(xiàn)與圓的位置關(guān)系的幾何特征與種類(lèi) 師:引導學(xué)生利用類(lèi)比,歸納的思想,總結直線(xiàn)與圓的位置關(guān)系的種類(lèi),進(jìn)一步神話(huà)數形結合的數學(xué)思想

  生:學(xué)生觀(guān)察圖形,利用類(lèi)比,歸納的思想,總結直線(xiàn)與圓的位置關(guān)

  3、在初中,我們怎么樣判斷直線(xiàn)與圓的位置關(guān)系呢?如何用直線(xiàn)與圓的方程判斷他們之間的位置關(guān)系呢?

  你能說(shuō)出判斷直線(xiàn)與圓的位置關(guān)系的兩

  種方法嗎? 使學(xué)生回憶初中的數學(xué)知識,培養抽象的概括能力。

  抽象判斷呢直線(xiàn)與圓的位置關(guān)系的思路和方法 師:引導學(xué)生回憶初中判斷直線(xiàn)與圓的位置關(guān)系的思想過(guò)程

  生:回憶直線(xiàn)與圓的位置關(guān)系的判斷過(guò)程

  師:引導學(xué)生從集合的角度判斷直線(xiàn)與圓的方法

  生:利用圖形,尋求兩種方法的數學(xué)思路

  5、你能用兩種判斷直線(xiàn)與圓的位置關(guān)系的數學(xué)思路解決例1的問(wèn)題嗎? 體會(huì )判斷直線(xiàn)與圓的位置關(guān)系的思想方法,關(guān)注量與量的之間的關(guān)系 師:指導學(xué)生閱讀教材書(shū)上的例1

  生:閱讀教材書(shū)上的例1,并完成教材書(shū)上的136頁(yè)的練習題2

  6、通過(guò)學(xué)習教材書(shū)上的例1,你能總結下判斷直線(xiàn)與圓的位置 關(guān)系的步驟嗎? 是學(xué)生熟悉判斷直線(xiàn)與圓的位置關(guān)系的基本步驟 生:于都例1

  師:分析例1 ,并展示解答過(guò)程,啟發(fā)學(xué)生概括判斷直線(xiàn)與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有思考的時(shí)間

  生:交流自己總結的步驟

  7、通過(guò)學(xué)習教材書(shū)上的例2,你能說(shuō)明例2中體現的數學(xué)思想方法嗎? 進(jìn)一步深化數形結合的數學(xué)思想 師:指導學(xué)生閱讀并完成教材書(shū)上的例2 ,啟發(fā)學(xué)生利用數形結合的數學(xué)思想解決問(wèn)題

  生:閱讀教材書(shū)上的例2 ,并完成137的練習題

  8、通過(guò)例2的學(xué)習,你發(fā)現了什么? 明確弦長(cháng)的運算方法 師:引導并啟發(fā)學(xué)生探索直線(xiàn)與圓的相交弦的求法

  生:通過(guò)分析,抽象,歸納,得出相交弦的運算方法

  9、完成教材書(shū)上的136頁(yè)的習題1234 鞏固所學(xué)過(guò)的知識,進(jìn)一步理解和掌握直線(xiàn)與圓的位置關(guān)系 師:指導學(xué)生完成練習題

  生:互相討論交流,完成練習題

  10、課堂小結

  教師提出下列問(wèn)題讓學(xué)生思考

  通過(guò)直線(xiàn)與圓的位置關(guān)系的判斷,你學(xué)到什么了?

  判斷直線(xiàn)與圓的位置關(guān)系有幾種方法?他們的特點(diǎn)是什么?

  如何求直線(xiàn)與圓的相交弦長(cháng)?

  (二)、作業(yè)設計

  作業(yè)分為必做題和選擇題,必做題是對本節課學(xué)生知識水平的反饋,選擇題是對本節課內容的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習氛圍的形成。

  我設計了以下作業(yè):

  必做題:課后習題A 1,2,3;

  選擇題:課后習題B1,2,3;

  (三)、板書(shū)設計

  板書(shū)要基本體現課堂的內容和方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互關(guān)系:能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。

  五、評價(jià)分析

  學(xué)生學(xué)習的結果評價(jià)固然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用了及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對本節是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。

  以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。

  謝謝!

高中數學(xué)說(shuō)課稿 篇3

  一、教材分析

  1· 教材的地位和作用

  在學(xué)習這節課以前,我們已經(jīng)學(xué)習了振幅變換。本節知識是學(xué)習函數圖象變換綜合應用的基礎,在教材地位上顯得十分重要。

  y=asin(ωx+φ)圖象變換的學(xué)習有助于學(xué)生進(jìn)一步理解正弦函數的圖象和性質(zhì),加深學(xué)生對函數圖象變換的理解和認識,加深數形結合在數學(xué)學(xué)習中的應用的認識。同時(shí)為相關(guān)學(xué)科的學(xué)習打下扎實(shí)的基礎。

 、步滩牡闹攸c(diǎn)和難點(diǎn)

  重點(diǎn)是對周期變換、相位變換規律的理解和應用。

  難點(diǎn)是對周期變換、相位變換先后順序的調整,對圖象變換的影響。

 、辰滩膬热莸陌才藕吞幚

  函數y=asin(ωx+φ)圖象這部分內容計劃用3課時(shí),本節是第2課時(shí),主要學(xué)習周期變換和相位變換,以及兩種變換的綜合應用。

  二、目的分析

 、敝R目標

  掌握相位變換、周期變換的變換規律。

 、材芰δ繕

  培養學(xué)生的觀(guān)察能力、動(dòng)手能力、歸納能力、分析問(wèn)題解決問(wèn)題能力。

 、车掠繕

  在教學(xué)中努力培養學(xué)生的“由簡(jiǎn)單到復雜、由特殊到一般”的辯證思想,培養學(xué)生的探究能力和協(xié)作學(xué)習的能力。

 、辞楦心繕

  通過(guò)學(xué)數學(xué),用數學(xué),進(jìn)而培養學(xué)生對數學(xué)的興趣。

  三、教具使用

 、俦菊n安排在電腦室教學(xué),每個(gè)學(xué)生都擁有一臺計算機,所有的計算機由一套多媒體演示控制系統連接,以實(shí)現師生、生生的相互溝通。

 、谡n前應先把本課所需要的幾何畫(huà)板課件通過(guò)多媒體演示系統發(fā)送到每一臺學(xué)生電腦。

  四、教法、學(xué)法分析

  本節課以“探究——歸納——應用”為主線(xiàn),通過(guò)設置問(wèn)題情境,引導學(xué)生自主探究,總結規律,并能應用規律分析問(wèn)題、解決問(wèn)題。

  以學(xué)生的自主探究為主要方式,把計算機使用的主動(dòng)權交給學(xué)生,讓學(xué)生主動(dòng)去學(xué)習新知、探究未知,在活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能數學(xué)地提出問(wèn)題、解決問(wèn)題。

  五、教學(xué)過(guò)程

  教學(xué)過(guò)程設計:

  預備知識

  一、問(wèn)題探究

 、艓熒献魈骄恐芷谧儞Q

 、茖W(xué)生自主探究相位變換

  二、歸納概括

  三、實(shí)踐應用

  教學(xué)程序

  設計說(shuō)明

  〖預備知識

  1我們已經(jīng)學(xué)習了幾種圖象變換?

  2這些變換的規律是什么?

  幫助學(xué)生鞏固、理解和歸納基礎知識,為后面的學(xué)習作鋪墊。促使學(xué)生學(xué)會(huì )對知識的歸納梳理。

  〖問(wèn)題探究

 。ㄒ唬⿴熒献魈骄恐芷谧儞Q

  (1)自己動(dòng)手,在幾何畫(huà)板中分別觀(guān)察①y=sinx→y=sin2x;②y=sinx→y=sin

  x圖象的變換過(guò)程,指出變換過(guò)程中圖象上每一個(gè)點(diǎn)的坐標發(fā)生了什么變化。

  (2) 在上述變換過(guò)程中,橫坐標的伸長(cháng)和縮短與ω之間存在怎樣的關(guān)系?

 。ǘ⿲W(xué)生自主探究相位變換

  (1)我們初中學(xué)過(guò)的由y=f(x)→y=f(x+a)的圖象變換規律是怎樣的?

  (2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規律呢?請動(dòng)手用幾何畫(huà)板加以驗證。

  設計這個(gè)問(wèn)題的主要用意是讓學(xué)生通過(guò)觀(guān)察圖象變換的過(guò)程,了解周期變換的基本規律。

  設計這個(gè)問(wèn)題意圖是引導學(xué)生再次認真觀(guān)察圖象變換的過(guò)程,以便總結周期變換的規律。

  師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此基礎上,由學(xué)生自主探究相位變換規律,提高學(xué)生的綜合能力。

  〖歸納概括

  通過(guò)以上探究,你能否總結出周期變換和相位變換的一般規律?

  設計這個(gè)環(huán)節的意圖是通過(guò)對上述變換過(guò)程的探究,進(jìn)而引導學(xué)生歸納概括,從現象到本質(zhì),總結出周期變換和相位變換的一般規律。

  〖實(shí)踐應用

 。ㄒ唬⿷门e例

  (1)用五點(diǎn)法作出y=sin(2x+)一個(gè)周期內的簡(jiǎn)圖。

  (2)我們可以通過(guò)哪些方法完成y=sinx到y=sin(2x+)的圖象變換

  (3)請動(dòng)手驗證上述方法,把幾何畫(huà)板所得圖象與用五點(diǎn)法作出的簡(jiǎn)圖作比較,觀(guān)察哪些方法是正確的,哪些方法是錯誤的。

  (4)歸納總結

  從上述的變換過(guò)程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規律得從y=sin2x →y= sin(2x+)的變換應該是_____.

 。ǘ┓謱佑柧

  a組題(基礎題)

  如何完成下列圖象的變換:

 、賧=sin3x→y=sin(3x+1)

 、趛=sin(x+1) →y=sin(3x+1)

  b組題(中等題)

  如何完成下列圖象的變換:

 、賧=sin3x→y=sin(3x+1)

 、趛=sin(x+1) →y=sin(3x+1)

 、踶=sinx →y=sin(3x+1)

  c組題(拓展題)

 、偃绾瓮瓿上铝袌D象的變換:

  y=sinx →y=sin(3x+1)

 、谖覀冎,從f(x)到f(x)+k的變換可通過(guò)圖象的上下平移(k>0上移)(k<0下移)|k|個(gè)單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過(guò)實(shí)例加以驗證。

  讓學(xué)生用五點(diǎn)法作出這個(gè)圖象是為了驗證變換方法是否正確。

  給出這個(gè)問(wèn)題的用意是開(kāi)拓學(xué)生的思維,讓學(xué)生從多角度思考問(wèn)題。

  這個(gè)步驟主要目的是培養學(xué)生的探究能力和動(dòng)手能力。

  這個(gè)問(wèn)題的解決,是突破本課難點(diǎn)的關(guān)鍵。通過(guò)問(wèn)題的解決,讓學(xué)生理解如果先進(jìn)行周期變換,而后進(jìn)行相位變換,應特別關(guān)注x的變化量。

  a組題重在基礎知識的掌握,

  由基礎較薄弱的同學(xué)完成。

  b組比a組增加了第③小題,

  重在對兩種變換的'綜合應用。

  c組除了考查知識的綜合應用,

  還要求學(xué)生對新問(wèn)題進(jìn)行探究,

  有較大難度,適合基礎較好的

  同學(xué)完成。

  作業(yè):

 。1)必做題

 。2)選做題

  作業(yè)分為兩種形式,體現作業(yè)的鞏固性和發(fā)展性原則。選做題不作統一要求,供學(xué)有余力的學(xué)生課后研究。

  六、評價(jià)分析

  在本節的教與學(xué)活動(dòng)中,始終體現以學(xué)生的發(fā)展為本的教育理念。在學(xué)生已有的認知基礎上進(jìn)行設問(wèn)和引導,關(guān)注學(xué)生的認知過(guò)程,注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動(dòng)手能力的培養,重視問(wèn)題探究意識和能力的培養。同時(shí),考慮不同學(xué)生的個(gè)性差異和發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現因材施教原則。

  調節與反饋:

 、膨炞C兩種變換的綜合時(shí),可能會(huì )出現有些學(xué)生無(wú)法觀(guān)察到兩種變換的區別這種情況,此時(shí),教師除了加以引導外,還需通過(guò)教師演示和詳細講解加以解決。

 、平虒W(xué)中可能出現個(gè)別學(xué)生無(wú)法正確操作課件的情況,這種情況下一定要強調學(xué)生的協(xié)作意識。

  附:板書(shū)設計

高中數學(xué)說(shuō)課稿 篇4

  數學(xué):人教A版必修3第二章第三節《變量之間的相關(guān)關(guān)系》說(shuō)課稿各位老師:

  大家好!我叫***,來(lái)自**。我說(shuō)課的題目是《變量之間的相關(guān)關(guān)系》,內容選自于高中教材新課程人教A版必修3第二章第三節,課時(shí)安排為三個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  本章我們所要學(xué)習的主要內容就是統計,在前面的章節中我們已經(jīng)對統計的相關(guān)知識作了大致的了解。本節課我們要繼續探討的是變量之間的相關(guān)關(guān)系,它為接下來(lái)要學(xué)習的兩個(gè)變量的線(xiàn)性相關(guān)打下基礎。這是一個(gè)與現實(shí)實(shí)際生活聯(lián)系很緊密的知識,在教師的引導下,可使學(xué)生認識到在現實(shí)世界中存在不能用函數模型描述的變量關(guān)系,從而體會(huì )研究變量之間的相關(guān)關(guān)系的重要性.

  2.教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):①通過(guò)收集現實(shí)問(wèn)題中兩個(gè)有關(guān)聯(lián)變量的數據直觀(guān)認識變量間的相關(guān)關(guān)系;

 、诶蒙Ⅻc(diǎn)圖直觀(guān)認識兩個(gè)變量之間的線(xiàn)性關(guān)系;

  難點(diǎn):①變量之間相關(guān)關(guān)系的理解;②作散點(diǎn)圖和理解兩個(gè)變量的正相關(guān)和負相關(guān)

  二、教學(xué)目標分析

  1.知識與技能目標

  通過(guò)收集現實(shí)問(wèn)題中兩個(gè)有關(guān)聯(lián)變量的數據認識變量間的相關(guān)關(guān)系

  2、過(guò)程與方法目標:

  明確事物間的相互聯(lián)系.認識現實(shí)生活中變量間除了存在確定的關(guān)系外,仍存在大量的非確定性的相關(guān)關(guān)系,并利用散點(diǎn)圖直觀(guān)體會(huì )這種相關(guān)關(guān)系.

  3、情感態(tài)度與價(jià)值觀(guān)目標:

  通過(guò)對事物之間相關(guān)關(guān)系的了解,讓學(xué)生們認識到現實(shí)中任何事物都是相互聯(lián)系的辯證法思想。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:結合本節課的教學(xué)內容和學(xué)生的認知水平,在教法上,我采用“問(wèn)答探究”式的教學(xué)方法,層層深入。充分發(fā)揮教師的主導作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主體。

  2。教學(xué)手段:通過(guò)多媒體輔助教學(xué),充分調動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。

  四、教學(xué)過(guò)程分析

 、鍐(wèn)題引出:

  請同學(xué)們如實(shí)填寫(xiě)下表(在空格中打“√”)

  然后回答如下問(wèn)題:①“你的數學(xué)成績(jì)對你的物理成績(jì)有無(wú)影響?”②“如果你的數學(xué)成績(jì)好,那么你的物理成績(jì)也不會(huì )太差,如果你的數學(xué)成績(jì)差,那么你的物理成績(jì)也不會(huì )太好!睂δ銇(lái)說(shuō),是這樣嗎?同意這種說(shuō)法的同學(xué)請舉手。

  根據同學(xué)們回答的結果,讓學(xué)生討論:我們可以發(fā)現自己的數學(xué)成績(jì)和物理成績(jì)存在某種關(guān)系。(似乎就是數學(xué)好的,物理也好;數學(xué)差的,物理也差,但又不全對。)教師總結如下:

  物理成績(jì)和數學(xué)成績(jì)是兩個(gè)變量,從經(jīng)驗看,由于物理學(xué)習要用到比較多的數學(xué)知識和數學(xué)方法。數學(xué)成績(jì)的高低對物理成績(jì)的高低是有一定影響的。但決非唯一因素,還

  有其它因素,如圖所示(幻燈片給出):

  因此,不能通過(guò)一個(gè)人的數學(xué)成績(jì)是多少就準確地斷定他的物理成績(jì)能達到多少。但這兩個(gè)變量是有一定關(guān)系的,它們之間是一種不確定性的關(guān)系。如何通過(guò)數學(xué)成績(jì)的結果對物理成績(jì)進(jìn)行合理估計有非常重要的現實(shí)意義。

  「設計意圖」通過(guò)對身邊事例的分析,引出我們今天將要學(xué)習的主要內容,由此可以激起學(xué)

  生們的學(xué)習興趣,為接下來(lái)的學(xué)習打下良好的基礎。

 、嫣骄啃轮

 、备拍钚纬

  教師提問(wèn):“像剛才這種情況在現實(shí)生活中是否還有?”學(xué)生們思考之后,請幾位同學(xué)就提出的問(wèn)題作出回答。老師就舉出的例子,引導學(xué)生作出分析,然后由老師總結得出相關(guān)關(guān)系的概念。[兩個(gè)變量之間的關(guān)系可能是確定的關(guān)系(如:函數關(guān)系),或非確定性關(guān)系。當自變量取值一定時(shí),因變量也確定,則為確定關(guān)系;當自變量取值一定時(shí),因變量帶有隨機性,這種變量之間的關(guān)系稱(chēng)為相關(guān)關(guān)系。相關(guān)關(guān)系是一種非確定性關(guān)系。]

  「設計意圖」從現實(shí)生活入手,抓住學(xué)生們的注意力,引導學(xué)生分析得出概念,讓學(xué)生真正參與到概念的形成過(guò)程中來(lái)。

 、蔡骄烤(xiàn)性相關(guān)關(guān)系和其他相關(guān)關(guān)系

  「課件展示」

  例1在一次對人體脂肪和年齡關(guān)系的研究中,研究人員獲得了一組樣本數據:

  問(wèn)題:針對于上述數據所提供的信息,你認為人體的脂肪含量與年齡之間有怎樣的關(guān)系?

  [教師特別向學(xué)生強調在研究?jì)蓚(gè)變量之間是否存在某種關(guān)系時(shí),必須從散點(diǎn)圖入手(向學(xué)生介紹什么是散點(diǎn)圖)。并且引導學(xué)生從散點(diǎn)圖上可以得出如下規律:(幻燈片給出)

 、偃绻械臉颖军c(diǎn)都落在某一函數曲線(xiàn)上,那么變量之間具有函數關(guān)系(確定性關(guān)系);②如果所有的樣本點(diǎn)都落在某一函數曲線(xiàn)的附近,那么變量之間具有相關(guān)關(guān)系(不確定性關(guān)系);③如果所有的樣本點(diǎn)都落在某一直線(xiàn)附近,那么變量之間具有線(xiàn)性相關(guān)關(guān)系(不確定性關(guān)系)。

  「設計意圖」通過(guò)對這個(gè)典型事例的分析,向學(xué)生們介紹什么是散點(diǎn)圖,并總結出如何從散點(diǎn)圖上判斷變量之間關(guān)系的規律。

  下面我們用TI圖形計算器作出這兩個(gè)變量的散點(diǎn)圖。

  學(xué)生實(shí)驗:先把數據中成對出現的兩個(gè)數分別作為橫坐標、縱坐標,把數據輸入到表格當中(第一列橫坐標、第二列縱坐標);然后,用TI圖形計算器作散點(diǎn)圖:

  [引導學(xué)生觀(guān)察作出的散點(diǎn)圖,體會(huì )現實(shí)生活中兩個(gè)變量之間的關(guān)系存在著(zhù)不確定性。散點(diǎn)圖中的散點(diǎn)并不在一條直線(xiàn)上,只是分布在一條直線(xiàn)的周?chē),即為線(xiàn)性相關(guān)關(guān)系。]

  「設計意圖」通過(guò)實(shí)驗讓學(xué)生們感受散點(diǎn)圖的主要形成過(guò)程,并由此引出線(xiàn)性相關(guān)關(guān)系。為后面回歸直線(xiàn)和回歸直線(xiàn)方程的學(xué)習做好鋪墊。

  「課件展示」四組數據,請學(xué)生作出散點(diǎn)圖,并觀(guān)察每組數據的特點(diǎn)。

  根據四組數據,學(xué)生作出四個(gè)散點(diǎn)圖。

  通過(guò)學(xué)生討論、交流、用TI圖形計算器展示、對比自己作出的散點(diǎn)圖,我們引出線(xiàn)性相關(guān)關(guān)系,正負相關(guān)關(guān)系的概念。

  「設計意圖」及時(shí)鞏固知識,學(xué)生通過(guò)親自動(dòng)手作散點(diǎn)圖,并交流討論,進(jìn)一步加深對散點(diǎn)圖的理解,并由此引出正負相關(guān)關(guān)系的概念,突破難點(diǎn)。

 、缋}講解,深化認識

  「課件展示」

  例2一般說(shuō)來(lái),一個(gè)人的身高越高,他的人就越大,相應地,他的右手一拃長(cháng)就越長(cháng),因此,人的身高與右手一拃長(cháng)之間存在著(zhù)一定的關(guān)系。為了對這個(gè)問(wèn)題進(jìn)行調查,我們收集了北京市某中學(xué)20xx年高三年級96名學(xué)生的身高與右手一拃長(cháng)的數據如下表。

 。1)根據上表中的數據,制成散點(diǎn)圖。你能從散點(diǎn)圖中發(fā)現身高與右手一拃長(cháng)之間的近似關(guān)系嗎?

 。2)如果近似成線(xiàn)性關(guān)系,請畫(huà)出一條直線(xiàn)來(lái)近似地表示這種線(xiàn)性關(guān)系。

 。3)如果一個(gè)學(xué)生的身高是188cm,你能估計他的一拃大概有多長(cháng)嗎?

  「設計意圖」這個(gè)例子很容易激起學(xué)生們的學(xué)習興趣,由此可達到更好的教學(xué)效果。通過(guò)對這道題的解答,使對前面知識的認識更加牢固。

 、璺此夹〗Y、培養能力

 、抛兞块g相關(guān)關(guān)系、線(xiàn)性關(guān)系和正負相關(guān)關(guān)系

 、迫绾巫錾Ⅻc(diǎn)圖

  「設計意圖」小節是一堂課的概括和總結,有利于優(yōu)化學(xué)生的認知結構,把課堂教學(xué)傳授的知識較快轉化為學(xué)生的素質(zhì),也更進(jìn)一步培養學(xué)生的歸納概括能力

 、檎n后作業(yè),自主學(xué)習

  習題2.31、2

  [設計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。

高中數學(xué)說(shuō)課稿 篇5

  各位老師大家好!

  我說(shuō)課的內容是人教 版 A版必修2第三章第一節直線(xiàn)的傾斜角與斜率第一課時(shí)。

  (一) 教材分析

  本節課選自必修2第三章(解析幾何的第一章)第一節直線(xiàn)的傾斜角與斜率第一課時(shí),直線(xiàn)的傾斜角和斜率解析幾何的重要概念;是刻畫(huà)直線(xiàn)傾斜程度的幾何要素與代數表示;學(xué)生在原有的對直線(xiàn)的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎上,重新以解析法的方式來(lái)研究直線(xiàn)相關(guān)性質(zhì),而本節課直線(xiàn)的傾斜角與斜率,是直線(xiàn)的重要的幾何性質(zhì),是研究直線(xiàn)的方程形式,直線(xiàn)的位置關(guān)系等的思維的起點(diǎn);另外,本節課也初步向學(xué)生滲透解析幾何的基本思想和基本方法。因此,本課有著(zhù)開(kāi)啟全章、滲透方法,承前啟后的作用。

  (二) 學(xué)情分析

  本節課的 教學(xué) 對象是高二學(xué)生,這個(gè)年齡段的學(xué)生天性活潑,求知欲強,并且學(xué)習主動(dòng),在知識儲備上 知道兩點(diǎn)確定一條直線(xiàn), 知道點(diǎn)與坐標的關(guān)系,實(shí)現了最簡(jiǎn)單的形與數的轉化;了解刻畫(huà)傾斜程度可用角和正切值;具備了一定的數形結合的能力和分類(lèi)討論的思想。但根據學(xué)生的認知規律,還沒(méi)有形成自覺(jué)地把數學(xué)問(wèn)題抽象化的能力。所以在教學(xué)設計時(shí)需 從 學(xué)生的最近發(fā)展區進(jìn)行探究學(xué)習,盡量讓不同層次的學(xué)生都經(jīng)歷概念的形成、 鞏固 和應用過(guò)程。

  (三)教學(xué)目標

  1. 理解直線(xiàn)的傾斜角和斜率的概念, 理解直線(xiàn)的傾斜角的唯一性和斜率的存在性;

  2. 掌握過(guò)兩點(diǎn)的直線(xiàn)斜率的計算公式 ;

  3. 通過(guò)經(jīng) 歷從具體實(shí)例抽象出數學(xué)概念的過(guò)程,培養學(xué)生觀(guān)察、分析和概括能力;

  4 . 通過(guò)斜率概念的建立以及斜率公式的構建,幫助學(xué)生進(jìn)一步體會(huì )數形結合的思想,培養學(xué)

  生嚴謹求簡(jiǎn)的數學(xué)精神。

  重點(diǎn):斜率的概念,用代數方法刻畫(huà)直線(xiàn)斜率的過(guò)程,過(guò)兩點(diǎn)的直線(xiàn)斜率的計算公式。

  難點(diǎn): 直線(xiàn)的傾斜角與斜率的概念的形成 ,斜率公式的構建。

  (四)教法和學(xué)法

  課堂教學(xué)應有利于學(xué)生的數學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過(guò)程中,創(chuàng )設問(wèn)題的情景,激發(fā)學(xué)生主動(dòng)的發(fā)現問(wèn)題解決問(wèn)題,充分調動(dòng)學(xué)生學(xué)習的主動(dòng)性、積極性;有效的滲透數學(xué)思想方法,發(fā)展學(xué)生個(gè)性思維品質(zhì),這是本節課的教學(xué)原則。 根據這樣的教學(xué)原則,考慮到學(xué)生首次接觸解析幾何的內容及研究方法,所以我采用 設置問(wèn)題串 的形式 , 啟發(fā)引導 學(xué)生 類(lèi)比、聯(lián)想,產(chǎn)生知識遷移 ;通過(guò) 幾何畫(huà)板演示實(shí)驗、探索交流 相結合的教學(xué)方法激發(fā)學(xué)生 觀(guān)察、實(shí)驗,體驗知識的形成過(guò)程 ;由此循序漸進(jìn) , 使學(xué)生很自然達到本節課的學(xué)習目標。

  ( 五) 教學(xué)過(guò)程

  環(huán)節 1.指明研究方向 (3min)

  平面上的點(diǎn)可以用坐標表示,也就是幾何問(wèn)題代數化。那么我們生活中見(jiàn)到的很多優(yōu)美的曲線(xiàn)能否用數來(lái)刻畫(huà)呢?

  簡(jiǎn)介17 世紀法國數學(xué)家笛卡爾和費馬的數學(xué)史 。

  【設計意圖】 使學(xué)生對解析幾何的歷史以及它的研究方向有一個(gè)大致的了解

  由此引入課題(直線(xiàn)的傾斜角與斜率)

  環(huán)節2.活動(dòng)探究(13min)

  【設計意圖】 讓學(xué)生經(jīng)歷探究過(guò)程后掌握傾斜角和斜率兩個(gè)概念,體會(huì )概念的產(chǎn)生是自然的,并不是硬性規定的。

  (探究活動(dòng)一:傾斜角概念的得出)

  問(wèn)題1. 如圖,對于平面直角坐標系內過(guò)兩點(diǎn)有且只有一條直線(xiàn),過(guò)一點(diǎn)P的位置能確定嗎?如圖,這些不同直線(xiàn)的區別在哪里?

  【設計意圖】引導學(xué)生發(fā)現過(guò)定點(diǎn)的不同直線(xiàn),其傾斜程度不同。從而發(fā)現過(guò)直線(xiàn)上一點(diǎn)和直線(xiàn)的傾斜程度也能確定一條直線(xiàn)。

  問(wèn)題2. 在直角坐標系中,任何一條直線(xiàn)與x軸都有一個(gè)相對傾斜程度,可以用一個(gè)什么樣的幾何量來(lái)反映一條直線(xiàn)與x軸的相對傾斜程度呢?

  【設計意圖】引導學(xué)生探索描述直線(xiàn)的傾斜程度的幾何要素, 由此引出傾斜角的概念:直線(xiàn)L與x軸相交,我們取x軸為基準,x軸正向與直線(xiàn)L向上的方向之間所成的角α叫做直線(xiàn)L的傾斜角。

  問(wèn)題3. 依據傾斜角的定義,小組合作探究?jì)A斜角的范圍是多少?

  (探究活動(dòng)二:斜率概念的得出)

  問(wèn)題4. 日常生活中,還有沒(méi)有表示傾斜程度的量?

  問(wèn)題5 . 如果使用“傾斜角”的概念,坡度實(shí)際就是 傾斜角的正切值,由此你認為還可以用怎樣的量來(lái)刻畫(huà)直線(xiàn)的傾斜程度?

  由學(xué)生已知坡度中“前進(jìn)量”不能為0 ,補充 傾斜角 是90゜的直線(xiàn) 沒(méi)有斜率

  【設計意圖】 遷移、類(lèi)比得出 我們把 一條直線(xiàn)的 傾斜角 的正切值叫做 這條 直線(xiàn)的 斜率 , 讓學(xué)生感受數學(xué)概念來(lái)源于生活,并體驗從直觀(guān)到抽象的過(guò)程培養學(xué)生觀(guān)察、歸納、聯(lián)想的能力。

  環(huán)節 3.過(guò)程體驗(斜率公式的發(fā)現)(10min)

  問(wèn)題6. 兩點(diǎn)能確定一條直線(xiàn),那么兩點(diǎn)能確定一條直線(xiàn)的斜率么?

  先由每名學(xué)生各自舉出兩個(gè)特殊的點(diǎn)。例如A(1,2)、B(3,4),獨立研究如何由這兩點(diǎn)求斜率,再通過(guò)學(xué)生相互討論,師生共同交流提煉出解決問(wèn)題的一般方法,進(jìn)而把這種方法遷移到一般化的問(wèn)題上來(lái)。得出斜率公式k=y2y1。

  為了深化對公式的理解,完善對公式的認識,我設計了如下三個(gè)思考問(wèn)題:

  思考1:如果直線(xiàn)AB//x軸,上述結論還適用嗎?

  思考2:如果直線(xiàn)AB//y軸,上述結論還適用嗎?

  思考3:交換A、B位置,對比值有影響嗎?

  在學(xué)生充分思考、討論的基礎上,借助信息技術(shù)工具,一方面計算 的 值,另一方面計算傾斜角的正切值。讓學(xué)生親自操作幾何畫(huà)板,改變直線(xiàn)的傾斜程度,動(dòng)態(tài)演示可以把教科書(shū)第84頁(yè)圖3.1-4所示的各種情況都展示出來(lái),形象直觀(guān),可使學(xué)生更好的把握斜率公式。

  環(huán)節4. 操作建構(10min)

  第一部分( 教材例一 ) : 如圖,已知A(3,2),B(-4,1),C(0,-1), 求 直線(xiàn)AB,BC,CA的斜率,并判斷傾斜角是銳角還是鈍角。

  學(xué)生獨立完成后,請三位學(xué)生作答,師生共同評析,明確斜率公式的運用,強調可以從形的角度直接判斷直線(xiàn)的傾斜角是銳角還是鈍角,也可由直線(xiàn)的斜率的正負判斷。

  第二部分 ( 教材例二 ) : 在平面直角坐標系中,畫(huà)出經(jīng)過(guò)原 點(diǎn)且斜率分別為1,-1,2及-3的直線(xiàn)

  本題要求學(xué)生畫(huà)圖,目的是加強數形結合,我將請兩位同學(xué)上臺板演,其余同學(xué)在練習本上完成,因為直線(xiàn)經(jīng)過(guò)原點(diǎn),所以只要在找出另外一點(diǎn)就可確定,再推導斜率公式時(shí),學(xué)生已經(jīng)知道,斜率k的值與直線(xiàn)上P1,P2的位置無(wú)關(guān),因此,由已知直線(xiàn)的斜率畫(huà)直線(xiàn)時(shí),可以再找出一個(gè)特殊點(diǎn)即可。

  環(huán)節 5.小結作業(yè)(4min)

  1、本節課你學(xué)到了哪些新的概念?他們之間有什么樣 的關(guān)系?

  2、怎樣求出已知兩點(diǎn)的直線(xiàn)的斜率?

  3 、本節課你還有哪些問(wèn)題?

  兩點(diǎn) 直線(xiàn) 傾斜角 斜率

  一點(diǎn)一方向

  作業(yè): 必做題: P.86 第1,2,題

  選做題: P.90 探究與發(fā)現:魔法師的地毯

  以上五個(gè)環(huán)節環(huán)環(huán)相扣,層層深入,以明線(xiàn)和暗線(xiàn)雙線(xiàn)滲透。并注意調動(dòng)學(xué)生自主探究與合作交流。注意教師適時(shí)的點(diǎn)撥引導,學(xué)生主體地位和教師的主導作用 得以 體現。能夠較好的實(shí)現教學(xué)目標,也使課標理念能夠很好的得到落實(shí)。

  (六) 板書(shū)設計

  3.1.1 直線(xiàn)的傾斜角與斜率

  1定義: 傾斜角 學(xué)生板演

  斜率

  2.斜率k與傾斜角之間的關(guān)系

  3.斜率公式

高中數學(xué)說(shuō)課稿 篇6

  【一】教學(xué)背景分析

  1.教材結構分析

  《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節.圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用.圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用.

  2.學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的.但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難.另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強.

  根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:

  3.教學(xué)目標

  (1) 知識目標:①掌握圓的標準方程;

 、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;

 、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題.

  (2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;

 、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;

 、墼鰪妼W(xué)生用數學(xué)的意識.

  (3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;

 、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣.

  根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4. 教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn):圓的標準方程的求法及其應用.

  (2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;

 、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題.

  為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1.教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上.另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程.

  2.學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓.通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程. 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:

  【三】教學(xué)過(guò)程與設計

  整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:

  創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

  反饋訓練 形成方法 小結反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖.

  首先:縱向敘述教學(xué)過(guò)程

  (一)創(chuàng )設情境——啟迪思維

  問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?

  通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

  通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節.

  (二)深入探究——獲得新知

  問(wèn)題二 1.根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2.如果圓心在,半徑為時(shí)又如何呢?

  好學(xué)教育:

  這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程.然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究.我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法.

  得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節.

  (三)應用舉例——鞏固提高

  I.直接應用 內化新知

  問(wèn)題三 1.寫(xiě)出下列各圓的標準方程:

  (1)圓心在原點(diǎn),半徑為3;

  (2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn).

  2.寫(xiě)出圓的圓心坐標和半徑.

  我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備.

  II.靈活應用 提升能力

  問(wèn)題四 1.求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程.

  2.求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程.

  3.已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程.

  你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?

  我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程.第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓.第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間.最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮.

  III.實(shí)際應用 回歸自然

  問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0.01m).

  好學(xué)教育:

  我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識.

  (四)反饋訓練——形成方法

  問(wèn)題六 1.求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程.

  2.求圓過(guò)點(diǎn)的切線(xiàn)方程.

  3.求圓過(guò)點(diǎn)的切線(xiàn)方程.

  接下來(lái)是第四環(huán)節——反饋訓練.這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心.另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果.

  (五)小結反思——拓展引申

  1.課堂小結

  把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:.

 、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:.

  2.分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程.

  3.激發(fā)新疑

  問(wèn)題七 1.把圓的標準方程展開(kāi)后是什么形式?

  2.方程表示什么圖形?

  在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.

  以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計

  (一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  好學(xué)教育:

  求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn).

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五.這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破.

  (二)學(xué)生主體 教師主導 探究主線(xiàn)

  本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終.從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的.另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù).

  (三)培養思維 提升能力 激勵創(chuàng )新

  為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力.在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.

  以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變.最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”.

高中數學(xué)說(shuō)課稿 篇7

  大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。

  一、教材分析

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生發(fā)現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學(xué)生會(huì )運用正弦定理解決兩類(lèi)基本的解三角形問(wèn)題。

  能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習的興趣。

  教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。

  二、教法

  根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

  三、學(xué)法

  指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  (一)創(chuàng )設情境(3分鐘)

  “興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。

  (二)猜想—推理—證明(15分鐘)

  激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。 提問(wèn):那結論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  (三)總結--應用(3分鐘)

  1.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  2.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

  (四)講解例題(8分鐘)

  1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中

  一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

  (五)課堂練習(8分鐘)

  1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

  2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。

  (六)小結反思(3分鐘)

  1.它表述了三角形的邊與對角的正弦值的關(guān)系。

  2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。

  3.會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  五、教學(xué)反思

  從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。

高中數學(xué)說(shuō)課稿 篇8

  一、教材分析:

  1、教材的地位與作用:

  線(xiàn)性規劃是運籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著(zhù)廣泛的應用。本節內容是在學(xué)習了不等式、直線(xiàn)方程的基礎上,利用不等式和直線(xiàn)方程的有關(guān)知識展開(kāi)的,它是對二元一次不等式的深化和再認識、再理解。通過(guò)這一部分的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,體驗數形結合和轉化的思想方法,培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):畫(huà)可行域;在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。

  難點(diǎn):在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。

  二、目標分析:

  在新課標讓學(xué)生經(jīng)歷“學(xué)數學(xué)、做數學(xué)、用數學(xué)”的理念指導下,本節課的教學(xué)目標分設為知識目標、能力目標和情感目標。

  知識目標:

  1、了解線(xiàn)性規劃的意義,了解線(xiàn)性約束條件、線(xiàn)性目標函數、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線(xiàn)性規劃問(wèn)題的圖解法;

  3、會(huì )利用圖解法求線(xiàn)性目標函數的最優(yōu)解.

  能力目標:

  1、在應用圖解法解題的過(guò)程中培養學(xué)生的觀(guān)察能力、理解能力。

  2、在變式訓練的過(guò)程中,培養學(xué)生的分析能力、探索能力。

  3、在對具體事例的感性認識上升到對線(xiàn)性規劃的理性認識過(guò)程中,培養學(xué)生運用數形結合思想解題的能力和化歸能力。

  情感目標:

  1、讓學(xué)生體驗數學(xué)來(lái)源于生活,服務(wù)于生活,體驗數學(xué)在建設節約型社會(huì )中的作用,品嘗學(xué)習數學(xué)的樂(lè )趣。

  2、讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索與創(chuàng )造,培養學(xué)生勤于思考、勇于探索的精神;

  3、讓學(xué)生學(xué)會(huì )用運動(dòng)觀(guān)點(diǎn)觀(guān)察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。

高中數學(xué)說(shuō)課稿 篇9

  一、教材分析(說(shuō)教材):

  1. 教材所處的地位和作用:

  本節內容在全書(shū)和章節中的作用是:《 》是 中數學(xué)教材第 冊第 章第 節內容。在此之前學(xué)生已學(xué)習了 基礎,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學(xué)科和今后的學(xué)習打下基礎。

  2. 教育教學(xué)目標:

  根據上述教材分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:

  (1)知識目標:

  (2)能力目標:通過(guò)教學(xué)初步培養學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團結協(xié)作,語(yǔ)言表達能力以及通過(guò)師生雙邊活動(dòng),初步培養學(xué)生運用知識的能力,培養學(xué)生加強理論聯(lián)系實(shí)際的能力,(3)情感目標:通過(guò) 的教學(xué)引導學(xué)生從現實(shí)的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習興趣。

  3. 重點(diǎn),難點(diǎn)以及確定依據:

  下面,為了講清重難上點(diǎn),使學(xué)生能達到本節課設定的目標,再從教法和學(xué)法上談?wù)劊?/p>

  二、教學(xué)策略(說(shuō)教法)

  1. 教學(xué)手段:

  如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現教學(xué)目標。在教學(xué)過(guò)程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟澱n的特點(diǎn): 應著(zhù)重采用 的教學(xué)方法。

  2. 教學(xué)方法及其理論依據:堅持“以學(xué)生為主體,以教師為主導”的原則,根據學(xué)生的心理發(fā)展規律,采用學(xué)生參與程度高的學(xué)導式討論教學(xué)法。在學(xué)生看書(shū),討論的基礎上,在老師啟發(fā)引導下,運用問(wèn)題解決式教法,師生交談法,圖像信號法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎差的學(xué)生也能有表現機會(huì ),培養其自信心,激發(fā)其學(xué)習熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎上得到發(fā)展。同時(shí)通過(guò)課堂練習和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識回到社會(huì )實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數學(xué)知識,學(xué)習基礎性的知識和技能,在教學(xué)中積極培養學(xué)生學(xué)習興趣和動(dòng)機,明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。

  3. 學(xué)情分析:(說(shuō)學(xué)法)

  (1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習方式,定能激發(fā)學(xué)生興趣,有效地培養學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

  (2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現知識遺忘,所以應全面系統的去講述;學(xué)生學(xué)習本節課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應予以簡(jiǎn)單明白,深入淺出的分析。

  (3)動(dòng)機和興趣上:明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力

  最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:

  4. 教學(xué)程序及設想:

  (1)由 引入:把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當肖學(xué)習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

  (2)由實(shí)例得出本課新的知識點(diǎn)

  (3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于學(xué)生的思維能力。

  (4)能力訓練。課后練習使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。

  (5)總結結論,強化認識。知識性的內容小結,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐步培養學(xué)生良好的個(gè)性品質(zhì)目標。

  (6)變式延伸,進(jìn)行重構,重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。

  (7)板書(shū)

  (8)布置作業(yè)。

  針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,

  教學(xué)程序:

  (一)課堂結構:復習提問(wèn),導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分

  高中數學(xué)集合教學(xué)反思

  集合這章內容,教學(xué)參考書(shū)上安排的課時(shí)為五課時(shí),我們的導學(xué)案也是安排五課時(shí),實(shí)際教學(xué)時(shí),由于對學(xué)生的實(shí)際情況估計不足,第一課時(shí)的導學(xué)案用了兩課時(shí)才完成。集合這一章的特點(diǎn)是概念不多,但這章所涉及到的內容很廣,學(xué)生學(xué)習本章內容時(shí),不僅要理解本章的概念,還要理解與本章內容相關(guān)聯(lián)的其他內容,這些內容有初中學(xué)習過(guò)的內容、有生活中的方方面面的相關(guān)知識,再加上高中學(xué)習方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺(jué)學(xué)起來(lái)比較困難。針對這種情況,我在實(shí)際教學(xué)時(shí),首先要求學(xué)生準確理解概念,如:集合的元素具有三個(gè)性質(zhì):確定性、互異性、無(wú)序性。集合的關(guān)系、運算等都是從元素的角度定義的,所以解集合問(wèn)題時(shí),教會(huì )學(xué)生對元素的性質(zhì)進(jìn)行分析,反復訓練,讓學(xué)生通過(guò)實(shí)例體會(huì )這三個(gè)性質(zhì)。

  第二,掌握相關(guān)的符號語(yǔ)言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時(shí),集合中的元素是什么,這是一個(gè)教學(xué)難點(diǎn)。第二個(gè)難點(diǎn)是集合的運算—交集和并集。突破難點(diǎn)充分運用數形結合思想,集合間的關(guān)系和運算,以數形結合思想為指導,借助圖形思考,可以使各集合間的關(guān)系直觀(guān)明了,使抽象的集合運算建立在直觀(guān)的基礎上,使解題思路清晰明朗,直觀(guān)簡(jiǎn)捷,有利于問(wèn)題的解決。

  第三,指導學(xué)生理解并掌握自然語(yǔ)言、符號語(yǔ)言、圖形語(yǔ)言這三種語(yǔ)言,靈活準確地進(jìn)行語(yǔ)言轉換,可以幫助學(xué)生提高分析問(wèn)題,解決問(wèn)題的能力。

  第四,集合問(wèn)題涉及到的其他內容,遇到了講透,不拓展。

高中數學(xué)說(shuō)課稿 篇10

  尊敬的各位評委、各位老師大家好!我說(shuō)課的題目是《直線(xiàn)的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書(shū)數學(xué)必修2(A版),是第三章直線(xiàn)與方程中的第2節的第一課時(shí)3.2.1直線(xiàn)的點(diǎn)斜式方程的內容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。

  一、教學(xué)背景的分析

  1.教材分析

  直線(xiàn)的方程是學(xué)生在初中學(xué)習了一次函數的概念和圖象及高中學(xué)習了直線(xiàn)的斜率后進(jìn)行研究的。直線(xiàn)的方程屬于解析幾何學(xué)的基礎知識,是研究解析幾何學(xué)的開(kāi)始,對后續研究?jì)蓷l直線(xiàn)的位置關(guān)系、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容,無(wú)論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內容之一!爸本(xiàn)的點(diǎn)斜式方程”可以說(shuō)是直線(xiàn)的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線(xiàn)作為常見(jiàn)的最簡(jiǎn)單的曲線(xiàn),在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。同時(shí)在這一節中利用坐標法來(lái)研究曲線(xiàn)的數形結合、幾何直觀(guān)等數學(xué)思想將貫穿于我們整個(gè)高中數學(xué)教學(xué)。

  2.學(xué)情分析

  我校的生源較差,學(xué)生的基礎和學(xué)習習慣都有待加強。又由于剛開(kāi)始學(xué)習解析幾何,第一次用坐標法來(lái)求曲線(xiàn)的方程,在學(xué)習過(guò)程中,會(huì )出現“數”與“形”相互轉化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面更有待加強。

  根據上述教材分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:

  3.教學(xué)目標

  (1)了解直線(xiàn)的方程的概念和直線(xiàn)的點(diǎn)斜式方程的推導過(guò)程及方法;

  (2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì )準確地使用直線(xiàn)的點(diǎn)斜式、斜截式方程 ;

  (3)從實(shí)例入手,通過(guò)類(lèi)比、推廣、特殊化等,使學(xué)生體會(huì )從特殊到一般再到特殊的認知規律;

  (4)提倡學(xué)生用舊知識解決新問(wèn)題,通過(guò)體會(huì )直線(xiàn)的斜截式方程與一次函數的關(guān)系等活動(dòng),培養學(xué)生主動(dòng)探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。

  4. 教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn): 直線(xiàn)點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應用。

  (2)難點(diǎn):直線(xiàn)的方程的概念,點(diǎn)斜式方程的推導及點(diǎn)斜式、斜截式方程的應用。

  二、教法學(xué)法分析

  1.教法分析:根據學(xué)情,為了能調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“實(shí)例引導的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數化,用代數的語(yǔ)言描述直線(xiàn)的幾何要素及其關(guān)系,進(jìn)而將直線(xiàn)的問(wèn)題轉化為直線(xiàn)方程的問(wèn)題,通過(guò)對直線(xiàn)的方程的研究,最終解決有關(guān)直線(xiàn)的一些簡(jiǎn)單的問(wèn)題。另外可以恰當的利用多媒體課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習興趣。

  2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結、質(zhì)疑、運用,體會(huì )學(xué)習數學(xué)的樂(lè )趣;通過(guò)推導直線(xiàn)的點(diǎn)斜式方程的學(xué)習,要了解用坐標法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線(xiàn),進(jìn)而可求出直線(xiàn)的點(diǎn)斜式方程,要能體會(huì )“形”與“數”的轉化思想。

  下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:

  三、教學(xué)過(guò)程的設計及實(shí)施

  整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節,學(xué)習或涉及四個(gè)概念:

  溫故知新,澄清概念----直線(xiàn)的方程

  深入探究,獲得新知--------點(diǎn)斜式

  拓展知識,再獲新知--------斜截式

  小結引申,思維延續--------兩點(diǎn)式

  平面上的點(diǎn)可以用坐標表示,直線(xiàn)的傾斜程度可以用斜率表示,那么平面上的直線(xiàn)如何表示呢?這就是本節要學(xué)習的內容。

  (一)溫故知新,澄清概念----直線(xiàn)的方程

  問(wèn)題一:畫(huà)出一次函數y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標有何關(guān)系?

  [學(xué)生活動(dòng)] 通過(guò)動(dòng)手畫(huà)圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。

  [教師活動(dòng)] 對于不同學(xué)生的表述進(jìn)行分析、歸納,用規范的語(yǔ)言對方程和直線(xiàn)的方程進(jìn)行描述。

  [設計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線(xiàn)的方程的概念,試圖做到“用學(xué)生已有的數學(xué)知識去學(xué)數學(xué)”,從而突破難點(diǎn)。通過(guò)對這個(gè)問(wèn)題的研究,一方面認識到以方程的解為坐標的點(diǎn)在直線(xiàn)上,另一方面認識到直線(xiàn)上的點(diǎn)的坐標滿(mǎn)足方程;從而使同學(xué)意識到直線(xiàn)可以由直線(xiàn)上任意一點(diǎn)P(x,y)的坐標x和y之間的等量關(guān)系來(lái)表示。

  問(wèn)題二:若直線(xiàn)經(jīng)過(guò)點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線(xiàn)l上。

  (1) 若點(diǎn)P在直線(xiàn)l上從A點(diǎn)開(kāi)始運動(dòng),橫坐標增加1時(shí),點(diǎn)P的坐標是 ;

  (2)畫(huà)出直線(xiàn)l,你能求出直線(xiàn)l的方程嗎?

  (3)若點(diǎn)P在直線(xiàn)l上運動(dòng),設P點(diǎn)的坐標為(x,y),你會(huì )有什么方法找到x,y滿(mǎn)足的關(guān)系式?

  [學(xué)生活動(dòng)]學(xué)生獨立思考5分鐘,必要的話(huà)可進(jìn)行分組討論、合作交流。

  [教師活動(dòng)]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導學(xué)生觀(guān)察發(fā)現,得到當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線(xiàn)的斜率恒等于-2,體會(huì )“動(dòng)中有靜”的思維策略。

  [設計意圖]復習斜率公式;待定系數法;初步體會(huì )坐標法。同時(shí)引導學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數學(xué)簡(jiǎn)潔的美感和嚴謹性。還要指出這樣的事實(shí):當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí),P的坐標(x,y)滿(mǎn)足方程2x+y-1=0.反過(guò)來(lái),以方程2x+y-1=0的解為坐標的點(diǎn)在直線(xiàn)l上。把學(xué)生的思維引到用坐標法研究直線(xiàn)的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。

  (二)深入探究,獲得新知----點(diǎn)斜式

  問(wèn)題三: ① 若直線(xiàn)l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線(xiàn)l的方程。

 、谥本(xiàn)的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線(xiàn)?

  [學(xué)生活動(dòng)] ①學(xué)生敘述,老師板書(shū),強調斜率公式與點(diǎn)斜式的區別。 ②指導學(xué)生用筆轉一轉不難發(fā)現,當直線(xiàn)l的傾斜角α=90°時(shí),斜率k不存在,當然不存在點(diǎn)斜式方程;討論k=0的情況;觀(guān)察并總結點(diǎn)斜式方程的特征。

  [設計意圖] 由特殊到一般的學(xué)習思路,突破難點(diǎn),培養學(xué)生的歸納概括能力。通過(guò)對這個(gè)問(wèn)題的探究使學(xué)生獲得直線(xiàn)點(diǎn)斜式方程;由②知:當直線(xiàn)斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線(xiàn),培養思維的嚴謹性,這時(shí)直線(xiàn)l與y軸平行,它上面的每一點(diǎn)的橫坐標都等于x0,直線(xiàn)l的方程是:x=x0;通過(guò)學(xué)生的觀(guān)察討論總結,明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎練習,突破重難點(diǎn)。

  問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿(mǎn)足下列條件的直線(xiàn)的方程

  (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

  [練習]P95.1、2。

  [學(xué)生活動(dòng)]學(xué)生獨立完成并展示或敘述,老師點(diǎn)評。

  [設計意圖]充分用好教材的例題和習題,因為這些題都是專(zhuān)家精心編排的,充分體現必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節的教學(xué),指導下個(gè)環(huán)節的安排;突破重點(diǎn)內容后,進(jìn)入第三環(huán)節。

  (三)拓展知識,再獲新知----斜截式

  問(wèn)題五:(1)一條直線(xiàn)與y軸交于點(diǎn)(0,3),直線(xiàn)的斜率為2,求這條直線(xiàn)的方程。

  (2)若直線(xiàn)l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線(xiàn)l的方程。

  [學(xué)生活動(dòng)]學(xué)生獨立完成后口述,教師板書(shū)。

  [設計意圖] 由一般到特殊再到一般,培養學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強調截距不是距離。類(lèi)比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數的關(guān)系。通過(guò)下面的基礎練習,突破重點(diǎn)。

  [練習]P95.3。

  [設計意圖]充分用好教材習題,及時(shí)反饋本環(huán)節的教學(xué)情況,指導下個(gè)環(huán)節的安排。

  (四)小結引申,思維延續----兩點(diǎn)式

  課堂小結 1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線(xiàn)方程的方法:公式法、等斜率法、待定系數法。)

  2、哪些地方還沒(méi)有學(xué)好?

  問(wèn)題六:(1)直線(xiàn)l過(guò)(1,0)點(diǎn),且與直線(xiàn)平行,求直線(xiàn)l的方程。

  (2)直線(xiàn)l過(guò)點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線(xiàn)l的方程。

  [學(xué)生活動(dòng)]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。

  [教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話(huà),可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式;沒(méi)時(shí)間就布置分層作業(yè)。

  [設計意圖](1)小題與上一節的平行綜合,學(xué)生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機會(huì ),以及課后學(xué)習的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節課研究直線(xiàn)的兩點(diǎn)式方程作了重要的準備。

  分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.

  選做題:P100.A組:1.(4)(5)(6).

  [設計意圖]通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展。

  四、教學(xué)特點(diǎn)分析

  (一)實(shí)例引導。在字母運算、公式推導之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習知識的可能和興趣,關(guān)注學(xué)困生的成長(cháng)與發(fā)展。

  (二)啟發(fā)式教學(xué)。教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內容,如:1.直角坐標系內的所有直線(xiàn)都有點(diǎn)斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會(huì )求直線(xiàn)在軸上的截距嗎?4.觀(guān)察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話(huà)與交流活動(dòng)。

  (三)注重自主探究。設計問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區上,布設了由淺入深的學(xué)習環(huán)境突破重點(diǎn)、難點(diǎn),引導學(xué)生逐步發(fā)現知識的形成過(guò)程。設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng )造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。

【關(guān)于高中數學(xué)說(shuō)課稿模板匯編十篇】相關(guān)文章:

關(guān)于高中數學(xué)說(shuō)課稿模板十篇07-30

關(guān)于高中數學(xué)說(shuō)課稿模板匯編5篇08-01

關(guān)于高中數學(xué)說(shuō)課稿模板匯編五篇07-26

實(shí)用的高中數學(xué)說(shuō)課稿模板匯編十篇08-17

關(guān)于高中數學(xué)說(shuō)課稿模板錦集十篇06-26

關(guān)于高中數學(xué)說(shuō)課稿范文匯編十篇08-19

精選高中數學(xué)說(shuō)課稿模板十篇07-23

關(guān)于高中數學(xué)說(shuō)課稿合集十篇07-30

關(guān)于高中數學(xué)說(shuō)課稿模板六篇06-22

激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频