激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频

高中數學(xué)說(shuō)課稿

時(shí)間:2021-08-19 10:05:59 高中說(shuō)課稿 我要投稿

實(shí)用的高中數學(xué)說(shuō)課稿范文匯總7篇

  作為一名辛苦耕耘的教育工作者,總不可避免地需要編寫(xiě)說(shuō)課稿,通過(guò)說(shuō)課稿可以很好地改正講課缺點(diǎn)。那么寫(xiě)說(shuō)課稿需要注意哪些問(wèn)題呢?以下是小編收集整理的高中數學(xué)說(shuō)課稿7篇,歡迎閱讀與收藏。

實(shí)用的高中數學(xué)說(shuō)課稿范文匯總7篇

高中數學(xué)說(shuō)課稿 篇1

  一、地位作用

  數列是高中數學(xué)重要的內容之一,等比數列是在學(xué)習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個(gè)高中數學(xué)內容中數列與已學(xué)過(guò)的函數及后面的數列極限有密切聯(lián)系,它也是培養學(xué)生數學(xué)能力的良好題材,它可以培養學(xué)生的觀(guān)察、分析、歸納、猜想及綜合解決問(wèn)題的能力。

  基于此,設計本節的數學(xué)思路上:

  利用類(lèi)比的思想,聯(lián)系等差數列的概念及通項公式的學(xué)習方法,采取自學(xué)、引導、歸納、猜想、類(lèi)比總結的教學(xué)思路,充分發(fā)揮學(xué)生主觀(guān)能動(dòng)性,調動(dòng)學(xué)生的主體地位,充分體現教為主導、學(xué)為主體、練為主線(xiàn)的教學(xué)思想。

  二、教學(xué)目標

  知識目標:1)理解等比數列的概念

  2)掌握等比數列的通項公式

  3)并能用公式解決一些實(shí)際問(wèn)題

  能力目標:培養學(xué)生觀(guān)察能力及發(fā)現意識,培養學(xué)生運用類(lèi)比思想、解決分析問(wèn)題的能力。

  三、教學(xué)重點(diǎn)

  1)等比數列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)

  2)等比數列的通項公式的推導及應用

  四、教學(xué)難點(diǎn)

  “等比”的理解及利用通項公式解決一些問(wèn)題。

  五、教學(xué)過(guò)程設計

  (一)預習自學(xué)環(huán)節。(8分鐘)

  首先讓學(xué)生重新閱讀課本105頁(yè)國際象棋發(fā)明者的故事,并出示預習提綱,要求學(xué)生閱讀課本P122至P123例1上面。

  回答下列問(wèn)題

  1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數列的定義。

  2)觀(guān)察以下幾個(gè)數列,回答下面問(wèn)題:

  1, , , ,……

 。1,-2,-4,-8……

  1,2,-4,8……

 。1,-1,-1,-1,……

  1,0,1,0……

 、儆心膸讉(gè)是等比數列?若是公比是什么?

 、诠萹為什么不能等于零?首項能為零嗎?

 、酃萹=1時(shí)是什么數列?

 、躴>0時(shí)數列遞增嗎?q<0時(shí)遞減嗎?

  3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?

  4)等比數列通項公式與函數關(guān)系怎樣?

  (二)歸納主導與總結環(huán)節(15分鐘)

  這一環(huán)節主要是通過(guò)學(xué)生回答為主體,教師引導總結為主線(xiàn)解決本節兩個(gè)重點(diǎn)內容。

  通過(guò)回答問(wèn)題(1)(2)給出等比數列的定義并強調以下幾點(diǎn):①定義關(guān)鍵字“第二項起”“常數”;

 、谝龑W(xué)生用數學(xué)語(yǔ)言表達定義: =q(n≥2);③q=1時(shí)為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類(lèi)討論的思想。

 、躴>0時(shí)等比數列單調性不定,q<0為擺動(dòng)數列,類(lèi)比等差數列d>0為遞增數列,d<0為遞減數列。

  通過(guò)回答問(wèn)題(3)回憶等差數列的推導方法,比較兩個(gè)數列定義的不同,引導推出等比數列通項公式。

  法一:歸納法,學(xué)會(huì )從特殊到一般的方法,并從次數中發(fā)現規律,培養觀(guān)察力。

  法二:迭乘法,聯(lián)系等差數列“迭加法”,培養學(xué)生類(lèi)比能力及新舊知識轉化能力。

高中數學(xué)說(shuō)課稿 篇2

  一、說(shuō)教材:

  1、地位、作用和特點(diǎn):

  《 》是高中數學(xué)課本第 冊( 修)的第 章“ ”的第 節內容,高中數學(xué)課本說(shuō)課稿。

  本節是在學(xué)習了 之后編排的。通過(guò)本節課的學(xué)習,既可以對 的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習 打下基礎,所以

  是本章的重要內容。此外,《 》的知識與我們日常生活、生產(chǎn)、科學(xué)研究 有著(zhù)密切的聯(lián)系,因此學(xué)習這部分有著(zhù)廣泛的現實(shí)意義。本節的特點(diǎn)之一是;

  特點(diǎn)之二是: 。

  教學(xué)目標:

  根據《教學(xué)大綱》的要求和學(xué)生已有的知識基礎和認知能力,確定以下教學(xué)目標:

 。1)知識目標:A、B、C

 。2)能力目標:A、B、C

 。3)德育目標:A、B

  教學(xué)的重點(diǎn)和難點(diǎn):

 。1)教學(xué)重點(diǎn):

 。2)教學(xué)難點(diǎn):

  二、說(shuō)教法:

  基于上面的教材分析,我根據自己對研究性學(xué)習“啟發(fā)式”教學(xué)模式和新課程改革的理論認識,結合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng )設問(wèn)題情景,充分調動(dòng)學(xué)生求知欲,并以此來(lái)激發(fā)學(xué)生的探究心理。二是運用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來(lái)統一組織運用于教學(xué)過(guò)程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內外的綜合。并且在整個(gè)教學(xué)設計盡量做到注意學(xué)生的心理特點(diǎn)和認知規律,觸發(fā)學(xué)生的思維,使教學(xué)過(guò)程真正成為學(xué)生的學(xué)習過(guò)程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數學(xué)思考方法(聯(lián)想法、類(lèi)比法、數形結合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習知識的過(guò)程中,領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法,培養學(xué)生的探索能力和創(chuàng )造性素質(zhì)。四是注意在探究問(wèn)題時(shí)留給學(xué)生充分的時(shí)間,以利于開(kāi)放學(xué)生的思維。當然這就應在處理教學(xué)內容時(shí)能夠做到葉老師所說(shuō)“教就是為了不教”。因此,擬對本節課設計如下教學(xué)程序:

  導入新課 新課教學(xué)

  反饋發(fā)展

  三、說(shuō)學(xué)法:

  學(xué)生學(xué)習的過(guò)程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運用知識和獲得學(xué)習能力的過(guò)程,因此,我覺(jué)得在教學(xué)中,指導學(xué)生學(xué)習時(shí),應盡量避免單純地、直露地向學(xué)生灌輸某種學(xué)習方法。有效的能被學(xué)生接受的學(xué)法指導應是滲透在教學(xué)過(guò)程中進(jìn)行的,是通過(guò)優(yōu)化教學(xué)程序來(lái)增強學(xué)法指導的目的性和實(shí)效性。在本節課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導。

  1、培養學(xué)生學(xué)會(huì )通過(guò)自學(xué)、觀(guān)察、實(shí)驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過(guò)程中分析、歸納、推理能力得到提高。

  本節教師通過(guò)列舉具體事例來(lái)進(jìn)行分析,歸納出 ,并依

  據此知識與具體事例結合、推導出 ,這正是一個(gè)分析和推理的全過(guò)程。

  2、讓學(xué)生親自經(jīng)歷運用科學(xué)方法探索的過(guò)程。 主要是努力創(chuàng )設應用科學(xué)方法探索、解決問(wèn)題情境,讓學(xué)生在探索中體會(huì )科學(xué)方法,如在講授 時(shí),可通過(guò)

  演示,創(chuàng )設探索 規律的情境,引導學(xué)生以可靠的事實(shí)為基礎,經(jīng)過(guò)抽象思維揭示內在規律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結合起來(lái)的特點(diǎn)。

  3、讓學(xué)生在探索性實(shí)驗中自己摸索方法,觀(guān)察和分析現象,從而發(fā)現“新”的問(wèn)題或探索出“新”的規律。從而培養學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng )造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀(guān)察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結和推廣。

  4、在指導學(xué)生解決問(wèn)題時(shí),引導學(xué)生通過(guò)比較、猜測、嘗試、質(zhì)疑、發(fā)現等探究環(huán)節選擇合適的概念、規律和解決問(wèn)題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導學(xué)生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學(xué)生養成認真分析過(guò)程、善于比較的好習慣,又有利于培養學(xué)生通過(guò)現象發(fā)掘知識內在本質(zhì)的能力。

  四、教學(xué)過(guò)程:

 。ㄒ唬、課題引入:

  教師創(chuàng )設問(wèn)題情景(創(chuàng )設情景:A、教師演示實(shí)驗。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例,教案《高中數學(xué)課本說(shuō)課稿》。C、講述數學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導學(xué)生提出接下去要研究的問(wèn)題。

 。ǘ、新課教學(xué):

  1、針對上面提出的問(wèn)題,設計學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過(guò)動(dòng)手探索有關(guān)的知識,并引導學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問(wèn)題。

  2、組織學(xué)生進(jìn)行新問(wèn)題的實(shí)驗方法設計—這時(shí)在設計上最好是有對比性、數學(xué)方法性的設計實(shí)驗,指導學(xué)生實(shí)驗、通過(guò)多媒體的輔助,顯示學(xué)生的實(shí)驗數據,模擬強化出實(shí)驗情況,由學(xué)生分析比較,歸納總結出知識的結構。

 。ㄈ、實(shí)施反饋:

  1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問(wèn)題,實(shí)現知識的升華、實(shí)現學(xué)生的再次創(chuàng )新。

  2、課后反饋,延續創(chuàng )新。通過(guò)課后練習,學(xué)生互改作業(yè),課后研實(shí)驗,實(shí)現課堂內外的綜合,實(shí)現創(chuàng )新精神的延續。

  五、板書(shū)設計:

  在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫(xiě)在左側,中間知識推導過(guò)程,右邊實(shí)例應用。

  六、說(shuō)課綜述:

  以上是我對《 》這節教材的認識和對教學(xué)過(guò)程的設計。在整個(gè)課堂中,我引導學(xué)生回顧前面學(xué)過(guò)的 知識,并把它運用到對

  的認識,使學(xué)生的認知活動(dòng)逐步深化,既掌握了知識,又學(xué)會(huì )了方法。

  總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學(xué)生為主體,以問(wèn)題為基礎,以能力、方法為主線(xiàn),有計劃培養學(xué)生的自學(xué)能力、觀(guān)察和實(shí)踐能力、思維能力、應用知識解決實(shí)際問(wèn)題的能力和創(chuàng )造能力為指導思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來(lái)激發(fā)學(xué)生的學(xué)習興趣,體現了對學(xué)生創(chuàng )新意識的培養。

高中數學(xué)說(shuō)課稿 篇3

  大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。

  一、教材分析

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生發(fā)現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學(xué)生會(huì )運用正弦定理解決兩類(lèi)基本的解三角形問(wèn)題。

  能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習的興趣。

  教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。

  二、教法

  根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

  三、學(xué)法

  指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  (一)創(chuàng )設情境(3分鐘)

  “興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。

  (二)猜想—推理—證明(15分鐘)

  激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。 提問(wèn):那結論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  (三)總結--應用(3分鐘)

  1.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  2.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

  (四)講解例題(8分鐘)

  1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中

  一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

  (五)課堂練習(8分鐘)

  1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

  2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。

  (六)小結反思(3分鐘)

  1.它表述了三角形的邊與對角的正弦值的關(guān)系。

  2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。

  3.會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  五、教學(xué)反思

  從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。

高中數學(xué)說(shuō)課稿 篇4

  一.內容和內容分析

  “函數的奇偶性”是人教版數學(xué)必修教材必修一第一章第三節的內容,本節的主要內容是研究函數的一個(gè)性質(zhì)—函數的奇偶性,學(xué)習奇函數和偶函數的概念.奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的兩個(gè)特殊函數入手,從特殊到一般,從具體到抽象,從感性到理性比較系統地介紹了函數的奇偶性.從知識結構看,它既是函數概念的拓展和深化,又為后續研究指數函數、對數函數、冪函數、三角函數的基礎,因此,本節課起著(zhù)承上啟下的重要作用。 本節課的教學(xué)重點(diǎn):函數奇偶性的概念及判定。

  二.目標和目標分析

 。1)知識目標:從形和數兩個(gè)方面進(jìn)行引導,使學(xué)生理解奇偶性的概念,學(xué)會(huì )利用定義判斷

  簡(jiǎn)單函數的奇偶性。

 。2)能力目標:通過(guò)設置問(wèn)題情境培養學(xué)生判斷、推理的能力,同時(shí)滲透數形結合和由特殊

  到一般的數學(xué)思想方法.

 。3)情感目標:在學(xué)生感受數學(xué)美的同時(shí),激發(fā)學(xué)習的興趣,培養學(xué)生樂(lè )于求索的精神。

  三.教學(xué)問(wèn)題診斷分析

  導入有點(diǎn)慢,講的有點(diǎn)細,導致時(shí)間上沒(méi)有完成教學(xué)任務(wù),感覺(jué)還是自己講的太多,不能充分調動(dòng)學(xué)生的積極性。

  四.教學(xué)支持條件分析

  用了多媒體,使用ppt,使得奇偶性函數概念的探究過(guò)程更形象更直觀(guān),是學(xué)生理解更深刻。

  五.教學(xué)過(guò)程設計

  為了達到預期的教學(xué)目標,我對整個(gè)教學(xué)過(guò)程進(jìn)行了系統地規劃,設計了四個(gè)主要的教學(xué)程序是:

  1.設疑導入、觀(guān)圖激趣:

  使用幻燈片展示圖片蝴蝶、雪花等讓學(xué)生感受生活中的美,從而引入對稱(chēng)在函數中的體現。

  2.指導觀(guān)察、形成概念:

  作出函數y=x的'圖象,并觀(guān)察這兩個(gè)函數圖象的對稱(chēng)性如何?

  借助課件演示,讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì )得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內是否對所有的x,都有類(lèi)似的情況?借助課件演示,學(xué)生會(huì )得出結論,f(-x)=f(x),從而引導學(xué)生先把它們具體化,再用數學(xué)符號表示。根據以上特點(diǎn),請學(xué)生用完整的語(yǔ)言敘述定義,同時(shí)給出板書(shū):

  函數f(x)的定義域為A,且關(guān)于原點(diǎn)對稱(chēng),如果有f(-x)=f(x),則稱(chēng)f(x)為偶函數,類(lèi)比探究2

  偶函數的過(guò)程,得到奇函數的概念,又通過(guò)具體的例子說(shuō)明了定義域關(guān)于原點(diǎn)對稱(chēng)是研究奇偶性的前提。

  3.學(xué)生探索、發(fā)展思維。

  接著(zhù)通過(guò)學(xué)案上的例一,總結函數奇偶性的判斷方法及步驟:

  (1)求出函數的定義域,并判斷是否關(guān)于原點(diǎn)對稱(chēng)

  (2)驗證f(-x)=f(x)或f(-x)=-f(x)

  (3)得出結論

  由學(xué)生小結判斷奇偶性的步驟之后,提出新的問(wèn)題:函數按奇偶性如何分類(lèi)?既奇又偶的函數是不是只有一個(gè)?試舉例說(shuō)明。

  4.布置作業(yè):

  六.目標檢測設計

  學(xué)案上的題型主要包括奇偶性函數的判斷及應用

  七.教學(xué)反思:(從兩方面)

  1.思成功

  一:是通過(guò)設計富有挑戰性的問(wèn)題來(lái)呈現背景,通過(guò)問(wèn)題的探究和自主學(xué)習來(lái)獲取相關(guān)概念,實(shí)現了 “教學(xué)邏輯”與“學(xué)習邏輯”的連通、“知識邏輯”與“認知邏輯”的連通;二:是在老師創(chuàng )設的情境中,每個(gè)學(xué)生都積極投入探究過(guò)程,學(xué)生在疑惑中探索,在探索中思考,在思考中發(fā)現,大部分學(xué)生積極性高漲,通過(guò)看別人怎樣觀(guān)察,

  聽(tīng)別人怎樣介紹,也學(xué)到了知識.

  2.思不足

  學(xué)生練習:在教學(xué)過(guò)程中應多注意學(xué)生的活動(dòng),由單一的問(wèn)答式轉化為多方位的考察,以采用

  學(xué)生板演或者把學(xué)生練習投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。

  語(yǔ)言組織:

  在講授過(guò)程中還要注意到說(shuō)話(huà)語(yǔ)速,語(yǔ)言組織等講授技巧,應該用平緩的語(yǔ)氣講授,語(yǔ)言描述要簡(jiǎn)練易懂,不能拖泥帶水。

  教學(xué)環(huán)節(的完整):

  在授課過(guò)程中要注意到教學(xué)環(huán)節設計,我們的教學(xué)過(guò)程有復習引入、講授新課、例題講解、學(xué)生練習、課時(shí)小結、布置作業(yè)等幾個(gè)重要的環(huán)節,由于時(shí)間的關(guān)系沒(méi)有來(lái)得及小結造成教學(xué)設計不完善。在以后的教學(xué)過(guò)程中要注意這些環(huán)節。

  以上是我對這節課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯誤,以便更好的適應教學(xué),努力使自己的教學(xué)更上一層樓。

高中數學(xué)說(shuō)課稿 篇5

  一、教材分析

  1、教材內容

  本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》§2。1。3函數簡(jiǎn)單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習增函數、減函數的定義,以及應用定義解決一些簡(jiǎn)單問(wèn)題。

  2、教材所處地位、作用

  函數的性質(zhì)是研究函數的基石,函數的單調性是首先研究的一個(gè)性質(zhì)。通過(guò)對本節課的學(xué)習,讓學(xué)生領(lǐng)會(huì )函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡(jiǎn)單的實(shí)際問(wèn)題。通過(guò)上述活動(dòng),加深對函數本質(zhì)的認識。函數的單調性既是學(xué)生學(xué)過(guò)的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎。此外在比較數的大小、函數的定性分析以及相關(guān)的數學(xué)綜合問(wèn)題中也有廣泛的應用,它是整個(gè)高中數學(xué)中起著(zhù)承上啟下作用的核心知識之一。從方法論的角度分析,本節教學(xué)過(guò)程中還滲透了探索發(fā)現、數形結合、歸納轉化等數學(xué)思想方法。

  3、教學(xué)目標

 。1)知識與技能:使學(xué)生理解函數單調性的概念,掌握判別函數單調性

  的方法;

 。2)過(guò)程與方法:從實(shí)際生活問(wèn)題出發(fā),引導學(xué)生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問(wèn)題,讓學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。

 。3)情感態(tài)度價(jià)值觀(guān):讓學(xué)生體驗數學(xué)的科學(xué)功能、符號功能和工具功能,培養學(xué)生直覺(jué)觀(guān)察、探索發(fā)現、科學(xué)論證的良好的數學(xué)思維品質(zhì)。

  4、重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn)(1)函數單調性的概念;

 。2)運用函數單調性的定義判斷一些函數的單調性。

  教學(xué)難點(diǎn)(1)函數單調性的知識形成;

 。2)利用函數圖象、單調性的定義判斷和證明函數的單調性。

  二、教法分析與學(xué)法指導

  本節課是一節較為抽象的數學(xué)概念課,因此,教法上要注意:

  1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)了學(xué)生求知欲,調動(dòng)了學(xué)生主體參與的積極性。

  2、在運用定義解題的過(guò)程中,緊扣定義中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類(lèi)問(wèn)題的解決。

  3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用。具體體現在設問(wèn)、講評和規范書(shū)寫(xiě)等方面,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并成功地完成書(shū)面表達。

  4、采用投影儀、多媒體等現代教學(xué)手段,增大教學(xué)容量和直觀(guān)性。

  在學(xué)法上:

  1、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和解決問(wèn)題的能力。

  2、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的一個(gè)飛躍。

  三、 教學(xué)過(guò)程

  教學(xué)

  環(huán)節

  教 學(xué) 過(guò) 程

  設 計 意 圖

  問(wèn)題

  情境

 。úシ胖醒腚娨暸_天氣預報的音樂(lè ))

  滿(mǎn)足在定義域上的單調性的討論。

  2、重視學(xué)生發(fā)現的過(guò)程。如:充分暴露學(xué)生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過(guò)程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認知結構升華、發(fā)現的過(guò)程。

  3、重視學(xué)生的動(dòng)手實(shí)踐過(guò)程。通過(guò)對定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運用定義。

  4、重視課堂問(wèn)題的設計。通過(guò)對問(wèn)題的設計,引導學(xué)生解決問(wèn)題。

高中數學(xué)說(shuō)課稿 篇6

  今天我說(shuō)課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對本課的教學(xué)設計進(jìn)行說(shuō)明。

  一、說(shuō)教材

  1、本節在教材中的地位和作用:

  本節是棱柱的后續內容,又是學(xué)習球的必要基礎。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎知識,同時(shí)培養學(xué)生猜想、類(lèi)比、比較、轉化的能力。著(zhù)名的生物學(xué)家達爾文說(shuō):“最有價(jià)值的知識是關(guān)于方法和能力的知識”,因此,應該利用這節課培養學(xué)生學(xué)習方法、提高學(xué)習能力。

  2. 教學(xué)目標確定:

  (1)能力訓練要求

 、偈箤W(xué)生了解棱錐及其底面、側面、側棱、頂點(diǎn)、高的概念。

 、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。

  (2)德育滲透目標

 、倥囵B學(xué)生善于通過(guò)觀(guān)察分析實(shí)物形狀到歸納其性質(zhì)的能力。

 、谔岣邔W(xué)生對事物的感性認識到理性認識的能力。

 、叟囵B學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀(guān)點(diǎn)。

  3. 教學(xué)重點(diǎn)、難點(diǎn)確定:

  重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。

  難 點(diǎn):培養學(xué)生善于比較,從比較中發(fā)現事物與事物的區別。

  二、說(shuō)教學(xué)方法和手段

  1、教法:

  “以學(xué)生參與為標志,以啟迪學(xué)生思維,培養學(xué)生創(chuàng )新能力為核心”。

  在教學(xué)中根據高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設置一些啟發(fā)性題目,采用啟發(fā)式誘導法,講練結合,發(fā)揮教師主導作用,體現學(xué)生主體地位。

  2、教學(xué)手段:

  根據《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節課概念性強,思維量大,整節課以啟發(fā)學(xué)生觀(guān)察思考、分析討論為主,采用“多媒體引導點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學(xué)生沿著(zhù)積極的思維方向,逐步達到即定的教學(xué)目標,發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識,掌握規律、主動(dòng)發(fā)現、積極探索。

  三、說(shuō)學(xué)法:

  這節課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發(fā)學(xué)生反復思考,不斷內化成為自己的認知結構。

  四、 學(xué)程序:

  [復習引入新課]

  1.棱柱的性質(zhì):

 。1)側棱都相等,側面是平行四邊形

 。2)兩個(gè)底面與平行于底面的截面是全等的多邊形

 。3)過(guò)不相鄰的兩條側棱的截面是平行四邊形

  2.幾個(gè)重要的四棱柱:

  平行六面體、直平行六面體、長(cháng)方體、正方體

  思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì )是什么樣的體呢?

  [講授新課]

  1、棱錐的基本概念

 。1).棱錐及其底面、側面、側棱、頂點(diǎn)、高、對角面的概念

 。2).棱錐的表示方法、分類(lèi)

  2、棱錐的性質(zhì)

  (1). 截面性質(zhì)定理:

  如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

  證明:(略)

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

  的側面積比也等于它們對應高的平方比、等于它們的底面積之比。

  (2).正棱錐的定義及基本性質(zhì):

  正棱錐的定義:

 、俚酌媸钦噙呅

 、陧旤c(diǎn)在底面的射影是底面的中心

 、俑鱾壤庀嗟,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

 、诶忮F的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;

  棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形

  引申:

 、僬忮F的側棱與底面所成的角都相等;

 、谡忮F的側面與底面所成的二面角相等;

  (3)正棱錐的各元素間的關(guān)系

  下面我們結合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。

  引申:

 、儆^(guān)察圖中三棱錐S-OBM的側面三角形狀有何特點(diǎn)?

 。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)

 、谌舴謩e假設正棱錐的高SO= h,斜高SM= h’,底面邊長(cháng)的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過(guò)三角形得出以上各元素間的關(guān)系式。

 。ㄕn后思考題)

  [例題分析]

  例1.若一個(gè)正棱錐每一個(gè)側面的頂角都是600,則這個(gè)棱錐一定不是( )

  A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

 。ù鸢福篋)

  例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過(guò)SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。

  ﹙解析及圖略﹚

  例3.已知正四棱錐的棱長(cháng)和底面邊長(cháng)均為a,求:

 。1)側面與底面所成角α的余弦(2)相鄰兩個(gè)側面所成角β的余弦

  ﹙解析及圖略﹚

  [課堂練習]

  1、 知一個(gè)正六棱錐的高為h,側棱為L(cháng),求它的底面邊長(cháng)和斜高。

  ﹙解析及圖略﹚

  2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。

  ﹙解析及圖略﹚

  [課堂小結]

  一:棱錐的基本概念及表示、分類(lèi)

  二:棱錐的性質(zhì)

  截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。

  2.正棱錐的定義及基本性質(zhì)

  正棱錐的定義:

 、俚酌媸钦噙呅

 、陧旤c(diǎn)在底面的射影是底面的中心

 。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高

  相等,它們叫做正棱錐的斜高;

 。2)棱錐的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形

  引申: ①正棱錐的側棱與底面所成的角都相等;

 、谡忮F的側面與底面所成的二面角相等;

 、壅忮F中各元素間的關(guān)系

  [課后作業(yè)]

  1:課本P52 習題9.8 : 2、 4

  2:課時(shí)訓練:訓練一

高中數學(xué)說(shuō)課稿 篇7

  一、教學(xué)目標

  (一)知識與技能

  1、進(jìn)一步熟練掌握求動(dòng)點(diǎn)軌跡方程的基本方法。

  2、體會(huì )數學(xué)實(shí)驗的直觀(guān)性、有效性,提高幾何畫(huà)板的操作能力。

  (二)過(guò)程與方法

  1、培養學(xué)生觀(guān)察能力、抽象概括能力及創(chuàng )新能力。

  2、體會(huì )感性到理性、形象到抽象的思維過(guò)程。

  3、強化類(lèi)比、聯(lián)想的方法,領(lǐng)會(huì )方程、數形結合等思想。

  (三)情感態(tài)度價(jià)值觀(guān)

  1、感受動(dòng)點(diǎn)軌跡的動(dòng)態(tài)美、和諧美、對稱(chēng)美

  2、樹(shù)立競爭意識與合作精神,感受合作交流帶來(lái)的成功感,樹(shù)立自信心,激發(fā)提出問(wèn)題和解決問(wèn)題的勇氣

  二、教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):運用類(lèi)比、聯(lián)想的方法探究不同條件下的軌跡

  教學(xué)難點(diǎn):圖形、文字、符號三種語(yǔ)言之間的過(guò)渡

  三、、教學(xué)方法和手段

  【教學(xué)方法】觀(guān)察發(fā)現、啟發(fā)引導、合作探究相結合的教學(xué)方法。啟發(fā)引導學(xué)生積極思考并對學(xué)生的思維進(jìn)行調控,幫助學(xué)生優(yōu)化思維過(guò)程,在此基礎上,提供給學(xué)生交流的機會(huì ),幫助學(xué)生對自己的思維進(jìn)行組織和澄清,并能清楚地、準確地表達自己的數學(xué)思維。

  【教學(xué)手段】利用網(wǎng)絡(luò )教室,四人一機,多媒體教學(xué)手段。通過(guò)上述教學(xué)手段,一方面:再現知識產(chǎn)生的過(guò)程,通過(guò)多媒體動(dòng)態(tài)演示,突破學(xué)生在舊知和新知形成過(guò)程中的障礙(靜態(tài)到動(dòng)態(tài));另一方面:節省了時(shí)間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習的興趣。

  【教學(xué)模式】重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng )設情境、激發(fā)情感、主動(dòng)發(fā)現、主動(dòng)發(fā)展”。

【實(shí)用的高中數學(xué)說(shuō)課稿范文匯總7篇】相關(guān)文章:

實(shí)用的高中數學(xué)說(shuō)課稿范文匯總八篇08-20

實(shí)用的高中數學(xué)說(shuō)課稿范文匯總10篇08-19

實(shí)用的高中數學(xué)說(shuō)課稿范文匯總5篇08-18

實(shí)用的高中數學(xué)說(shuō)課稿范文匯總9篇08-18

實(shí)用的高中數學(xué)說(shuō)課稿范文匯總6篇08-18

實(shí)用的高中數學(xué)說(shuō)課稿范文匯總五篇08-16

實(shí)用的高中數學(xué)說(shuō)課稿范文匯總8篇08-15

實(shí)用的高中數學(xué)說(shuō)課稿范文匯總九篇06-26

實(shí)用的高中數學(xué)說(shuō)課稿匯總八篇07-31

激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频