激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频

高中數學(xué)說(shuō)課稿

時(shí)間:2021-08-17 18:35:04 高中說(shuō)課稿 我要投稿

關(guān)于高中數學(xué)說(shuō)課稿范文集合十篇

  作為一名教學(xué)工作者,總不可避免地需要編寫(xiě)說(shuō)課稿,說(shuō)課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。那么什么樣的說(shuō)課稿才是好的呢?下面是小編為大家整理的高中數學(xué)說(shuō)課稿10篇,希望能夠幫助到大家。

關(guān)于高中數學(xué)說(shuō)課稿范文集合十篇

高中數學(xué)說(shuō)課稿 篇1

  一、說(shuō)教材

 。1)說(shuō)教材的內容和地位

  本次說(shuō)課的內容是人教版高一數學(xué)必修一第一單元第一節《集合》(第一課時(shí))。集合這一課里,首先從初中代數與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結合實(shí)例對集合的概念作了說(shuō)明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數學(xué)的最開(kāi)始,是因為在高中數學(xué)中,這些知識與其他內容有著(zhù)密切聯(lián)系,它們是學(xué)習、掌握以及使用數學(xué)語(yǔ)言的基礎。從知識結構上來(lái)說(shuō)是為了引入函數的定義。因此在高中數學(xué)的模塊中,集合就顯得格外的舉足輕重了。

 。2)說(shuō)教學(xué)目標

  根據教材結構和內容以及教材地位和作用,考慮到學(xué)生已有的認知結構與心理特征,依據新課標制定如下教學(xué)目標:

  1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

  2.過(guò)程與方法:通過(guò)情景設置提出問(wèn)題,揭示課題,培養學(xué)生主動(dòng)探究新知的習慣。并通過(guò)"自主、合作與探究"實(shí)現"一切以學(xué)生為中心"的理念。

  3.情感態(tài)度與價(jià)值觀(guān):感受數學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習數學(xué)的興趣,由集合的學(xué)習感受數學(xué)的簡(jiǎn)潔美與和諧統一美。同時(shí)通過(guò)自主探究領(lǐng)略獲取新知識的喜悅。

 。3)說(shuō)教學(xué)重點(diǎn)和難點(diǎn)

  依據課程標準和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為

  教學(xué)重點(diǎn):集合的基本概念及元素特征。

  教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì )元素與集合的屬于關(guān)系。

  二、說(shuō)教法和學(xué)法

  接下來(lái)則是說(shuō)教法、學(xué)法

  教法與學(xué)法是互相聯(lián)系和統一的,不能孤立去研究。什么樣的教法必帶來(lái)相應的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節課而言,我采用"生活實(shí)例與數學(xué)實(shí)例"相結合,"師生互動(dòng)與課堂布白"相輔助的方法。通過(guò)不同層次的練習體驗,憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習的主人,以學(xué)生為主體,創(chuàng )造條件讓學(xué)生參與探究活動(dòng),()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習的技能和激發(fā)學(xué)生的學(xué)習興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀(guān)察發(fā)現、合作交流、歸納總結等。

  總之,不管采取什么教法和學(xué)法,每節課都應不斷研究學(xué)生的學(xué)習心理機制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng )造和諧的課堂氛圍。

  三、說(shuō)教學(xué)過(guò)程

  接著(zhù)我來(lái)說(shuō)一下最重要的部分,本節課的教學(xué)過(guò)程:

  這節課的流程主要分為六個(gè)環(huán)節:創(chuàng )設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價(jià))、作業(yè)布置(反饋矯正)。上述六個(gè)環(huán)節由淺入深,層層遞進(jìn)。 多層次、多角度地加深對概念的理解。 提高學(xué)生學(xué)習的興趣,以達到良好的教學(xué)效果。

  第一環(huán)節:創(chuàng )設問(wèn)題情境,引入目標

  課堂開(kāi)始我將提出兩個(gè)問(wèn)題:

  問(wèn)題1:班級有20名男生,16名女生,問(wèn)班級一共多少人?

  問(wèn)題2:某次運動(dòng)會(huì )上,班級有20人參加田賽,16人參加徑賽,問(wèn)一共多少人參加比賽?

  這里我會(huì )讓學(xué)生以小組討論的形式進(jìn)行討論問(wèn)題,事實(shí)上小組合作的形式是本節課主要形式。

  待學(xué)生討論完畢以后我將作歸納總結:?jiǎn)?wèn)題2已無(wú)法用學(xué)過(guò)的知識加以解釋?zhuān)@是與集合有關(guān)的問(wèn)題,因此需用集合的語(yǔ)言加以描述(同時(shí)我將板書(shū)標題:集合)。

  安排這一過(guò)程的意圖是為了從實(shí)際問(wèn)題引入,讓學(xué)生了解數學(xué)來(lái)源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習的欲望。

  很自然地進(jìn)入到第二環(huán)節:自主探究

  讓學(xué)生閱讀教材,并思考下列問(wèn)題:

 。1)有那些概念?

 。2)有那些符號?

 。3)集合中元素的特性是什么?

  安排這一過(guò)程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構自己的知識結構。培養學(xué)生的探究能力。

  讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節:討論辨析

  小組合作探究(1)

  讓學(xué)生觀(guān)察下列實(shí)例

 。1)1~20以?xún)鹊乃匈|(zhì)數;

 。2)所有的正方形;

 。3)到直線(xiàn) 的距離等于定長(cháng) 的所有的點(diǎn);

 。4)方程 的所有實(shí)數根;

  通過(guò)以上實(shí)例,辨析概念:

 。1)集合含義:一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集。而集合中的每個(gè)對象叫做這個(gè)集合的元素。

 。2)表示方法:集合通常用大括號{ }或大寫(xiě)的拉丁字母A,B,C…表示,而元素用小寫(xiě)的拉丁字母a,b,c…表示。

  小組合作探究(2)——集合元素的特征

  問(wèn)題3:任意一組對象是否都能組成一個(gè)集合?集合中的元素有什么特征?

  問(wèn)題4:某單位所有的"帥哥"能否構成一個(gè)集合?由此說(shuō)明什么?

  集合中的元素必須是確定的

  問(wèn)題5:在一個(gè)給定的集合中能否有相同的元素?由此說(shuō)明什么?

  集合中的元素是不重復出現的

  問(wèn)題6:咱班的全體同學(xué)組成一個(gè)集合,調整座位后這個(gè)集合有沒(méi)有變化?由此說(shuō)明什么? 集合中的元素是沒(méi)有順序的

  我如此設計的意圖是因為:?jiǎn)?wèn)題是數學(xué)的心臟,感受問(wèn)題是學(xué)習數學(xué)的根本動(dòng)力。

  小組合作探究(3)——元素與集合的關(guān)系

  問(wèn)題7:設集合A表示"1~20以?xún)鹊乃匈|(zhì)數",那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?

  問(wèn)題8:如果元素a是集合A中的元素,我們如何用數學(xué)化的語(yǔ)言表達?

  a屬于集合A,記作a∈A

  問(wèn)題9:如果元素a不是集合A中的元素,我們如何用數學(xué)化的語(yǔ)言表達?

  a不屬于集合A,記作aA

  小組合作探究(4)——常用數集及其表示方法

  問(wèn)題10:自然數集,正整數集,整數集,有理數集,實(shí)數集等一些常用數集,分別用什么符號表示?

  自然數集(非負整數集):記作 N

  正整數集:

  整數集:記作 Z

  有理數集:記作 Q 實(shí)數集:記作 R

  設計意圖:由于不同的人對同一問(wèn)題有不同的體驗和理解。讓學(xué)生通過(guò)合作交流相互得到啟發(fā),從而不斷完善自己的知識結構。

  第四環(huán)節:理論遷移 變式訓練

  1.下列指定的對象,能構成一個(gè)集合的是

 、 很小的數

 、 不超過(guò)30的非負實(shí)數

 、 直角坐標平面內橫坐標與縱坐標相等的點(diǎn)

 、 π的近似值

 、 所有無(wú)理數

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五環(huán)節:課堂小結,自我評價(jià)

  1.這節課學(xué)習的主要內容是什么?

  2.這節課主要解釋了什么數學(xué)思想?

  設計意圖:引導學(xué)生對所學(xué)知識、思想方法進(jìn)行小結,形成知識系統。教師用激勵性的語(yǔ)言加一點(diǎn)評,讓學(xué)生的思想敞亮的發(fā)揮出來(lái)。

  第六環(huán)節:作業(yè)布置,反饋矯正

  1.必做題 課本習題1.1—1、2、3.

  2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實(shí)數a 的值。

  設計意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗。

  四、板書(shū)設計

  好的板書(shū)就像一份微型教案,為了讓學(xué)生直觀(guān)易懂的看筆記,板書(shū)應設計得有條理性、概括性、指導性,所以我設計的板書(shū)如下:

  集 合

  1.集合的概念

  2.集合元素的特征

 。▽W(xué)生板演)

  3.常見(jiàn)集合的表示

  4.范例研究

高中數學(xué)說(shuō)課稿 篇2

  一、教材分析:

  "數列"是中學(xué)數學(xué)的重要內容之一。不僅在歷年的高考中占有一定的比重,而且在實(shí)際生活中也經(jīng)常要用到數列的一些知識。例如:儲蓄、分期付款中的有關(guān)計算就要用到數列知識。

  就本節課而言,在給出數列的基本概念之后,結合例題,指出數列可以看作定義域為正整數集(或它的有限子集)的函數。因此,本節課的內容,一方面是前面函數知識的延伸及應用,可以使學(xué)生加深對函數概念的理解;另一方面也可以為后面學(xué)習等差數列、等比數列的通項、求和等知識打下鋪墊。所以本節課在教材中起到了"承上啟下"的作用,必須講清、講透。

  二、教學(xué)目標:

  根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標。

  1、知識目標:

 。1)形成并掌握數列及其有關(guān)概念,識記數列的表示和分類(lèi),了解數列通項公式的意義。

 。2)理解數列的通項公式,能根據數列的通項公式寫(xiě)出數列的任意一項。對比較簡(jiǎn)單的數列,使學(xué)生能根據數列的前幾項觀(guān)察歸納出數列的通項公式,并通過(guò)數列與函數的比較加深對數列的認識。

  2、能力目標:

  培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等分析問(wèn)題的能力,同時(shí)加深理解數學(xué)知識之間相互滲透性的思想。

  3、情感目標:

  通過(guò)滲透函數、方程思想,培養學(xué)生的思維能力,使學(xué)生在民主、和諧的活動(dòng)中感受學(xué)習的樂(lè )趣。通過(guò)介紹數列與函數間存在的特殊到一般關(guān)系,向學(xué)生進(jìn)行辯證唯物主義思想教育。

  三、重點(diǎn)、難點(diǎn):

  1、教學(xué)重點(diǎn)

  理解數列的概念及其通項公式,加強與函數的聯(lián)系,并能根據通項公式寫(xiě)出數列中的任意一項。

  2、教學(xué)難點(diǎn)

  根據數列前幾項的特點(diǎn),通過(guò)多角度、多層次的觀(guān)察和分析,歸納出數列的通項公式。

  四、教法學(xué)法

  本節課以"問(wèn)題情境——歸納抽象——鞏固訓練"的模式展開(kāi),引導學(xué)生從知識和生活經(jīng)驗出發(fā),提出問(wèn)題并與學(xué)生共同探索、討論解決問(wèn)題的方法,讓學(xué)生經(jīng)歷知識的形成過(guò)程,從而理解更加透徹。

  現代教學(xué)觀(guān)明確指出:教師是主導,學(xué)生是主體,學(xué)生應成為學(xué)習的主人。根據本節內容及學(xué)生的認知規律,針對不同內容應選擇不同的方法。對于國際象棋棋盤(pán)麥粒采用電腦動(dòng)畫(huà)演示,增強感性認識;所舉的引例及數列的函數定義,可采用探索發(fā)現法;對通項公式及數列的分類(lèi)等概念采用指導閱讀法;對于難題(根據數列的前幾項寫(xiě)出一個(gè)通項公式)采用講練結合法。

  "授人以魚(yú),不如授人以漁",平時(shí)在教學(xué)中教師應不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課從學(xué)生實(shí)際出發(fā),創(chuàng )設情境,引導學(xué)生觀(guān)察、分析,探索發(fā)現,歸納總結,培養學(xué)生積極思維的品質(zhì),加強主動(dòng)學(xué)習的能力。

  為了有效地突出重點(diǎn),突破難點(diǎn),增大課堂容量,提高課堂效率,本節課將常規教學(xué)手段與現代教學(xué)手段相結合,將引例、例題、練習等實(shí)物投影。

  五、教學(xué)過(guò)程

  1、創(chuàng )設情景,激發(fā)興趣,引入新課

 。1)電腦動(dòng)畫(huà)演示:國際象棋棋盤(pán)格子中放有麥粒的示意圖,從而得到一組數:1,2,22,23……263

  敘述故事:給你一張報紙,你可以用它登上月球,你相信嗎?只要不斷地將報紙對折42次以后,報紙的厚度就可以達到月球和地球的距離。

  設計意圖:以實(shí)例引入概念,再配以電腦動(dòng)畫(huà),敘述小故事,增強了感性認識,調動(dòng)學(xué)生學(xué)習新知識的積極性。

 。2)投影演示,再觀(guān)察以下幾列數:

 、倌嘲鄬W(xué)生的學(xué)號:1,2,3,4……,50

 、趶1984年到20xx年,中國體育健兒參加奧運會(huì )每屆所得的金牌數:

  15,5,16,16,28,32

 、勰炒位顒(dòng),在1km長(cháng)的路段,從起點(diǎn)開(kāi)始,每隔10m放置一個(gè)垃圾筒,由近及遠各筒與起點(diǎn)的距離排成一列數:0.10.20.30,……1000

 、芊派湫晕镔|(zhì)衰變,設原質(zhì)量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,……

  2、歸納抽象,形成概念

 。1)學(xué)生嘗試敘述數列的定義:?jiǎn)l(fā)學(xué)生觀(guān)察上述幾組數據后,進(jìn)行歸納總結定義:按一定次序排成的一列數,叫數列,便于培養學(xué)生的抽象概括能力。

  舉例1:1,3,5,7與7,5,3,1 這兩個(gè)數列有何區別?

  舉例2:-1,1,-1,1,……是不是一個(gè)數列?

  設計意圖:使學(xué)生注意把數列中的數和集合中的元素區分開(kāi)來(lái):

 、贁盗兄械臄凳怯许樞虻,而集合中的元素是無(wú)序的。

 、跀盗兄械臄悼梢灾貜统霈F,而集中的元素不能重復出現。

  進(jìn)一步加深學(xué)生對數列定義的理解。

 。2)數列的項及項的表示方法: an

 。3)數列的表示方法:可寫(xiě)成:a1,a2,a3,……,an……

  或簡(jiǎn)記為:{an},注意an與{an}的區別

  上述(2)(3)采用指導閱讀法(書(shū)P106頁(yè)第7節~第8節第一句話(huà)),對an與{an}的區別進(jìn)行集體討論歸納。

  3、通項公式的探索

 。1)觀(guān)察歸納定義

  由學(xué)生觀(guān)察引例中數列的項與它在數列中的位置(即項的序號)間的關(guān)系:

  實(shí)物投影:

  序號 1 2 3 …… 64

  ↓ ↓ ↓ ↓

  項 1= 21-1 2=22-1 22 = 23-1 …… 263

  從而可看出項與項的序號之間可用一個(gè)公式:an =2n-1表示,該公式叫數列的通項公式,然后歸納抽象出數列的通項公式的定義(略)。

 。2)用函數觀(guān)點(diǎn)看待數列:這是一個(gè)難點(diǎn),講解必須清楚、透徹。數列可看作是以自然數集或它的有限子集為定義域的函數,當自變量由小到大依次取值時(shí)對應的一列函數值(這是數列的本質(zhì)),其圖象是一群孤立的點(diǎn),畫(huà)圖(棋盤(pán)麥粒這個(gè)數列)

  設計意圖:加深對函數概念的理解。

 。3)數列的分類(lèi),并口答引例及數列①②③④分別歸于哪類(lèi)數列。

  4、講解例題

  設計例題:①根據通項公式寫(xiě)出前幾項并會(huì )判斷某個(gè)數是否為該數列中的項;②根據數列的前幾項寫(xiě)出一個(gè)通項公式。

  例1,根據下列數列{an}的通項公式,寫(xiě)出它的前5項

 。1) an= n/(n+1) (2)an=(-1)n · n

  設計意圖:使學(xué)生正確掌握通項與序號的關(guān)系。

  變式訓練:?jiǎn)?wèn) 2589/2590是否為數列(1)中的項

  設計意圖:使學(xué)生明確方程思想是解決數列問(wèn)題的重要方法。

  例2,寫(xiě)出下列數列的一個(gè)通項公式,使它的前4項分別是下列各數:

 。1)1,3,5,7

 。2)2, -2,2 ,-2

 。3)1 ,11 ,111 ,

  設計意圖:引導學(xué)生進(jìn)行解題后反思,對完善學(xué)生的認知結構是十分必要。寫(xiě)通項公式時(shí),就是要去發(fā)現an與n的關(guān)系,對各項進(jìn)行多角度、多層次觀(guān)察,找出這些項與相應的項數(即序號)之間的對應關(guān)系。(注:遇到分數,可分別觀(guān)察分子組的數列特征與分母組成的數列特征;若為正負相間的項,則可用-1的奇次冪或偶次冪進(jìn)行符號交換,有時(shí)也可根據相鄰的項,適當調整有關(guān)的表達式。)

  5、練習鞏固

  投影演示:

 。1)寫(xiě)出數列1,-1,1,-1,……的一個(gè)通項公式

 。2)是否所有數列都有通項公式?

  上述(1)的設計意圖:an=(-1)n+1也可寫(xiě)成 (分段函數的形式)(當n為奇數時(shí),n為偶數時(shí)),說(shuō)明根據數列的前幾項寫(xiě)出的通項公式可能不唯一。(2):引例②就沒(méi)有通項公式。通過(guò)這些練習,使學(xué)生能及時(shí)消化,及時(shí)鞏固所學(xué)內容。

  6、歸納小結

  由學(xué)生試著(zhù)總結本節課所學(xué)內容,老師適當補充,可以訓練學(xué)生的收斂思維,有助于完善學(xué)生的思維結構。

 。1) 數列及有關(guān)概念。

 。2) 根據數列的通項公式求任意一項,并能判斷某數是否為該數列中的項。

 。3) 根據數列的前幾項寫(xiě)出數列的一個(gè)通項公式。

 。4) 數列與函數的關(guān)系

  7、課后作業(yè):

 。1)課本P110/習題3.1/1(3)(4)(5);2、書(shū)P108/4(1)(3)(4)

 。2)復習看書(shū)P106-107

  六、評價(jià)與分析

  本節課,教師可通過(guò)創(chuàng )設情景,適時(shí)引導的方式來(lái)激發(fā)學(xué)生積極思考的欲望,有時(shí)直接講解,有時(shí)組織掌握學(xué)生集體討論、探索發(fā)現,課堂上除反復強調注意點(diǎn)外,還應通過(guò)課堂練習和課后作業(yè)來(lái)強化它們。

  通過(guò)本節課的學(xué)習,學(xué)生不僅掌握了數列及有關(guān)概念,而且可體會(huì )到數學(xué)概念形成過(guò)程中蘊含的基本數學(xué)思想:"函數思想、數形結合思想、特殊化思想",使之獲得內心感受,提高了基本技能和解決問(wèn)題的能力,也可以逐漸學(xué)會(huì )辯證地看待問(wèn)題。

高中數學(xué)說(shuō)課稿 篇3

  【一】教學(xué)背景分析

  1。教材結構分析

  《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。

  2。學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。

  根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:

  3。教學(xué)目標

 。1) 知識目標:①掌握圓的標準方程;

 、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;

 、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。

 。2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;

 、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;

 、墼鰪妼W(xué)生用數學(xué)的意識。

 。3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;

 、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。

  根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4。 教學(xué)重點(diǎn)與難點(diǎn)

 。1)重點(diǎn):圓的標準方程的求法及其應用。

 。2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;

 、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。

  為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1。教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。

  2。學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:

  【三】教學(xué)過(guò)程與設計

  整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:

  創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

  反饋訓練 形成方法 小結反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。

  首先:縱向敘述教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情境——啟迪思維

  問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?

  通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

  通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。

 。ǘ┥钊胩骄俊@得新知

  問(wèn)題二 1。根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2。如果圓心在,半徑為時(shí)又如何呢?

  好學(xué)教育:

  這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。

  得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。

 。ㄈ⿷门e例——鞏固提高

  I。直接應用 內化新知

  問(wèn)題三 1。寫(xiě)出下列各圓的標準方程:

 。1)圓心在原點(diǎn),半徑為3;

 。2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。

  2。寫(xiě)出圓的圓心坐標和半徑。

  我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。

  II。靈活應用 提升能力

  問(wèn)題四 1。求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。

  2。求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。

  3。已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。

  你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?

  我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮。

  III。實(shí)際應用 回歸自然

  問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。

  好學(xué)教育:

  我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。

 。ㄋ模┓答佊柧殹纬煞椒

  問(wèn)題六 1。求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。

  2。求圓過(guò)點(diǎn)的切線(xiàn)方程。

  3。求圓過(guò)點(diǎn)的切線(xiàn)方程。

  接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。

 。ㄎ澹┬〗Y反思——拓展引申

  1。課堂小結

  把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。

 、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。

  2。分層作業(yè)

 。ˋ)鞏固型作業(yè):教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。

  3。激發(fā)新疑

  問(wèn)題七 1。把圓的標準方程展開(kāi)后是什么形式?

  2。方程表示什么圖形?

  在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。

  以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計

 。ㄒ唬┩怀鲋攸c(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  好學(xué)教育:

  求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。

 。ǘ⿲W(xué)生主體 教師主導 探究主線(xiàn)

  本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。

 。ㄈ┡囵B思維 提升能力 激勵創(chuàng )新

  為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。

高中數學(xué)說(shuō)課稿 篇4

  1、對教材地位與作用的認識

  在高中數學(xué)教學(xué)中,作為數學(xué)思想應向學(xué)生滲透,強化的有:函數與方程思想;數形結合思想;分類(lèi)討論思想;等價(jià)轉化及運動(dòng)變化思想。不是所有的課都能把這些思想自然的容納進(jìn)去,但由于“曲線(xiàn)和方程”這一節在教材中的特殊地位,它把代數和幾何兩個(gè)單科自然而緊密地結合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視!扒(xiàn)和方程”這節教材揭示了幾何中的形與代數中的數相統一的關(guān)系,為“依形判數”與“就數論形”的相互轉化開(kāi)辟了途徑,這正體現了解析幾何這門(mén)課的基本思想,用代數的方法研究幾何問(wèn)題!鼻(xiàn)與方程”是解析幾何中最為重要的基本內容之一.在理論上它是基礎,在應用上它是工具,對全部解析幾何的教學(xué)有著(zhù)深遠的影響,另外在高考中也是考察的重點(diǎn)內容,尤其是求曲線(xiàn)的方程,學(xué)生只有透徹理解了曲線(xiàn)與方程的含義,才算是找到了解析幾何學(xué)習得入門(mén)之路。應該認識到這節“曲線(xiàn)和方程”得開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!

  2、教學(xué)目標的確定及依據

  (大綱的要求)通過(guò)本小節的學(xué)習,要使學(xué)生了解解析幾何的基本思想,了解用坐標法研究幾何問(wèn)題的初步知識和觀(guān)點(diǎn),理解曲線(xiàn)的方程和方程的曲線(xiàn)的意義,初步掌握求曲線(xiàn)的方程的方法.所以第一課我在教學(xué)目標上是這樣設定的:

  1).了解曲線(xiàn)上的點(diǎn)與方程的解之間的一一對應關(guān)系,領(lǐng)會(huì )“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念及其關(guān)系,并能作簡(jiǎn)單的判斷與推理;

  2).在形成概念的過(guò)程中,培養分析、抽象和概括等思維能力;

  3)會(huì )證明已知曲線(xiàn)的方程。

  本節課的教學(xué)目標定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應在學(xué)生的學(xué)習行為上,即要求學(xué)生能答出曲線(xiàn)與方程間必須滿(mǎn)足的兩個(gè)關(guān)系,才能稱(chēng)作“方程的曲線(xiàn)”和“曲線(xiàn)的方程”,兩者缺一不可,并能借助實(shí)例進(jìn)一步明確這二者的區別。知識的學(xué)習與能力的培養是同步的,在具體操作上結合圖形分析與反例,來(lái)辨析“兩個(gè)關(guān)系”之間的區別,從認識特例到歸納出曲線(xiàn)的方程和方程的曲線(xiàn)一般概念,因而在形成概念的過(guò)程中,培養學(xué)生分析、抽象、概括的思維能力.會(huì )證明已知曲線(xiàn)的方程就能更進(jìn)一步的理解曲線(xiàn)和方程概念的含義并為下節課求曲線(xiàn)的方程打基礎.

  3、如何突破重難點(diǎn)

  本小節的重點(diǎn)是理解曲線(xiàn)與方程的有關(guān)概念與相互聯(lián)系,以及求曲線(xiàn)方程的方法、步驟.只有深刻理解了曲線(xiàn)與方程的含義,才能真正掌握好求曲線(xiàn)軌跡方程的一般方法,進(jìn)一步學(xué)好后面的內容.曲線(xiàn)和方程的概念比較抽象,由直觀(guān)表象到抽象概念有相當難度,對學(xué)生理解上可能遇到的問(wèn)題是學(xué)生不理解“曲線(xiàn)上的點(diǎn)的坐標都是方程的解”和”“以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)”這兩句話(huà)在揭示“曲線(xiàn)和方程”關(guān)系各自所起的作用。有的學(xué)生只從字面上死記硬背;有的學(xué)生甚至誤以為這兩句話(huà)是同義反復。要突破這一點(diǎn),關(guān)鍵在于利用充要條件,函數圖象,直線(xiàn)和方程,軌跡等知.識,正反兩方面說(shuō)明問(wèn)題.

  本節課的難點(diǎn)在于對定義中為什么要規定兩個(gè)關(guān)系(純粹性和完備性)產(chǎn)生困惑,原因是不理解兩者缺任何一個(gè)都將擴大概念的外延。

  4、對教學(xué)過(guò)程的設計

  今天要講的“曲線(xiàn)和方程”這部分教材的內容主要包括“曲線(xiàn)方程的概念”,“已知曲線(xiàn)求它的方程”、“已知方程作出它的曲線(xiàn)”等。在課時(shí)安排上分為3個(gè)課時(shí)進(jìn)行教學(xué),具體的課時(shí)分配是:第一課時(shí)講解“曲線(xiàn)與方程”和“方程與曲線(xiàn)”的概念及其關(guān)系;第二課時(shí)講解求曲線(xiàn)的方程一般方法,第三課時(shí)為習題課,通過(guò)練習來(lái)總結、鞏固和深化本節知識。如果以為學(xué)生不真正領(lǐng)悟曲線(xiàn)和方程得關(guān)系照樣能求出方程,照樣能計算某些難題,因而可以忽視這個(gè)基本概念得教學(xué),這不能不說(shuō)是一種“舍本逐末”得偏見(jiàn)。

  在教材中,曲線(xiàn)和方程這一概念是隨著(zhù)知識的講授而不斷深化,逐步為學(xué)生所理解,因而教材中從直線(xiàn)開(kāi)始,多次,重復地闡述,這說(shuō)明其重要性.同時(shí)也說(shuō)明理解它,掌握它確實(shí)需要一個(gè)過(guò)程.數學(xué)本身是很抽象,把數學(xué)和實(shí)際問(wèn)題相結合才能激發(fā)學(xué)生的學(xué)習興趣,真正達到素質(zhì)教育的要求。根據以上考慮,確定了這節課教學(xué)過(guò)程的基本線(xiàn)索是:實(shí)際問(wèn)題引入,提出課題→運用反例,揭示內涵→討論歸納,得出定義→集合表述,強化理解→知識應用,反復辨析。

  教材的編寫(xiě)也往往體現著(zhù)教法.,例如,本節一開(kāi)頭說(shuō)“我們研究過(guò)直線(xiàn)的各種方程,討論了直線(xiàn)和二元一次方程的關(guān)系!睂W(xué)生已經(jīng)有了用方程(有時(shí)用函數式的形式出現)表示曲線(xiàn)的感性認識,在本節教學(xué)中充分發(fā)揮這些感性認識的作用。從人造地球衛星運行的軌道等生動(dòng)形象的'實(shí)際問(wèn)題引入,引起學(xué)生的興趣和好奇心以及對數學(xué)的應用有了更高的認識,更激發(fā)他們進(jìn)一步學(xué)好數學(xué)的決心。(具體……)提出課題。運用學(xué)生熟知的知識,1)求線(xiàn)段AB的垂直平分線(xiàn)方程和2)作出方程y=x2的圖象作為引例,從曲線(xiàn)到方程,從方程到曲線(xiàn)兩方面入手分析了曲線(xiàn)上的點(diǎn)和方程的解之間的關(guān)系,為形成曲線(xiàn)和方程的概念提供了實(shí)際模型,但是如果就此而由教師直接給出結論,那就不僅會(huì )失去開(kāi)發(fā)學(xué)生思維的機會(huì ),影響學(xué)生的理解,而且會(huì )使教學(xué)變得枯燥乏味,抑制了學(xué)生學(xué)習的主動(dòng)性和積極性,接著(zhù)用反例來(lái)突破難點(diǎn)。通過(guò)反例1)直線(xiàn)去掉第三象限部分,則方程y=x的解為坐標的點(diǎn)不都在曲線(xiàn)上,以及2)改方程為,那么曲線(xiàn)上就混有不滿(mǎn)足方程的點(diǎn)坐標就此揭示“兩者缺一”與直覺(jué)的矛盾,通過(guò)舉反例和步步追問(wèn)使我要的答案逐步明了,從而又促使學(xué)生對概念表述的嚴格性進(jìn)行探索,學(xué)生自已認識曲線(xiàn)和方程的概念必須要具備的兩個(gè)關(guān)系,培養學(xué)生分析,歸納問(wèn)題的能力,自然得出定義。并且把這個(gè)關(guān)系板書(shū)到黑板上,以示這就是這節課的重點(diǎn)。為了在重難點(diǎn)有所突破后強化其認識,又用集合相等的概念來(lái)解釋曲線(xiàn)和方程的對應關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

  然后通過(guò)運用與練習,糾正錯誤的認識,促使對概念的正確理解,通過(guò)反復重現,可以不斷領(lǐng)悟,加強識記。所以安排了例1,例2(見(jiàn)課件)目的也在于幫助學(xué)生正確理解概念,通過(guò)解題辨析“兩個(gè)關(guān)系”,實(shí)現本節課的教學(xué)目標,為此題目中的“曲線(xiàn)”和“方程”都力求簡(jiǎn)單,由此得出點(diǎn)在曲線(xiàn)上的充要條件。

  曲線(xiàn)是符合某種條件的點(diǎn)的軌跡,為了下節課“求曲線(xiàn)的方程”的教學(xué),安排了例3(見(jiàn)課件)證明曲線(xiàn)的方程,增加學(xué)生的感性認識,由于教材上有嚴謹的證明過(guò)程,讓學(xué)生閱讀并總結證明已知曲線(xiàn)的方程的方法和步驟,上升到理論上,可以培養學(xué)生獨立思考,閱讀歸納的能力。為了讓學(xué)生更深入的理解這節課的主要內容,通過(guò)4個(gè)變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個(gè)練習:(略)簡(jiǎn)單評講后小結本課的主要內容,進(jìn)一步強化“曲線(xiàn)和方程”概念中兩個(gè)關(guān)系缺一不可,只有符合關(guān)系1)2)才能進(jìn)行數與形的轉化。由于下節課的內容是求曲線(xiàn)的方程,特地安排了一個(gè)思考探索題。

  5、對學(xué)生學(xué)習活動(dòng)的引導和組織

  教案的設計與教案的實(shí)施往往有一定的距離,本節課有著(zhù)概念性強,思維量大,例題與練習題不多的特點(diǎn),這就決定了整節課將以學(xué)生的觀(guān)察、思考、討論為主,通過(guò)提問(wèn),舉例,啟發(fā),互動(dòng)完成教學(xué),在具體操作上比較靈活,視學(xué)生的具體情況而定,把握學(xué)生的思維規律于數學(xué)思想的基本方法。例如,在概念教學(xué)中引導學(xué)生看反例,通過(guò)正反對比的方法,當學(xué)生觀(guān)察了例1回答不清為什么,可以舉出幾個(gè)點(diǎn)的坐標作檢驗,這就是”從特殊到一般“的方法:或引導學(xué)生看圖,比比劃劃,這就是“從直觀(guān)到抽象”的方法。只要啟發(fā)方法符合學(xué)生的認識規律,學(xué)生的認識活動(dòng)就會(huì )順利展開(kāi),而且在認知的過(guò)程中訓練了探索的能力。強化數形結合、化歸與轉化的數學(xué)思想方法,完善學(xué)生的數學(xué)的結構,讓學(xué)生動(dòng)手、動(dòng)腦,以及觀(guān)察、聯(lián)想、猜測、歸納等合理推理,鼓勵學(xué)生多向思維、積極思考,勇于探索,從中培養學(xué)生合情推理能力,數學(xué)交流與合作能力以及主動(dòng)參與的精神。

高中數學(xué)說(shuō)課稿 篇5

  一、教材分析

  1.教材所處的地位和作用

  本節課所學(xué)內容為算法案例3,主要學(xué)習如何給一組數據排序,學(xué)習作程序框圖和設計程序,通過(guò)本節課的學(xué)習之后將能使許多復雜的問(wèn)題在計算機上得到解決,減少工作量。

  2 教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):兩種排序法的排序步驟及計算機程序設計

  難點(diǎn):排序法的計算機程序設計

  二、教學(xué)目標分析

  1.知識與技能目標:

  掌握數據排序的原理能使用直接排序法與冒泡排序法給一組數據排序,進(jìn)而能設計冒泡排序法的程序框圖及程序,理解數學(xué)算法與計算機算法的區別,理解計算機對數學(xué)的輔助作用。

  2.過(guò)程與方法目標:

  能根據排序法中的直接插入排序法與冒泡排序法的步驟,了解數學(xué)計算轉換為計算機計算的途徑,從而探究計算機算法與數學(xué)算法的區別,體會(huì )計算機對數學(xué)學(xué)習的輔助作用。

  3.情感,態(tài)度和價(jià)值觀(guān)目標

  通過(guò)對排序法的學(xué)習,領(lǐng)會(huì )數學(xué)計算與計算機計算的區別,充分認識信息技術(shù)對數學(xué)的促進(jìn)。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導作用,采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現象到本質(zhì),從已知到未知逐步形成概念的學(xué)習方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。

  2.教學(xué)手段:通過(guò)各種教學(xué)媒體(計算機)調動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。

  四、學(xué)法分析

  模仿排序法中數字排序的步驟,理解計算機計算的一般步驟,領(lǐng)會(huì )數學(xué)計算在計算機上實(shí)施的要求。

  五、教學(xué)過(guò)程分析

  一、創(chuàng )設情境

  提出問(wèn)題:大家考完試后如果要排一下成績(jì)的話(huà),單靠人手該怎樣操作呢?如果我們用計算機里的軟件電子表格對分數排序就非常簡(jiǎn)單,那么電子計算機是怎么對數據進(jìn)行排序的呢?

  通過(guò)這個(gè)問(wèn)題,引出我們這節課所要學(xué)習的兩種排序方法--直接插入排序法與冒泡排序法

  二、探索新知

  這里我先讓學(xué)生們閱讀課本P30-P31的內容,然后回答下面的問(wèn)題:

  (1)排序法中的直接插入排序法與冒泡排序法的步驟有什么區別?

  (2)冒泡法排序中對5個(gè)數字進(jìn)行排序最多需要多少趟?

  (3)在冒泡法排序對5個(gè)數字進(jìn)行排序的每一趟中需要比較大小幾次?

  提出問(wèn)題,然后讓學(xué)生們作出回答,這樣可以促使學(xué)生們能夠積極思考,自主地去學(xué)習新的知識,而不只是單向的由老師向學(xué)生灌輸。

  三、知識應用

  例1 用冒泡排序法對數據7,5,3,9,1從小到大進(jìn)行排序

 。ǜ鶕⻊倓偺釂(wèn)所總結的方法完成解題步驟)

  練習:寫(xiě)出用冒泡排序法對5個(gè)數據4,11,7,9,6排序的過(guò)程中每一趟排序的結果.

 。皶r(shí)將學(xué)到的知識應用,有利于知識的掌握)

  例2 設計冒泡排序法對5個(gè)數據進(jìn)行排序的程序框圖.

  (在之前所學(xué)習知識的基礎上畫(huà)出程序框圖,然后給出一個(gè)思考題)

  思考:直接插入排序法的程序框圖如何設計?可否把上述程序框圖轉化為程序?

 。ㄖ蟪鲆粋(gè)練習題,找出思考題的答案)

  練習:用直接插入排序法對例1中的數據從小到大排序,畫(huà)出程序框圖,并轉化為程序運行求出最終答案。

 。ㄟ@里可以使學(xué)生們領(lǐng)會(huì )數學(xué)計算與計算機計算的區別,充分認識信息技術(shù)對數學(xué)的促進(jìn)。)

  四、課堂小結:

  (1)數字排序法中的常見(jiàn)的兩種排序法直接插入排序法與冒泡排序法它們的排序步驟

  (2兩種排序法的計算機程序設計

  (3)注意循環(huán)語(yǔ)句的使用與算法的循環(huán)次數,對算法進(jìn)行改進(jìn)。

  通過(guò)小結使學(xué)生們對知識有一個(gè)系統的認識,突出重點(diǎn),抓住關(guān)鍵,培養概括能力。

高中數學(xué)說(shuō)課稿 篇6

  一、教學(xué)目標

  (一)知識與技能

  1、進(jìn)一步熟練掌握求動(dòng)點(diǎn)軌跡方程的基本方法。

  2、體會(huì )數學(xué)實(shí)驗的直觀(guān)性、有效性,提高幾何畫(huà)板的操作能力。

  (二)過(guò)程與方法

  1、培養學(xué)生觀(guān)察能力、抽象概括能力及創(chuàng )新能力。

  2、體會(huì )感性到理性、形象到抽象的思維過(guò)程。

  3、強化類(lèi)比、聯(lián)想的方法,領(lǐng)會(huì )方程、數形結合等思想。

  (三)情感態(tài)度價(jià)值觀(guān)

  1、感受動(dòng)點(diǎn)軌跡的動(dòng)態(tài)美、和諧美、對稱(chēng)美

  2、樹(shù)立競爭意識與合作精神,感受合作交流帶來(lái)的成功感,樹(shù)立自信心,激發(fā)提出問(wèn)題和解決問(wèn)題的勇氣

  二、教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):運用類(lèi)比、聯(lián)想的方法探究不同條件下的軌跡

  教學(xué)難點(diǎn):圖形、文字、符號三種語(yǔ)言之間的過(guò)渡

  三、、教學(xué)方法和手段

  【教學(xué)方法】觀(guān)察發(fā)現、啟發(fā)引導、合作探究相結合的教學(xué)方法。啟發(fā)引導學(xué)生積極思考并對學(xué)生的思維進(jìn)行調控,幫助學(xué)生優(yōu)化思維過(guò)程,在此基礎上,提供給學(xué)生交流的機會(huì ),幫助學(xué)生對自己的思維進(jìn)行組織和澄清,并能清楚地、準確地表達自己的數學(xué)思維。

  【教學(xué)手段】利用網(wǎng)絡(luò )教室,四人一機,多媒體教學(xué)手段。通過(guò)上述教學(xué)手段,一方面:再現知識產(chǎn)生的過(guò)程,通過(guò)多媒體動(dòng)態(tài)演示,突破學(xué)生在舊知和新知形成過(guò)程中的障礙(靜態(tài)到動(dòng)態(tài));另一方面:節省了時(shí)間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習的興趣。

  【教學(xué)模式】重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng )設情境、激發(fā)情感、主動(dòng)發(fā)現、主動(dòng)發(fā)展”。

高中數學(xué)說(shuō)課稿 篇7

各位同仁,各位專(zhuān)家:

  我說(shuō)課的課題是《任意角的三角函數》,內容取自蘇教版高中實(shí)驗教科書(shū)《數學(xué)》第四冊 第1。2節

  先對教材進(jìn)行分析

  教學(xué)內容:任意角三角函數的定義、定義域,三角函數值的符號。

  地位和作用: 任意角的三角函數是本章教學(xué)內容的基本概念對三角內容的整體學(xué)習至關(guān)重要。同時(shí)它又為平面向量、解析幾何等內容的學(xué)習作必要的準備,通過(guò)這部分內容的學(xué)習,又可以幫助學(xué)生更加深入理解函數這一基本概念。所以這個(gè)內容要認真探討教材,精心設計過(guò)程。

  教學(xué)重點(diǎn):任意角三角函數的定義

  教學(xué)難點(diǎn):正確理解三角函數可以看作以實(shí)數為自變量的函數、初中用邊長(cháng)比值來(lái)定義轉變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀(guān)念的轉換以及坐標定義的合理性的理解;

  學(xué)情分析:

  學(xué)生已經(jīng)掌握的內容,學(xué)生學(xué)習能力

  1。初中學(xué)生已經(jīng)學(xué)習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見(jiàn)的知識和求法。

  2。我們南山區經(jīng)過(guò)多年的初中課改,學(xué)生已經(jīng)具備較強的自學(xué)能力,多數同學(xué)對數學(xué)的學(xué)習有相當的興趣和積極性。

  3。在探究問(wèn)題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進(jìn)行

  針對對教材內容重難點(diǎn)的和學(xué)生實(shí)際情況的分析我們制定教學(xué)目標如下

  知識目標:

 。1)任意角三角函數的定義;三角函數的定義域;三角函數值的符號,

  能力目標:

 。1)理解并掌握任意角的三角函數的定義;

 。2)正確理解三角函數是以實(shí)數為自變量的函數;

 。3)通過(guò)對定義域,三角函數值的符號的推導,提高學(xué)生分析探究解決問(wèn)題的能力。

  德育目標:

 。1)學(xué)習轉化的思想,(2)培養學(xué)生嚴謹治學(xué)、一絲不茍的科學(xué)精神;

  針對學(xué)生實(shí)際情況為達到教學(xué)目標須精心設計教學(xué)方法

  教法學(xué)法:溫故知新,逐步拓展

 。1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發(fā)展新知識,形成新的概念;

 。2)通過(guò)例題講解分析,逐步引出新知識,完善三角定義

  運用多媒體工具

 。1)提高直觀(guān)性增強趣味性。

  教學(xué)過(guò)程分析

  總體來(lái)說(shuō), 由舊及新,由易及難,

  逐步加強,逐步推進(jìn)

  先由初中的直角三角形中銳角三角函數的定義

  過(guò)度到直角坐標系中銳角三角函數的定義

  再發(fā)展到直角坐標系中任意角三角函數的定義

  給定定義后通過(guò)應用定義又逐步發(fā)現新知識拓展完善定義。

  具體教學(xué)過(guò)程安排

  引入: 復習提問(wèn):初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

  由學(xué)生回答

  SinA=對邊/斜邊=BC/AB

  cosA=對邊/斜邊=AC/AB

  tanA=對邊/斜邊=BC/AC

  逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。

  我們知道,隨著(zhù)角的概念的推廣,研究角時(shí)多放在直角坐標系里, 那么三角函數的定義能否也放到坐標系去研究呢?

  引導學(xué)生發(fā)現B的坐標和邊長(cháng)的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現由于相似三角形的相似比導致OB上任一P點(diǎn)都可以代換B,把三角函數的定義發(fā)展到用終邊上任一點(diǎn)的坐標來(lái)表示, 從而銳角三角函數可以使用直角坐標系來(lái)定義,自然地,要想定義任意一個(gè)角三角函數,便考慮放在直角坐標中進(jìn)行合理進(jìn)行定義了

  從而得到

  知識點(diǎn)一:任意一個(gè)角的三角函數的定義

  提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個(gè)比值的大小和P點(diǎn)在角的終邊上的位置無(wú)關(guān)。

  精心設計例題,引出新內容深化概念,完善定義

  例1已知角A 的終邊經(jīng)過(guò)P(2,—3),求角A的三個(gè)三角函數值

 。ù祟}由學(xué)生自己分析獨立動(dòng)手完成)

  例題變式1,已知角A 的大小是30度,由定義求角A的三個(gè)三角函數值

  結合變式我們發(fā)現三個(gè)三角函數值的大小與角的大小有關(guān),只會(huì )隨角的大小而變化,符合當初函數的定義,而我們又一直稱(chēng)呼為三角函數,

  提出問(wèn)題:這三個(gè)新的定義確實(shí)問(wèn)是函數嗎?為什么?

  從而引出函數極其定義域

  由學(xué)生分析討論,得出結論

  知識點(diǎn)二:三個(gè)三角函數的定義域

  同時(shí)教師強調:由于弧度制使角和實(shí)數建立了一一對應關(guān)系,所以三角函數是以實(shí)數為自變量的函數

  例題變式2, 已知角A 的終邊經(jīng)過(guò)P(—2a,—3a)( a不為0),求角A的三個(gè)三角函數值

  解答中需要對變量的正負即角所在象限進(jìn)行討論, 讓學(xué)生意識到三角函數值的正負與角所在象限有關(guān),從而導出第三個(gè)知識點(diǎn)

  知識點(diǎn)三:三角函數值的正負與角所在象限的關(guān)系

  由學(xué)生推出結論,教師總結符號記憶方法,便于學(xué)生記憶

  例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

  求cosA,tanA

  綜合練習鞏固提高,更為下節的同角關(guān)系式打下基礎

  拓展,如果不限制A的象限呢,可以留作課外探討

  小結回顧課堂內容

  課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解

  課堂作業(yè)P16 1,2,4

 。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)

  課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)

  必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

  板書(shū)設計(見(jiàn)PPT)

高中數學(xué)說(shuō)課稿 篇8

  大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。

  一 教材分析

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的內容,推證正弦定理及簡(jiǎn)單運用正弦定理與三角形的內角和定理解斜三角形的兩類(lèi)問(wèn)題。

  能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習的興趣。

教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。

  二 教法

  根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當的提示和指導。突破難點(diǎn)的方法:抓住學(xué)生的能力線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過(guò)例題和練習來(lái)突破難點(diǎn)

  三 學(xué)法:

  指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四 教學(xué)過(guò)程

  第一:創(chuàng )設情景,大概用2分鐘

  第二:實(shí)踐探究,形成概念,大約用25分鐘

  第三:應用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng )設情境,布疑激趣

  “興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。

 。ǘ┨綄ぬ乩,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。

  2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

  3.讓學(xué)生總結實(shí)驗結果,得出猜想:

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。

 。ㄈ┻壿嬐评,證明猜想

  1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明

 。ㄋ模w納總結,簡(jiǎn)單應用

  1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。

  2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  3.運用正弦定理求解本節課引引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

 。ㄎ澹┲v解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

高中數學(xué)說(shuō)課稿 篇9

  一、教材分析

  1.《指數函數》在教材中的地位、作用和特點(diǎn)

  《指數函數》是人教版高中數學(xué)(必修)第一冊第二章“函數”的第六節內容,是在學(xué)習了《指數》一節內容之后編排的。通過(guò)本節課的學(xué)習,既可以對指數和函數的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習對數、對數函數尤其是利用互為反函數的圖象間的關(guān)系來(lái)研究對數函數的性質(zhì)打下堅實(shí)的概念和圖象基礎,又因為《指數函數》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學(xué)習基礎,所以《指數函數》不僅是本章《函數》的重點(diǎn)內容,也是高中學(xué)段的主要研究?jì)热葜,有?zhù)不可替代的重要作用。

  此外,《指數函數》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著(zhù)緊密的聯(lián)系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習這部分知識還有著(zhù)廣泛的現實(shí)意義。本節內容的特點(diǎn)之一是概念性強,特點(diǎn)之二是凸顯了數學(xué)圖形在研究函數性質(zhì)時(shí)的重要作用。

  2.教學(xué)目標、重點(diǎn)和難點(diǎn)

  通過(guò)初中學(xué)段的學(xué)習和高中對集合、函數等知識的系統學(xué)習,學(xué)生對函數和圖象的關(guān)系已經(jīng)構建了一定的認知結構,主要體現在三個(gè)方面:

  知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡(jiǎn)單的函數概念和性質(zhì)已有了初步認識,能夠從初中運動(dòng)變化的角度認識函數初步轉化到從集合與對應的觀(guān)點(diǎn)來(lái)認識函數。

  技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質(zhì)做好準備。

  素質(zhì)維度:由觀(guān)察到抽象的數學(xué)活動(dòng)過(guò)程已有一定的體會(huì ),已初步了解了數形結合的思想。

  鑒于對學(xué)生已有的知識基礎和認知能力的分析,根據《教學(xué)大綱》的要求,我確定本節課的教學(xué)目標、教學(xué)重點(diǎn)和難點(diǎn)如下:

  (1)知識目標:

 、僬莆罩笖岛瘮档母拍;

 、谡莆罩笖岛瘮档膱D象和性質(zhì);

 、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實(shí)際問(wèn)題;

  (2)技能目標:

 、贊B透數形結合的基本數學(xué)思想方法

 、谂囵B學(xué)生觀(guān)察、聯(lián)想、類(lèi)比、猜測、歸納的能力;

  (3)情感目標:

 、袤w驗從特殊到一般的學(xué)習規律,認識事物之間的普遍聯(lián)系與相互轉化,培養學(xué)生用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題②通過(guò)教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習興趣,提高學(xué)生抽象、概括、分析、綜合的能力

 、垲I(lǐng)會(huì )數學(xué)科學(xué)的應用價(jià)值。

  (4)教學(xué)重點(diǎn):指數函數的圖象和性質(zhì)。

  (5)教學(xué)難點(diǎn):指數函數的圖象性質(zhì)與底數a的關(guān)系。

  突破難點(diǎn)的關(guān)鍵:尋找新知生長(cháng)點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數形結合來(lái)掃清障礙。

  二、教法設計

  由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過(guò)這一節課的教學(xué)達到不僅使學(xué)生初步理解并能簡(jiǎn)單應用指數函數的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數圖象性質(zhì)的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學(xué)生學(xué)習能力的目的,我根據自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結合起來(lái),主要突出了幾個(gè)方面:

  1.創(chuàng )設問(wèn)題情景.按照指數函數的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調動(dòng)學(xué)生的學(xué)習興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

  2.強化“指數函數”概念.引導學(xué)生結合指數的有關(guān)概念來(lái)歸納出指數函數的定義,并向學(xué)生指出指數函數的形式特點(diǎn),請學(xué)生思考對于底數a是否需要限制,如不限制會(huì )有什么問(wèn)題出現,這樣避免了學(xué)生對于底數a范圍分類(lèi)的不清楚,也為研究指數函數的圖象做了“分類(lèi)討論”的鋪墊。

  3.突出圖象的作用.在數學(xué)學(xué)習過(guò)程中,圖形始終使我們需要借助的重要輔助手段。一位數學(xué)家曾經(jīng)說(shuō)過(guò)“數離形時(shí)少直觀(guān),形離數時(shí)難入微”,而在研究指數函數的性質(zhì)時(shí),更是直接由圖象觀(guān)察得出性質(zhì),因此圖象發(fā)揮了主要的作用。

  4.注意數學(xué)與生活和實(shí)踐的聯(lián)系.數學(xué)的本質(zhì)是來(lái)源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關(guān)的生活問(wèn)題,力圖使學(xué)生了解到數學(xué)的基礎學(xué)科作用,培養學(xué)生的數學(xué)應用意識。

  三、學(xué)法指導

  本節課是在學(xué)習完“指數”的概念和運算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個(gè)方面做了嘗試:

  1.再現原有認知結構。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數的概念,幫助學(xué)生再現原有認知結構,為理解指數函數的概念做好準備。

  2.領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法。在借助圖象研究指數函數的性質(zhì)時(shí)會(huì )遇到分類(lèi)討論、數形結合等基本數學(xué)思想方法,這些方法將會(huì )貫穿整個(gè)高中的數學(xué)學(xué)習。

  3.在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導入、指數函數的性質(zhì)研究、例題與訓練、課內小節等教學(xué)環(huán)節中都安排了學(xué)生的討論、分組、交流等活動(dòng),讓學(xué)生變被動(dòng)的接受和記憶知識為在合作學(xué)習的樂(lè )趣中主動(dòng)地建構新知識的框架和體系,從而完成知識的內化過(guò)程。

  4.注意學(xué)習過(guò)程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應用、拓展的過(guò)程中按照先易后難的順序層層遞進(jìn),讓學(xué)生感到有挑戰、有收獲,跳一跳,夠得著(zhù),不同難度的題目設計將盡可能照顧到課堂學(xué)生的個(gè)體差異。

  四、程序設計

  在設計本節課的教學(xué)過(guò)程中,本著(zhù)遵循學(xué)生的認知規律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程的原則,我設計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現和認識指數函數的圖象和性質(zhì)。

  1.創(chuàng )設情景、導入新課

  教師活動(dòng):

 、儆秒娔X展示兩個(gè)實(shí)例,第一個(gè)是計算機價(jià)格下降問(wèn)題,第二個(gè)是生物中細胞分裂的例子,

 、趯W(xué)生按奇數列、偶數列分組。

  學(xué)生活動(dòng):

 、俜謩e寫(xiě)出計算機價(jià)格y與經(jīng)過(guò)月份x的關(guān)系式和細胞個(gè)數y與分裂次數x的關(guān)系式,并互相交流;

 、诨貞浿笖档母拍;

 、蹥w納指數函數的概念;

 、芊治龀鰧χ笖岛瘮档讛涤懻摰谋匾砸约胺诸(lèi)的方法。

  設計意圖:通過(guò)生活實(shí)例激發(fā)學(xué)生的學(xué)習動(dòng)機,,掃清由概念不清而造成的知識障礙,培養學(xué)生思維的主動(dòng)性, 為突破難點(diǎn)做好準備;

  2.啟發(fā)誘導、探求新知

  教師活動(dòng):

 、俳o出兩個(gè)簡(jiǎn)單的指數函數并要求學(xué)生畫(huà)它們的圖象②在準備好的小黑板上規范地畫(huà)出這兩個(gè)指數函數的圖象③板書(shū)指數函數的性質(zhì)。

  學(xué)生活動(dòng):

 、佼(huà)出兩個(gè)簡(jiǎn)單的指數函數圖象

 、诮涣、討論

 、蹥w納出研究函數性質(zhì)涉及的方面

 、芸偨Y出指數函數的性質(zhì)。

  設計意圖:讓學(xué)生動(dòng)手作簡(jiǎn)單的指數函數的圖象對深刻理解本節課的內容有著(zhù)一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進(jìn)一步規范學(xué)生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學(xué)生就會(huì )很自然的通過(guò)觀(guān)察圖象總結出指數函數的性質(zhì),同時(shí)對于底數的討論也就變得順理成章。

  3.鞏固新知、反饋回授

  教師活動(dòng):

 、侔鍟(shū)例1

 、诎鍟(shū)例2第一問(wèn)

 、劢榻B有關(guān)考古的拓展知識。

高中數學(xué)說(shuō)課稿 篇10

  高三第一階段復習,也稱(chēng)“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復習鞏固各個(gè)知識點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過(guò)的知識產(chǎn)生全新認識。在高一、高二時(shí),是以知識點(diǎn)為主線(xiàn)索,依次傳授講解的,由于后面的相關(guān)知識還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復習時(shí),以章節為單位,將那些零碎的、散亂的知識點(diǎn)串聯(lián)起來(lái),并將他們系統化、綜合化,把各個(gè)知識點(diǎn)融會(huì )貫通。對于普通高中的學(xué)生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實(shí)效。

  一、內容分析說(shuō)明

  1、本小節內容是初中學(xué)習的多項式乘法的繼續,它所研究的二項式的乘方的展開(kāi)式,與數學(xué)的其他部分有密切的聯(lián)系:

 。1)二項展開(kāi)式與多項式乘法有聯(lián)系,本小節復習可對多項式的變形起到復習深化作用。

 。2)二項式定理與概率理論中的二項分布有內在聯(lián)系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò )。

 。3)二項式定理是解決某些整除性、近似計算等問(wèn)題的一種方法。

  2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的

  試題,考察的題型穩定,通常以選擇題或填空題出現,有時(shí)也與應用題結合在一起求某些數、式的

  近似值。

  二、學(xué)校情況與學(xué)生分析

 。1)我校是一所鎮普通高中,學(xué)生的基礎不好,記憶力較差,反應速度慢,普遍感到數學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀(guān)上有學(xué)好數學(xué)的愿望。

 。2)授課班是政治、地理班,學(xué)生聽(tīng)課積極性不高,聽(tīng)課率低(60﹪),注意力不能持久,不能連續從事某項數學(xué)活動(dòng)。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學(xué)生好記筆記。

  三、教學(xué)目標

  復習課二項式定理計劃安排兩個(gè)課時(shí),本課是第一課時(shí),主要復習二項展開(kāi)式和通項。根據歷年高考對這部分的考查情況,結合學(xué)生的特點(diǎn),設定如下教學(xué)目標:

  1、知識目標:(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個(gè)特征熟記它的展開(kāi)式。

 。2)會(huì )運用展開(kāi)式的通項公式求展開(kāi)式的特定項。

  2、能力目標:(1)教給學(xué)生怎樣記憶數學(xué)公式,如何提高記憶的持久性和準確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數學(xué)能力,是其它能力的基礎。

 。2)樹(shù)立由一般到特殊的解決問(wèn)題的意識,了解解決問(wèn)題時(shí)運用的數學(xué)思想方法。

  3、情感目標:通過(guò)對二項式定理的復習,使學(xué)生感覺(jué)到能掌握數學(xué)的部分內容,樹(shù)立學(xué)好數學(xué)的信心。有意識地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗到成功,在明年的高考中,他們也能得分。

  四、教學(xué)過(guò)程

  1、知識歸納

 。1)創(chuàng )設情景:①同學(xué)們,還記得嗎? 、 、 展開(kāi)式是什么?

 、趯W(xué)生一起回憶、老師板書(shū)。

  設計意圖:①提出比較容易的問(wèn)題,吸引學(xué)生的注意力,組織教學(xué)。

 、跒閷W(xué)生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。

 。2)二項式定理:①設問(wèn) 展開(kāi)式是什么?待學(xué)生思考后,老師板書(shū)

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

 、诶蠋熞髮W(xué)生說(shuō)出二項展開(kāi)式的特征并熟記公式:共有 項;各項里a的指數從n起依次減小1,直到0為止;b的指數從0起依次增加1,直到n為止。每一項里a、b的指數和均為n。

 、垤柟叹毩 填空

  設計意圖:①教給學(xué)生記憶的方法,比較分析公式的特點(diǎn),記規律。

 、谧冇霉,熟悉公式。

 。3) 展開(kāi)式中各項的系數C , C , C ,… , 稱(chēng)為二項式系數.

  展開(kāi)式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開(kāi)式中第r+1項.

  2、例題講解

  例1求 的展開(kāi)式的第4項的二項式系數,并求的第4項的系數。

  講解過(guò)程

  設問(wèn):這里 ,要求的第4項的有關(guān)系數,如何解決?

  學(xué)生思考計算,回答問(wèn)題;

  老師指明①當項數是4時(shí), ,此時(shí) ,所以第4項的二項式系數是 ,

 、诘4項的系數與的第4項的二項式系數區別。

  板書(shū)

  解:展開(kāi)式的第4項

  所以第4項的系數為 ,二項式系數為 。

  選題意圖:①利用通項公式求項的系數和二項式系數;②復習指數冪運算。

  例2 求 的展開(kāi)式中不含的 項。

  講解過(guò)程

  設問(wèn):①不含的 項是什么樣的項?即這一項具有什么性質(zhì)?

 、趩(wèn)題轉化為第幾項是常數項,誰(shuí)能看出哪一項是常數項?

  師生討論 “看不出哪一項是常數項,怎么辦?”

  共同探討思路:利用通項公式,列出項數的方程,求出項數。

  老師總結思路:先設第 項為不含 的項,得 ,利用這一項的指數是零,得到關(guān)于 的方程,解出 后,代回通項公式,便可得到常數項。

  板書(shū)

  解:設展開(kāi)式的第 項為不含 項,那么

  令 ,解得 ,所以展開(kāi)式的第9項是不含的 項。

  因此 。

  選題意圖:①鞏固運用展開(kāi)式的通項公式求展開(kāi)式的特定項,形成基本技能。

 、谂袛嗟趲醉検浅淀椷\用方程的思想;找到這一項的項數后,實(shí)現了轉化,體現轉化的數學(xué)思想。

  例3求 的展開(kāi)式中, 的系數。

  解題思路:原式局部展開(kāi)后,利用加法原理,可得到展開(kāi)式中的 系數。

  板書(shū)

  解:由于 ,則 的展開(kāi)式中 的系數為 的展開(kāi)式中 的系數之和。

  而 的展開(kāi)式含 的項分別是第5項、第4項和第3項,則 的展開(kāi)式中 的系數分別是: 。

  所以 的展開(kāi)式中 的系數為

  例4 如果在( + )n的展開(kāi)式中,前三項系數成等差數列,求展開(kāi)式中的有理項.

  解:展開(kāi)式中前三項的系數分別為1, , ,

  由題意得2× =1+ ,得n=8.

  設第r+1項為有理項,T =C · ·x ,則r是4的倍數,所以r=0,4,8.

  有理項為T(mén)1=x4,T5= x,T9= .

  3、課堂練習

  1.(20xx年江蘇,7)(2x+ )4的展開(kāi)式中x3的系數是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數為C ·22=24.

  答案:C

  2.(20xx年全國Ⅰ,5)(2x3- )7的展開(kāi)式中常數項是

  A.14 B.14 C.42 D.-42

  解析:設(2x3- )7的展開(kāi)式中的第r+1項是T =C (2x3) (- )r=C 2 ·

 。ǎ1)r·x ,

  當- +3(7-r)=0,即r=6時(shí),它為常數項,∴C (-1)6·21=14.

  答案:A

  3.(20xx年湖北,文14)已知(x +x )n的展開(kāi)式中各項系數的和是128,則展開(kāi)式中x5的系數是_____________.(以數字作答)

  解析:∵(x +x )n的展開(kāi)式中各項系數和為128,

  ∴令x=1,即得所有項系數和為2n=128.

  ∴n=7.設該二項展開(kāi)式中的r+1項為T(mén) =C (x ) ·(x )r=C ·x ,

  令 =5即r=3時(shí),x5項的系數為C =35.

  答案:35

  五、課堂教學(xué)設計說(shuō)明

  1、這是一堂復習課,通過(guò)對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數、項的二項式系數等有關(guān)概念的理解和認識,形成求二項式展開(kāi)式某些指定項的基本技能,同時(shí),要培養學(xué)生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。

  2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng )造代入的條件,先判斷哪一項為所求,即先求項數,利用通項公式中指數的關(guān)系求出,此后轉化為第一層次的問(wèn)題。第三層次突出數學(xué)思想的滲透,例3需要變形才能求某一項的系數,恒等變形是實(shí)現轉化的手段。在求每個(gè)局部展開(kāi)式的某項系數時(shí),又有分類(lèi)討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過(guò)程中,運用等差數列、組合數n等知識,求出后,有化歸為前面的問(wèn)題。

  六、個(gè)人見(jiàn)解

【關(guān)于高中數學(xué)說(shuō)課稿范文集合十篇】相關(guān)文章:

高中數學(xué)說(shuō)課稿范文集合十篇08-16

關(guān)于高中數學(xué)說(shuō)課稿范文匯編十篇08-19

關(guān)于高中數學(xué)說(shuō)課稿范文集錦十篇08-18

關(guān)于高中數學(xué)說(shuō)課稿范文錦集十篇08-15

關(guān)于高中數學(xué)說(shuō)課稿范文集合五篇08-14

關(guān)于高中數學(xué)說(shuō)課稿范文集合9篇08-13

關(guān)于高中數學(xué)說(shuō)課稿范文集合九篇08-12

關(guān)于高中數學(xué)說(shuō)課稿范文集合8篇08-10

有關(guān)高中數學(xué)說(shuō)課稿范文集合十篇08-19

激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频