高中數學(xué)說(shuō)課稿
作為一無(wú)名無(wú)私奉獻的教育工作者,就難以避免地要準備說(shuō)課稿,借助說(shuō)課稿我們可以快速提升自己的教學(xué)能力。如何把說(shuō)課稿做到重點(diǎn)突出呢?以下是小編為大家收集的高中數學(xué)說(shuō)課稿,希望對大家有所幫助。
高中數學(xué)說(shuō)課稿1
一、教材分析
本節內容是等差數列(第一課時(shí))的內容,屬于數與代數領(lǐng)域的知識。本節是數列課程的新授課,為后面等比數列以及數列求和的知識點(diǎn)作基礎。數列是高中數學(xué)重要內容之一,它有著(zhù)廣泛的實(shí)際應用。等差數列是在學(xué)生學(xué)習了數列的有關(guān)概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進(jìn)一步深入和拓廣。同時(shí)等差數列也為今后學(xué)習等比數列提供了學(xué)習對比的依據。在數學(xué)思想的方面,數列在處理數與數之間的關(guān)系中,更多地培養了學(xué)生運用函數與函數關(guān)系的思想。
二、教學(xué)目標
根據課程標準的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標
。1)在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過(guò)程及思想。
。2)在能力上:培養學(xué)生觀(guān)察、分析、歸納、推理的能力;以形象的實(shí)際例子作為學(xué)生理解與練習的模板,使學(xué)生在不斷實(shí)踐中鞏固學(xué)習到的'知識;通過(guò)階梯性練習,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
。3)在情感上:通過(guò)對等差數列在實(shí)際問(wèn)題中的研究,培養學(xué)生主動(dòng)探索、勇于發(fā)現的求知精神;養成細心觀(guān)察、認真分析、善于總結的良好思維習慣。
3、教學(xué)重點(diǎn)和難點(diǎn)
根據課程標準的要求我確定本節課的教學(xué)重點(diǎn)為: ①等差數列的概念。
、诘炔顢盗械耐椆降耐茖н^(guò)程及應用。
三、教學(xué)方法分析:
對于高中學(xué)生,知識經(jīng)驗比較貧乏,雖然他們的智力發(fā)展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以本堂課將從實(shí)際中的問(wèn)題出發(fā),以學(xué)生日常生活中較易接觸的一些數學(xué)問(wèn)題,籍此啟發(fā)學(xué)生對于數列知識點(diǎn)的理解。本節課大多采用啟發(fā)式、討論式的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數學(xué)實(shí)踐活動(dòng),以獨立思考和相互交流的形式,在教師的指導下發(fā)現、分析和解決問(wèn)題,并學(xué)會(huì )將數學(xué)知識運用到實(shí)際問(wèn)題的解決中。
四、教學(xué)過(guò)程
通過(guò)復習上節課數列的定義來(lái)引入幾個(gè)數列
1)0,5,10,15,20,25.....2)18,15.5,13,10.5,8,4.5 3) 48,53,58,63,68.....通過(guò)這3個(gè)數列,初步認識等差數列的特征,為后面的概念學(xué)習建立基礎。由學(xué)生觀(guān)察第一個(gè)數列與第三個(gè)數列的特點(diǎn),并與第二個(gè)做對比,引出等差數列的概念。
(二)新課探究
1、由引入自然的給出等差數列的概念:
定義:如果一個(gè)數列,從第二項開(kāi)始它的每一項與前一項之差都等于同一常數,這個(gè)數列就叫等差數列,這個(gè)常數叫做等差數列的公差,通常用字母d來(lái)表示。強調:
、 “從第二項起”滿(mǎn)足條件;
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個(gè)常數;
在理解概念的基礎上,由學(xué)生將等差數列的文字語(yǔ)言轉化為數學(xué)語(yǔ)言,歸納出數學(xué)表達式:
an+1-an=d (n≥1)
同時(shí)為了配合概念的理解,引導學(xué)生講本不是等差數列的第二組數列修改成等差數列。并由觀(guān)察三組數列的不同特點(diǎn),由此強調:公差可以是正數、負數,并再舉出特例數列1,1,1,1,1,1,1......說(shuō)明公差也可以是0。
2、第二個(gè)重點(diǎn)部分為等差數列的通項公式
在歸納等差數列通項公式中,我采用討論式的教學(xué)方法。給出等差數列的首項,公差d,運用求數列通項公式的辦法------迭加法:整個(gè)過(guò)程通過(guò)互相討論的方式既培養了學(xué)生的協(xié)作意識又化解了教學(xué)難點(diǎn)。
若一等差數列{an }的首項是a1,公差是d,則據其定義可得:
a2 – a1 =d a3 – a2 =d a4 – a3 =d …… an – an-1=d將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d(1)
當n=1時(shí),(1)也成立,
所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數列{an}的通項公式。對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項公式。
在這里通過(guò)運用迭加法這一數學(xué)思想,便于學(xué)生從概念理解的過(guò)程過(guò)渡到運用概念的過(guò)程。
接著(zhù)舉例說(shuō)明:若一個(gè)等差數列{an}的首項是1,公差是2,得出這個(gè)數列的通項公式是:an=1+(n-1)×2,
即an=2n-1以此來(lái)鞏固等差數列通項公式運用。
。ㄈ⿷门e例
現實(shí)生活中,以學(xué)生較為熟悉的iphone手機的數據作為例子。觀(guān)察Iphone手機的發(fā)布時(shí)間,iphone第一代發(fā)布于20xx年,第二代發(fā)布于20xx年,第三代發(fā)布于20xx年,第四代發(fā)布于20xx年,F在第六代發(fā)布于今年20xx年。首先,讓學(xué)生觀(guān)察從04年到10年每?jì)纱鷌phone發(fā)布的間隔時(shí)間,讓學(xué)生自行尋找規律,并在此基礎上讓學(xué)生估測第五代iphone的發(fā)布時(shí)間,并驗證第五代iphone發(fā)布于20xx年。同時(shí),再讓學(xué)生預測在未來(lái),下一部iphone發(fā)布的時(shí)間,是學(xué)生體驗到將數學(xué)知識運用到實(shí)際中的方法與步驟。為了加深聯(lián)系,再給出了每代iphone的價(jià)格:iphone1 4299;iphone2 4800;iphone3 5299;iphone4 5988;iphone5 6300。在給出的數據上,將價(jià)格隨時(shí)間的變化以坐標軸的形式作圖表示出來(lái),讓學(xué)生觀(guān)察到雖然這些數據非等差,但是可以大致變?yōu)榈炔畹闹本(xiàn)圖像,讓學(xué)生體會(huì )到“擬合數據”的思想。在此基礎上,讓學(xué)生進(jìn)行練習,預測14年如今iphone6的上市價(jià)格為6888元,并與學(xué)生通過(guò)數列進(jìn)行推理的價(jià)格進(jìn)行對比,讓學(xué)生對自己在實(shí)踐中解決問(wèn)題的過(guò)程中找到一定的認同感。
五、歸納小結
提問(wèn)學(xué)生,總結這節課的收獲
1、等差數列的概念及數學(xué)表達式,并強調關(guān)鍵字:從第二項開(kāi)始,它的每一項與前一項之差都等于同一常數。
2、等差數列的通項公式an= a1+(n-1) d
3、將讓學(xué)生在實(shí)踐中了解,將數列知識點(diǎn)運用到實(shí)際中的方法。
4、在課末提出啟發(fā)性問(wèn)題,若是有人將每一部iphone都買(mǎi)入,那他一共花費了多少錢(qián)?借此引出了下一節,等差數列求和的知識點(diǎn)。讓學(xué)生嘗試自行去思考這樣的問(wèn)題。
5、布置作業(yè)
高中數學(xué)說(shuō)課稿2
一、教材分析
1、教材地位和作用
二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時(shí)它也是空間中線(xiàn)線(xiàn)、線(xiàn)面、面面垂直關(guān)系的一個(gè)匯集點(diǎn)。搞好本節課的學(xué)習,對學(xué)生系統地掌握直線(xiàn)和平面的知識乃至于創(chuàng )新能力的培養都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運用。
2、教學(xué)目標
根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標:
認知目標:
。1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運用它們解決實(shí)際問(wèn)題。
。2)進(jìn)一步培養學(xué)生把空間問(wèn)題轉化為平面問(wèn)題的化歸思想。
能力目標:以培養學(xué)生的創(chuàng )新能力和動(dòng)手能力為重點(diǎn)。
(1)突出對類(lèi)比、直覺(jué)、發(fā)散等探索性思維的培養,從而提高學(xué)生的創(chuàng )新能力。
。2)通過(guò)對圖形的觀(guān)察、分析、比較和操作來(lái)強化學(xué)生的動(dòng)手操作能力。
教育目標:
(1)使學(xué)生認識到數學(xué)知識來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,從而增強學(xué)生應用數學(xué)的意識。
(2)通過(guò)揭示線(xiàn)線(xiàn)、線(xiàn)面、面面之間的內在聯(lián)系,進(jìn)一步培養學(xué)生聯(lián)系的辯證唯物主義觀(guān)點(diǎn)。
3、本節課教學(xué)的重、難點(diǎn)是兩個(gè)過(guò)程的教學(xué):
。1)二面角的平面角概念的形成過(guò)程。
。2)尋找二面角的平面角的方法的發(fā)現過(guò)程。
其理由如下:
。1)現行教材省略了概念的形成過(guò)程和方法的發(fā)現過(guò)程,沒(méi)有反映出科學(xué)認識產(chǎn)生的辯證過(guò)程,與學(xué)生的認知規律相悖,給學(xué)生的學(xué)習造成了很大的困難,非常不利于學(xué)生創(chuàng )新能力、獨立思考能力以及動(dòng)手能力的培養。
。2)現代認知學(xué)認為,揭示知識的形成過(guò)程,對學(xué)生學(xué)習新知識是十分必要的。同時(shí)通過(guò)展現知識的發(fā)生、發(fā)展過(guò)程,給學(xué)生思考、探索、發(fā)現和創(chuàng )新提供了最大的空間,可以使學(xué)生在整個(gè)教學(xué)過(guò)程中始終處于積極的思維狀態(tài),進(jìn)而培養他們獨立思考和大膽求索的精神,這樣才能全面落實(shí)本節課的教學(xué)目標。
二、指導思想和教學(xué)方法
在設計本教學(xué)時(shí),主要貫徹了以下兩個(gè)思想:
1、樹(shù)立以學(xué)生發(fā)展為本的思想。通過(guò)構建以學(xué)習者為中心、有利于學(xué)生主體精神、創(chuàng )新能力健康發(fā)展的寬松的教學(xué)環(huán)境,提供學(xué)生自主探索和動(dòng)手操作的機會(huì ),鼓勵他們創(chuàng )新思考,親身參與概念和方法的形成過(guò)程。2、堅持協(xié)同創(chuàng )新原則。把教材創(chuàng )新、教法創(chuàng )新以及學(xué)法創(chuàng )新有機地統一起來(lái),因為只有教師創(chuàng )新地教,學(xué)生創(chuàng )新地學(xué),才能營(yíng)建一個(gè)有利于創(chuàng )新能力培養的良好環(huán)境。
首先是教材創(chuàng )新。
。1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類(lèi)比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開(kāi)放的、探索性的發(fā)現過(guò)程。
。2)在引入定義之后,例題講解之前,引導學(xué)生發(fā)現尋找二面角的平面角的方法,為例題做好鋪墊。
。3)重新編排例題。
其次是教法創(chuàng )新。采用多種創(chuàng )新的教學(xué)方法,包括問(wèn)題解決法、類(lèi)比發(fā)現法、研究發(fā)現法等教學(xué)方法。
這組教學(xué)方法的特點(diǎn)是教師通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生逐步發(fā)現知識的形成過(guò)程,使教學(xué)活動(dòng)真正建立在學(xué)生自主活動(dòng)和探索的.基礎上,著(zhù)力培養學(xué)生的創(chuàng )新能力。
這組教學(xué)方法使得學(xué)生在解決問(wèn)題的過(guò)程中學(xué)數學(xué),用數學(xué),不僅強調動(dòng)腦思考,而且強調動(dòng)手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過(guò)學(xué)生全面、多樣的主體實(shí)踐活動(dòng),促進(jìn)他們獨立思考能力、動(dòng)手能力等多方面素質(zhì)的整體發(fā)展。
教學(xué)手段的現代化有利于提高課堂效益,有利于創(chuàng )新人才的培養,根據本節課的教學(xué)需要,確定利用《幾何畫(huà)板》制作課件來(lái)輔助教學(xué);此外,為加強直觀(guān)教學(xué),教師可預先做好一些模型。
最后是學(xué)法創(chuàng )新。意在指導學(xué)生會(huì )創(chuàng )新地學(xué)。
1、樂(lè )學(xué):在整個(gè)學(xué)習過(guò)程中學(xué)生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng )新意識,全身心地投入到學(xué)習中去,成為學(xué)習的主人。
2、學(xué)會(huì ):在掌握基礎知識的同時(shí),學(xué)生要注意領(lǐng)會(huì )化歸、類(lèi)比聯(lián)想等數學(xué)思想方法的運用,學(xué)會(huì )建立完善的認知結構。
3、會(huì )學(xué):通過(guò)自已親身參與,學(xué)生要領(lǐng)會(huì )復習類(lèi)比和深入研究這兩種知識創(chuàng )新的方法,從而既學(xué)到知識,又學(xué)會(huì )創(chuàng )新。
三、程序安排
。ㄒ唬、二面角
1、揭示概念產(chǎn)生背景。
心理學(xué)研究表明,當學(xué)生明確數學(xué)概念的學(xué)習目的和意義時(shí),就會(huì )對概念的學(xué)習產(chǎn)生濃厚的興趣。創(chuàng )設問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng )新意識,營(yíng)造了創(chuàng )新思維的氛圍。
問(wèn)題情境1、我們是如何定量研究?jì)善叫衅矫娴南鄬ξ恢玫模?/p>
問(wèn)題情境2、立幾中常用距離和角來(lái)定量描述兩個(gè)元素之間的相對位置,為什么不引入兩平行平面所成的角?
問(wèn)題情境3、我們應如何定量研究?jì)蓚(gè)相交平面之間的相對位置呢?
通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認知結構,為知識的創(chuàng )新做好了準備;同時(shí)也讓學(xué)生領(lǐng)會(huì )到,二面角這一概念的產(chǎn)生是因為研究?jì)上嘟黄矫娴南鄬ξ恢玫男枰,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動(dòng)的展開(kāi)。
2、展現概念形成過(guò)程。
高中數學(xué)說(shuō)課稿3
一、教學(xué)目標
(一)知識與技能
1、進(jìn)一步熟練掌握求動(dòng)點(diǎn)軌跡方程的基本方法。
2、體會(huì )數學(xué)實(shí)驗的直觀(guān)性、有效性,提高幾何畫(huà)板的操作能力。
(二)過(guò)程與方法
1、培養學(xué)生觀(guān)察能力、抽象概括能力及創(chuàng )新能力。
2、體會(huì )感性到理性、形象到抽象的思維過(guò)程。
3、強化類(lèi)比、聯(lián)想的方法,領(lǐng)會(huì )方程、數形結合等思想。
(三)情感態(tài)度價(jià)值觀(guān)
1、感受動(dòng)點(diǎn)軌跡的動(dòng)態(tài)美、和諧美、對稱(chēng)美
2、樹(shù)立競爭意識與合作精神,感受合作交流帶來(lái)的成功感,樹(shù)立自信心,激發(fā)提出問(wèn)題和解決問(wèn)題的勇氣
二、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):運用類(lèi)比、聯(lián)想的方法探究不同條件下的軌跡
教學(xué)難點(diǎn):圖形、文字、符號三種語(yǔ)言之間的過(guò)渡
三、、教學(xué)方法和手段
【教學(xué)方法】觀(guān)察發(fā)現、啟發(fā)引導、合作探究相結合的教學(xué)方法。啟發(fā)引導學(xué)生積極思考并對學(xué)生的思維進(jìn)行調控,幫助學(xué)生優(yōu)化思維過(guò)程,在此基礎上,提供給學(xué)生交流的機會(huì ),幫助學(xué)生對自己的思維進(jìn)行組織和澄清,并能清楚地、準確地表達自己的.數學(xué)思維。
【教學(xué)手段】利用網(wǎng)絡(luò )教室,四人一機,多媒體教學(xué)手段。通過(guò)上述教學(xué)手段,一方面:再現知識產(chǎn)生的過(guò)程,通過(guò)多媒體動(dòng)態(tài)演示,突破學(xué)生在舊知和新知形成過(guò)程中的障礙(靜態(tài)到動(dòng)態(tài));另一方面:節省了時(shí)間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習的興趣。
【教學(xué)模式】重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng )設情境、激發(fā)情感、主動(dòng)發(fā)現、主動(dòng)發(fā)展”。
高中數學(xué)說(shuō)課稿4
一、教材分析
函數的單調性是函數的重要性質(zhì).從知識的網(wǎng)絡(luò )結構上看,函數的單調性既是函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性等內容的基礎,在研究各種具體函數的性質(zhì)和應用、解決各種問(wèn)題中都有著(zhù)廣泛的應用.函數單調性概念的建立過(guò)程中蘊涵諸多數學(xué)思想方法,對于進(jìn)一步探索、研究函數的其他性質(zhì)有很強的啟發(fā)與示范作用.
根據函數單調性在整個(gè)教材內容中的地位與作用,本節課教學(xué)應實(shí)現如下教學(xué)目標:
知識與技能使學(xué)生理解函數單調性的概念,初步掌握判別函數單調性的方法;
過(guò)程與方法引導學(xué)生通過(guò)觀(guān)察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
情感態(tài)度與價(jià)值觀(guān)在函數單調性的學(xué)習過(guò)程中,使學(xué)生體驗數學(xué)的科學(xué)價(jià)值和應用價(jià)值,培養學(xué)生善于觀(guān)察、勇于探索的良好習慣和嚴謹的科學(xué)態(tài)度。
根據上述教學(xué)目標,本節課的教學(xué)重點(diǎn)是函數單調性的概念形成和初步運用.雖然高一學(xué)生已經(jīng)有一定的抽象思維能力,但函數單調性概念對他們來(lái)說(shuō)還是比較抽象的。因此,本節課的學(xué)習難點(diǎn)是函數單調性的概念形成。
二、教法學(xué)法
為了實(shí)現本節課的教學(xué)目標,在教法上我采取了
1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)學(xué)生求知欲,調動(dòng)學(xué)生主體參與的積極性。
2、在形成概念的過(guò)程中,緊扣概念中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,正確地形成概念。
3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并順利地完成書(shū)面表達。
在學(xué)法上我重視了:
1、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和分析解決問(wèn)題的能力。
三、教學(xué)過(guò)程
函數單調性的概念產(chǎn)生和形成是本節課的難點(diǎn),為了突破這一難點(diǎn),在教學(xué)設計上采用了下列四個(gè)環(huán)節。
。ㄒ唬﹦(chuàng )設情境,提出問(wèn)題
。▎(wèn)題情境)(播放中央電視臺天氣預報的音樂(lè ))。如圖為某地區20xx年元旦這一天24小時(shí)內的氣溫變化圖,觀(guān)察這張氣溫變化圖:
[教師活動(dòng)]引導學(xué)生觀(guān)察圖象,提出問(wèn)題:
問(wèn)題1:說(shuō)出氣溫在哪些時(shí)段內是逐步升高的或下降的?
問(wèn)題2:怎樣用數學(xué)語(yǔ)言刻畫(huà)上述時(shí)段內“隨著(zhù)時(shí)間的增大氣溫逐漸升高”這一特征?
[設計意圖]問(wèn)題是數學(xué)的心臟,問(wèn)題是學(xué)生思維的開(kāi)始,問(wèn)題是學(xué)生興趣的開(kāi)始。這里,通過(guò)兩個(gè)問(wèn)題,引發(fā)學(xué)生的進(jìn)一步學(xué)習的好奇心。
。ǘ┨骄堪l(fā)現建構概念
[學(xué)生活動(dòng)]對于問(wèn)題1,學(xué)生容易給出答案。問(wèn)題2對學(xué)生來(lái)說(shuō)較為抽象,不易回答。
[教師活動(dòng)]為了引導學(xué)生解決問(wèn)題2,先讓學(xué)生觀(guān)察圖象,通過(guò)具體情形,例如,“t1=8時(shí),f(t1)=1,t2=10時(shí),f(t2)=4”這一情形進(jìn)行描述.引導學(xué)生回答:對于自變量8<10,對應的函數值有1<4。舉幾個(gè)例子表述一下。然后給出一個(gè)鋪墊性的問(wèn)題:結合圖象,請你用自己的語(yǔ)言,描述“在區間[4,14]上,氣溫隨時(shí)間增大而升高”這一特征。
在學(xué)生對于單調增函數的特征有一定直觀(guān)認識時(shí),進(jìn)一步提出:
問(wèn)題3:對于任意的t1、t2∈[4,16]時(shí),當t1 。╰1) [學(xué)生活動(dòng)]通過(guò)觀(guān)察圖象、進(jìn)行實(shí)驗(計算機)、正反對比,發(fā)現數量關(guān)系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調增函數概念的本質(zhì)屬性,并嘗試用符號語(yǔ)言進(jìn)行初步的表述。 [教師活動(dòng)]為了獲得單調增函數概念,對于不同學(xué)生的表述進(jìn)行分析、歸類(lèi),引導學(xué)生得出關(guān)鍵詞“區間內”、“任意”、“當時(shí),都有”。告訴他們“把滿(mǎn)足這些條件的函數稱(chēng)之為單調增函數”,之后由他們集體給出單調增函數概念的數學(xué)表述.提出: 問(wèn)題4:類(lèi)比單調增函數概念,你能給出單調減函數的概念嗎? 最后完成單調性和單調區間概念的整體表述。 [設計意圖]數學(xué)概念的形成來(lái)自解決實(shí)際問(wèn)題和數學(xué)自身發(fā)展的'需要。但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習活動(dòng)中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷“數學(xué)化”、“再創(chuàng )造”的活動(dòng)過(guò)程。剛升入高一的學(xué)生已經(jīng)具備了一定的幾何形象思維能力,但抽象思維能力不強。從日常的描述性語(yǔ)言概念升華到用數學(xué)符號語(yǔ)言精確刻畫(huà)概念是本節課的難點(diǎn)。 。ㄈ┳晕覈L試運用概念 1.為了理解函數單調性的概念,及時(shí)地進(jìn)行運用是十分必要的。 [教師活動(dòng)]問(wèn)題5:(1)你能找出氣溫圖中的單調區間嗎?(2)你能說(shuō)出你學(xué)過(guò)的函數的單調區間嗎?請舉例說(shuō)明。 [學(xué)生活動(dòng)]對于(1),學(xué)生容易看出:氣溫圖中分別有兩個(gè)單調減區間和一個(gè)單調增區間.對于(2),學(xué)生容易舉出具體函數如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫(huà)出函數的草圖,根據函數的圖象說(shuō)出函數的單調區間。 [教師活動(dòng)]利用實(shí)物投影儀,投影出學(xué)生畫(huà)出的草圖和標出的單調區間,并指出學(xué)生回答問(wèn)題時(shí)可能出現的錯誤,如:在敘述函數的單調區間時(shí)寫(xiě)成并集。 [設計意圖]在學(xué)生已有認知結構的基礎上提出新問(wèn)題,使學(xué)生明了,過(guò)去所研究的函數的相關(guān)特征,就是現在所學(xué)的函數的單調性,從而加深對函數單調性概念的理解。 2.對于給定圖象的函數,借助于圖象,我們可以直觀(guān)地判定函數的單調性,也能找到單調區間.而對于一般的函數,我們怎樣去判定函數的單調性呢? [教師活動(dòng)]問(wèn)題6:證明在區間(0,+∞)上是單調減函數。 [學(xué)生活動(dòng)]學(xué)生相互討論,嘗試自主進(jìn)行函數單調性的證明,可能會(huì )出現不知如何比較f(x1)與f(x2)的大小、不會(huì )正確表述、變形不到位或根本不會(huì )變形等困難。 [教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式。 [學(xué)生活動(dòng)]學(xué)生自我歸納證明函數單調性的一般方法和操作流程:取值作差變形定號判斷。 [設計意圖]有效的數學(xué)學(xué)習過(guò)程,不能單純的模仿與記憶,數學(xué)思想的領(lǐng)悟和學(xué)習過(guò)程更是如此.利用學(xué)生自己提出的問(wèn)題,讓學(xué)生在解題過(guò)程中親身經(jīng)歷和實(shí)踐體驗,師生互動(dòng)學(xué)習,生生合作交流,共同探究。 。ㄋ模┗仡櫡此忌罨拍 [教師活動(dòng)]給出一組題: 1、定義在R上的單調函數f(x)滿(mǎn)足f(2)>f(1),那么函數f(x)是R上的單調增函數還是單調減函數? 2、若定義在R上的單調減函數f(x)滿(mǎn)足f(1+a) [學(xué)生活動(dòng)]學(xué)生互相討論,探求問(wèn)題的解答和問(wèn)題的解決過(guò)程,并通過(guò)問(wèn)題,歸納總結本節課的內容和方法。 [設計意圖]通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對函數單調性認識的再次深化。 [教師活動(dòng)]作業(yè)布置: 。1)閱讀課本P34-35例2 。2)書(shū)面作業(yè): 必做:教材P431、7、11 選做:二次函數y=x2+bx+c在[0,+∞)是增函數,滿(mǎn)足條件的實(shí)數的值唯一嗎? 探究:函數y=x在定義域內是增函數,函數有兩個(gè)單調減區間,由這兩個(gè)基本函數構成的函數的單調性如何?請證明你得到的結論。 [設計意圖]通過(guò)兩方面的作業(yè),使學(xué)生養成先看書(shū),后做作業(yè)的習慣;诤瘮祮握{性?xún)热莸奶攸c(diǎn)及學(xué)生實(shí)際,對課后書(shū)面作業(yè)實(shí)施分層設置,安排基本練習題、鞏固理解題和深化探究題三層。學(xué)生完成作業(yè)的形式為必做、選做和探究三種,使學(xué)生在完成必修教材基本學(xué)習任務(wù)的同時(shí),拓展自主發(fā)展的空間,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習氛圍的形成。 四、教學(xué)評價(jià) 學(xué)生學(xué)習的結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。教師應當高度重視學(xué)生學(xué)習過(guò)程中的參與度、自信心、團隊精神、合作意識、獨立思考習慣的養成、數學(xué)發(fā)現的能力,以及學(xué)習的興趣和成就感。學(xué)生熟悉的問(wèn)題情境可以激發(fā)學(xué)生的學(xué)習興趣,問(wèn)題串的設計可以讓更多的學(xué)生主動(dòng)參與,師生對話(huà)可以實(shí)現師生合作,適度的研討可以促進(jìn)生生交流,以及團隊精神,知識的生成和問(wèn)題的解決可以讓學(xué)生感受到成功的喜悅,縝密的思考可以培養學(xué)生獨立思考的習慣。讓學(xué)生在教師評價(jià)、學(xué)生評價(jià)以及自我評價(jià)的過(guò)程中體驗知識的積累、探索能力的長(cháng)進(jìn)和思維品質(zhì)的提高,為學(xué)生的可持續發(fā)展打下基礎。 各位專(zhuān)家、評委:大家好! 今天我說(shuō)課的題目是×××。下面我將從教材分析、教法分析、學(xué)法分析、過(guò)程分析四個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。 一、教材分析 (一)教材地位與作用 本節課是新人教A版必修×××的一節內容,它與×××有著(zhù)密切聯(lián)系,是在學(xué)生學(xué)習了×××的基礎上的延伸(進(jìn)一步)學(xué)習,是繼續深入學(xué)習×××知識和解決×××問(wèn)題的重要基礎和有力工具。本節知識反映了觀(guān)察、分析、歸納、猜想等多種數學(xué)思維方式,蘊涵著(zhù)豐富的解題方法和策略,對培養學(xué)生的創(chuàng )新意識和提高學(xué)生的思維品質(zhì)有著(zhù)重要的作用。 (二)教學(xué)目標 1.知識與技能目標:掌握×××方法,能較熟練應用×××解決×××問(wèn)題。 2.能力與方法目標:在對×××的探究和應用中,使學(xué)生體會(huì )數形結合的數學(xué)方法,體驗從特殊到一般的研究方法,培養學(xué)生類(lèi)比思維能力,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。 3.情感態(tài)度與價(jià)值觀(guān)目標: 通過(guò)×××,激發(fā)學(xué)生探究的興趣和欲望,增強學(xué)生學(xué)習數學(xué)的自信心,培養學(xué)生嚴謹、科學(xué)的態(tài)度和勇于提出問(wèn)題、分析問(wèn)題的習慣。 (三)教學(xué)重點(diǎn)、難點(diǎn): 1.教學(xué)重點(diǎn):××× 2.教學(xué)難點(diǎn):××× 二、教法分析 “數學(xué)是思維的體操”。培養學(xué)生的思維能力,一直都是數學(xué)教學(xué)的基本要求。知識的傳授固然重要,但學(xué)生掌握知識發(fā)生和深化的思維過(guò)程更加重要。所以在教學(xué)過(guò)程中,為了更有效地把握重點(diǎn),更到位的突破難點(diǎn),本人決心在教學(xué)中落實(shí)“生本教育”理念,以學(xué)生獨立自主和合作交流為前提,恰到好處的利用多媒體,注重啟迪學(xué)生思維,引導學(xué)生嘗試,確保學(xué)生在求知中不但要學(xué)有所得,更要學(xué)有所悟。 特別的,為了讓學(xué)生×××,我采用了設計了變式題組,通過(guò)×××來(lái)促進(jìn)學(xué)生新的認知結構的形成。 三、學(xué)法分析 我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導,F在,新課改已形成由點(diǎn)到面,逐步鋪開(kāi)的良好態(tài)勢。其中,新課改的重點(diǎn)之一就是轉變學(xué)生的學(xué)習方式,具體目標之一是“改變課程實(shí)施過(guò)于強調接受學(xué)習、死記硬背、機械訓練的現狀,倡導學(xué)生主動(dòng)參與、樂(lè )于探究、勤于動(dòng)手,培養學(xué)生搜集和處理信息的能力、獲取新知識的能力、分析和解決問(wèn)題的能力以及交流與合作的能力”。因此,一定要落實(shí)“生本教育”理念,在課堂上通過(guò)小組討論、展示,促使學(xué)生真正做到了動(dòng)手、動(dòng)腦、動(dòng)口,積極參與教學(xué)的全過(guò)程,充分發(fā)揮了他們的思維能力和創(chuàng )造能力,充分發(fā)揮了學(xué)生在學(xué)習過(guò)程中的主體作用,讓學(xué)生真正成為學(xué)習的主人。 四、過(guò)程分析 (一)創(chuàng )設情景 設計意圖:從學(xué)生的生活經(jīng)驗(鮮活、實(shí)際的知識背景)出發(fā),運用多媒體創(chuàng )設情境,激發(fā)學(xué)生的學(xué)習興趣,誘發(fā)學(xué)生的求知欲,點(diǎn)燃了學(xué)生思維的`火花,形成良好的學(xué)習氛圍,將有效地提高接下來(lái)的學(xué)習效率。 (二)回顧舊知 設計意圖:為隨后的學(xué)習清除障礙,促使舊知識向新知識順暢、有效的過(guò)度。 (三)嘗試學(xué)習。 問(wèn)題1:××× 問(wèn)題2:××× 問(wèn)題3:××× 設計意圖:通過(guò)問(wèn)題的提出激發(fā)學(xué)生的思維,做到師生互動(dòng),生生互助,讓他們用心去觀(guān)察、討論、嘗試解決問(wèn)題,培養學(xué)生的觀(guān)察能力、邏輯思維能力、歸納分析能力等,同時(shí)也能使學(xué)生在積極的狀態(tài)中接受了新的知識。 (四)應用提高 題型1例題:××× 設計意圖:通過(guò)對例題的分析與研究,尤其是×××。讓學(xué)生體會(huì )到×××規律(方法、思想),使學(xué)生深刻領(lǐng)悟到分析、解決此類(lèi)問(wèn)題的一般途徑和常規方法。 題型2例題:××× 題型3例題:××× 設計意圖:通過(guò)有層次性的、有針對性的題目設置,將所學(xué)內容有機的融合成一個(gè)整體,使所有學(xué)生均有收獲,人人都能掌握最基本的內容,基礎扎實(shí)、能力較強的學(xué)生也有了充分發(fā)展和進(jìn)行創(chuàng )新思維的空間。 (五)課堂小結 (六)作業(yè)布置 一、教學(xué)背景分析 。ㄒ唬┙滩牡匚环治觯骸稒E圓及其標準方程》是繼學(xué)習圓以后運用“曲線(xiàn)與方程”思想解決二次曲線(xiàn)問(wèn)題的又一實(shí)例,從知識上說(shuō),本節課是對坐標法研究幾何問(wèn)題的又一次實(shí)際運用,同時(shí)也是進(jìn)一步研究橢圓幾何性質(zhì)的基礎;從方法上說(shuō),它為進(jìn)一步研究雙曲線(xiàn)、拋物線(xiàn)提供了基本模式和理論基礎,因此本節課起到了承上啟下的重要作用. 。ǘ┲攸c(diǎn)、難點(diǎn)分析:本節課的重點(diǎn)是橢圓的定義及其標準方程,標準方程的推導是本節課的難點(diǎn),要突破這一難點(diǎn),關(guān)鍵是引導學(xué)生正確選擇去根式的策略. 。ㄈ⿲W(xué)情分析:在學(xué)習本節課前,學(xué)生已經(jīng)學(xué)習了直線(xiàn)與圓的方程,對曲線(xiàn)和方程的思想方法有了一些了解和運用的經(jīng)驗,對坐標法研究幾何問(wèn)題也有了初步的認識,因此,學(xué)生已經(jīng)具備探究有關(guān)點(diǎn)的軌跡問(wèn)題的知識基礎和學(xué)習能力,但由于學(xué)生學(xué)習解析幾何時(shí)間還不長(cháng)、學(xué)習程度也較淺,并且還受到高二這一年齡段學(xué)習心理和認知結構的影響,在學(xué)習過(guò)程中難免會(huì )有些困難.如:由于學(xué)生對運用坐標法解決幾何問(wèn)題掌握還不夠,因此從研究圓到橢圓,學(xué)生思維上會(huì )存在障礙. 二、教學(xué)目標設計 。ㄒ唬┲R目標:掌握橢圓的定義及其標準方程;會(huì )根據條件寫(xiě)出橢圓的標準方程;通過(guò)對橢圓標準方程的探求,再次熟悉求曲線(xiàn)方程的一般方法. 。ǘ┠芰δ繕耍簩W(xué)生通過(guò)動(dòng)手畫(huà)橢圓、分組討論探究橢圓定義、推導橢圓標準方程等過(guò)程,提高動(dòng)手能力、合作學(xué)習能力和運用知識解決實(shí)際問(wèn)題的能力. 。ㄈ┣楦心繕耍涸谛纬芍R、提高能力的過(guò)程中,激發(fā)學(xué)生學(xué)習數學(xué)的興趣,提高學(xué)生的審美情趣,培養學(xué)生勇于探索、敢于創(chuàng )新的精神. 三、教法學(xué)法設計 。ㄒ唬┙虒W(xué)方法設計:為了更好地培養學(xué)生自主學(xué)習能力,提高學(xué)生的綜合素質(zhì),我主要采用探究式教學(xué)方法.一方面我通過(guò)設置情境、問(wèn)題誘導充分發(fā)揮主導作用;另一方面學(xué)生通過(guò)對我提供的素材進(jìn)行直觀(guān)觀(guān)察→動(dòng)手操作→討論探究→歸納抽象→總結規律的過(guò)程充分體現主體地位. 使用多媒體輔助教學(xué)與自制教具相結合的設計方案,實(shí)現多媒體快捷、形象、大容量的優(yōu)勢與自制教具直觀(guān)、實(shí)用的`優(yōu)勢的結合,既突出了知識的產(chǎn)生過(guò)程,又增加了課堂的趣味性. 1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過(guò)程; 2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程; 3.通過(guò)對橢圓概念的引入教學(xué),培養學(xué)生的觀(guān)察能力和探索能力; 4.通過(guò)橢圓的標準方程的推導,使學(xué)生進(jìn)一步掌握求曲線(xiàn)方程的一般方法,并滲透數形結合和等價(jià)轉化的思想方法,提高運用坐標法解決幾何問(wèn)題的能力; 5.通過(guò)讓學(xué)生大膽探索橢圓的定義和標準方程,激發(fā)學(xué)生學(xué)習數學(xué)的積極性,培養學(xué)生的學(xué)習興趣和創(chuàng )新意識. 四、教學(xué)建議 教材分析 1.知識結構 2.重點(diǎn)難點(diǎn)分析 重點(diǎn)是橢圓的定義及橢圓標準方程的兩種形式.難點(diǎn)是橢圓標準方程的建立和推導.關(guān)鍵是掌握建立坐標系與根式化簡(jiǎn)的方法. 橢圓及其標準方程這一節教材整體來(lái)看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線(xiàn)這一章所要研究的三種圓錐曲線(xiàn)中首先遇到的,所以教材把對橢圓的研究放在了重點(diǎn),在雙曲線(xiàn)和拋物線(xiàn)的教學(xué)中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學(xué)好橢圓對于學(xué)生學(xué)好圓錐曲線(xiàn)是非常重要的. 。1)對于橢圓的定義的理解,要抓住橢圓上的點(diǎn)所要滿(mǎn)足的條件,即橢圓上點(diǎn)的幾何性質(zhì),可以對比圓的定義來(lái)理解. 另外要注意到定義中對“常數”的限定即常數要大于.這樣規定是為了避免出現兩種特殊情況,即:“當常數等于時(shí)軌跡是一條線(xiàn)段;當常數小于時(shí)無(wú)軌跡”.這樣有利于集中精力進(jìn)一步研究橢圓的標準方程和幾何性質(zhì).但講解橢圓的定義時(shí)注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性. 。2)根據橢圓的定義求標準方程,應注意下面幾點(diǎn): 、偾(xiàn)的方程依賴(lài)于坐標系,建立適當的坐標系,是求曲線(xiàn)方程首先應該注意的地方.應讓學(xué)生觀(guān)察橢圓的圖形或根據橢圓的定義進(jìn)行推理,發(fā)現橢圓有兩條互相垂直的對稱(chēng)軸,以這兩條對稱(chēng)軸作為坐標系的兩軸,不但可以使方程的推導過(guò)程變得簡(jiǎn)單,而且也可以使最終得出的方程形式整齊和簡(jiǎn)潔. 、谠O橢圓的焦距為,橢圓上任一點(diǎn)到兩個(gè)焦點(diǎn)的距離為,令,這些措施,都是為了簡(jiǎn)化推導過(guò)程和最后得到的方程形式整齊、簡(jiǎn)潔,要讓學(xué)生認真領(lǐng)會(huì ). 、墼诜匠痰耐茖н^(guò)程中遇到了無(wú)理方程的化簡(jiǎn),這既是我們今后在求軌跡方程時(shí)經(jīng)常遇到的問(wèn)題,又是學(xué)生的難點(diǎn).要注意說(shuō)明這類(lèi)方程的化簡(jiǎn)方法:①方程中只有一個(gè)根式時(shí),需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個(gè)根式時(shí),需將它們分別放在方程的兩側,并使其中一側只有一項. 、芙炭茣(shū)上對橢圓標準方程的推導,實(shí)際上只給出了“橢圓上點(diǎn)的坐標都適合方程“而沒(méi)有證明,”方程的解為坐標的點(diǎn)都在橢圓上”.這實(shí)際上是方程的同解變形問(wèn)題,難度較大,對同學(xué)們不作要求. 。3)兩種標準方程的橢圓異同點(diǎn) 中心在原點(diǎn)、焦點(diǎn)分別在軸上,軸上的橢圓標準方程分別為:,.它們的相同點(diǎn)是:形狀相同、大小相同,都有,.不同點(diǎn)是:兩種橢圓相對于坐標系的位置不同,它們的焦點(diǎn)坐標也不同. 橢圓的焦點(diǎn)在軸上標準方程中項的分母較大; 橢圓的焦點(diǎn)在軸上標準方程中項的分母較大. 另外,形如中,只要,,同號,就是橢圓方程,它可以化為. 。4)教科書(shū)上通過(guò)例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個(gè)作用:第一是教給學(xué)生利用中間變量求點(diǎn)的軌跡的方法;第二是向學(xué)生說(shuō)明,如果求得的點(diǎn)的軌跡的方程形式與橢圓的標準方程相同,那么這個(gè)軌跡是橢圓;第三是使學(xué)生知道,一個(gè)圓按某一個(gè)方向作伸縮變換可以得到橢圓. 一、教材分析: 1、教材的地位與作用。 本節資料是在學(xué)生學(xué)習了"事件的可能性的基礎上來(lái)學(xué)習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著(zhù)廣泛的應用,學(xué)習本單元知識,無(wú)論是今后繼續深造(高中學(xué)習概率的乘法定理)還是參加社會(huì )實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。 在教材的處理上,采取小單元教學(xué),本節課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統地理解概率的意義及求概率的方法,為下頭學(xué)習求比較復雜的情景的概率打下基礎。 2、重點(diǎn)與難點(diǎn)。 重點(diǎn):對概率意義的理解,經(jīng)過(guò)多次重復實(shí)驗,用頻率預測概率的方法,以及用列舉法求概率的方法。 難點(diǎn):對概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數及總的`結果數的分析。 二、目的分析: 知識與技能:掌握用頻率預測概率和用列舉法求概率方法。 過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導學(xué)生觀(guān)察試驗和統計的結果,進(jìn)而進(jìn)行分析、歸納、總結,了解并感受概率的定義的過(guò)程,引導學(xué)生從數學(xué)的視角觀(guān)察客觀(guān)世界,用數學(xué)的思維思考客觀(guān)世界,以數學(xué)的語(yǔ)言描述客觀(guān)世界。 情感態(tài)度價(jià)值觀(guān):學(xué)生經(jīng)歷觀(guān)察、分析、歸納、確認等數學(xué)活動(dòng),感受數學(xué)活動(dòng)充滿(mǎn)了探索性與創(chuàng )造性,感受量變與質(zhì)變的對立統一規律,同時(shí)為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習數學(xué)的熱情,增強對數學(xué)價(jià)值觀(guān)的認識。 三、教法、學(xué)法分析: 引導學(xué)生自主探究、合作交流、觀(guān)察分析、歸納總結,讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數學(xué)活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能應用數學(xué)解決現實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習的組織者、合作者和指導者,精心設計教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿(mǎn)生機活力,體現"教"為"學(xué)"服務(wù)這一宗旨。 四、教學(xué)過(guò)程分析: 1、引導學(xué)生探究 精心設計問(wèn)題一,學(xué)生經(jīng)過(guò)對問(wèn)題一的探究,一方面復習前面學(xué)過(guò)的"確定事件和不確定事件"的知識,為學(xué)好本節資料理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習概率(如何預測隨機事件可能性發(fā)生大。。引導學(xué)生對問(wèn)題二的探究與觀(guān)察實(shí)驗數據,使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機事件的發(fā)生中存在著(zhù)統計規律性,感受數學(xué)規律的真實(shí)的發(fā)現過(guò)程。 2、歸納概括 學(xué)生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學(xué)生明確概率定義的由來(lái)。 引導學(xué)生重新對問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學(xué)生進(jìn)行理性思維,邏輯分析,既培養學(xué)生的分析問(wèn)題本事,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。 3、舉例應用 、乓龑W(xué)生對教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。 、埔龑W(xué)生對練習中的問(wèn)題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。 4、深化發(fā)展 、旁O置3個(gè)小題目,引導學(xué)生歸納、分析、總結,加深對知識與方法的理解,并學(xué)會(huì )靈活運用。 、谱寣W(xué)生設計活動(dòng)資料,對知識進(jìn)行升華和拓展,引導學(xué)生創(chuàng )造性地運用知識思考問(wèn)題和解決問(wèn)題,從而培養學(xué)生的創(chuàng )新意識和創(chuàng )新本事。 一、教學(xué)目標: 1、知識與技能目標 、倮斫庋h(huán)結構,能識別和理解簡(jiǎn)單的框圖的功能。 、谀苓\用循環(huán)結構設計程序框圖解決簡(jiǎn)單的問(wèn)題。 2、過(guò)程與方法目標 通過(guò)模仿、操作、探索,學(xué)習設計程序框圖表達,解決問(wèn)題的過(guò)程,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力。 3、情感、態(tài)度與價(jià)值觀(guān)目標 通過(guò)本節的自主性學(xué)習,讓學(xué)生感受和體會(huì )算法思想在解決具體問(wèn)題中的意義,增強學(xué)生的創(chuàng )新能力和應用數學(xué)的意識。 三、教法分析 1、教學(xué)重點(diǎn)、難點(diǎn) 重點(diǎn):理解循環(huán)結構,能識別和畫(huà)出簡(jiǎn)單的循環(huán)結構框圖,難點(diǎn):循環(huán)結構中循環(huán)條件和循環(huán)體的確定。 2、教法、學(xué)法 本節課我遵循引導發(fā)現,循序漸進(jìn)的思路,采用問(wèn)題探究式教學(xué)。運用多媒體,投影儀輔助。倡導"自主、合作、探究"的學(xué)習方式。 四、教學(xué)過(guò)程: 。ㄒ唬﹦(chuàng )設情境,溫故求新 引例:寫(xiě)出求的值的一個(gè)算法,并用框圖表示你的算法。 此例由學(xué)生動(dòng)手完成,投影展示學(xué)生的做法,師生共同點(diǎn)評。鼓勵學(xué)生一題多解——求創(chuàng )。 設計引例的目的是復習順序結構,提出遞推求和的方法,導入新課。此環(huán)節旨在提升學(xué)生的求知欲、探索欲,使學(xué)生保持良好、積極的情感體驗。 。ǘ┲v授新課 1、循序漸進(jìn),理解知識 【1】選擇"累加器"作為載體,借助"累加器"使學(xué)生經(jīng)歷把"遞推求和"轉化為"循環(huán)求和"的過(guò)程,同時(shí)經(jīng)歷初始化變量,確定循環(huán)體,設置循環(huán)終止條件3個(gè)構造循環(huán)結構的關(guān)鍵步驟。 。1)將"遞推求和"轉化為"循環(huán)求和"的緣由及轉化的方法和途徑 引例"求的值"這個(gè)問(wèn)題的自然求和過(guò)程可以表示為: 用遞推公式表示為: 直接利用這個(gè)遞推公式構造算法在步驟中使用了共100個(gè)變量,計算機執行這樣的算法時(shí)需要占用較大的內存。為了節省變量,充分體現計算機能以極快的速度進(jìn)行重復計算的優(yōu)勢,需要從上述遞推求和的步驟中提取出共同的結構,即第n步的結果=第(n-1)步的結果+n。若引進(jìn)一個(gè)變量來(lái)表示每一步的計算結果,則第n步可以表示為賦值過(guò)程。 。2)""的含義 利用多媒體動(dòng)畫(huà)展示計算機中累加器的工作原理,借助形象直觀(guān)對知識點(diǎn)進(jìn)行強調說(shuō)明 、俚淖饔檬菍①x值號右邊表達式的值賦給賦值號左邊的變量。 、谫x值號"="右邊的變量""表示前一步累加所得的和,賦值號"="左邊的""表示該步累加所得的和,含義不同。 、圪x值號"="與數學(xué)中的'等號意義不同。在數學(xué)中是不成立的。 借助"累加器"既突破了難點(diǎn),同時(shí)也使學(xué)生理解了中的變化和的含義。 。3)初始化變量,設置循環(huán)終止條件 由的初始值為0,的值由1增加到100,可以初始化循環(huán)變量和設置循環(huán)終止條件。 【2】循環(huán)結構的概念 根據指定條件決定是否重復執行一條或多條指令的控制結構稱(chēng)為循環(huán)結構。 教師學(xué)生一起共同完成引例的框圖表示,并由此引出本節課的重點(diǎn)知識循環(huán)結構的概念。這樣講解既突出了重點(diǎn)又突破了難點(diǎn),同時(shí)使學(xué)生體會(huì )了問(wèn)題的抽象過(guò)程和算法的構建過(guò)程。還體現了我們研究問(wèn)題常用的"由特殊到一般"的思維方式。 2、類(lèi)比探究,掌握知識 例1:改造引例的程序框圖表示 、偾蟮闹 、谇蟮闹 、矍蟮闹 、芮蟮闹 此例可由學(xué)生獨立思考、回答,師生共同點(diǎn)評完成。 通過(guò)對引例框圖的反復改造逐步幫助學(xué)生深入理解循環(huán)結構,體會(huì )用循環(huán)結構表達算法,關(guān)鍵要做好三點(diǎn):①確定循環(huán)變量和初始值②確定循環(huán)體③確定循環(huán)終止條件。 例2:根據程序框圖回答下面的問(wèn)題 。1)圖中箭頭指向①時(shí),輸出=______;指向②時(shí)輸出=_____。 。2)該程序框圖的算法功能是_______________________。 。3)去掉條件""按程序框圖所蘊含的算法,能執行到底嗎,若能執行到底,最后輸出的結果是什么?圖A圖B 對比練習: 。1)圖B輸出=_____。 。2)圖A指向②時(shí)與圖B有何不同?你能得到什么結論? 可由學(xué)生小組討論,教師巡視,加強對學(xué)生的個(gè)別指導,再由學(xué)生分析。 例2是寫(xiě)出程序框圖的運算結果,及其功能。設計此例的目的是讓學(xué)生通過(guò)類(lèi)比意識到:①循環(huán)結構不能是永無(wú)終止的"死循環(huán)",一定要在某個(gè)條件下終止循環(huán),這就需要條件結構來(lái)做出判斷,因此,循環(huán)結構中一定包含條件結構。②循環(huán)結構中語(yǔ)句的順序對算法的影響。 。ㄈ┳晕覍(shí)踐,應用知識 1、夯實(shí)基礎:人口預測,F有人口總數是,人口的年增長(cháng)率是,預測第年人口總數將是多少?用程序框圖描述你的算法。 這是課本上的引例。 2、鞏固提高: 圖(1),圖(2),圖(3),圖(4)是為計算而繪制的程序框圖。根據程序框圖回答下面的問(wèn)題: 、倨渲姓_的程序框圖有哪幾個(gè)?錯誤的要指出錯在哪里。 、阱e誤的程序框圖中,按該程序框圖所蘊含的算法,能執行到底嗎?若能執行到底,最后輸出的結果是什么? 、鄹鶕厦娴幕卮鹂偨Y出應用循環(huán)結構編制程序框圖應該注意哪幾方面的問(wèn)題? 3、溝通發(fā)展 仿照本節課例題,同桌倆人一人編題一人解答。 通過(guò)練習進(jìn)一步鞏固所學(xué)知識,培養和提升學(xué)生的認知水平。溝通發(fā)展,有助于及時(shí)查漏補缺,保持學(xué)生學(xué)習的熱情和信心。 四、課后小結 、倮斫庋h(huán)結構的邏輯。 、诿鞔_條件結構與循環(huán)結構的區別,聯(lián)系。 數學(xué)思想方法:算法思想,類(lèi)比方法 五、布置作業(yè) 、僬n本P19習題1-1A4,5 、谡n外拓展:寫(xiě)出一個(gè)求滿(mǎn)足的最小正整數的算法并畫(huà)出相應的程序框圖。 書(shū)面作業(yè)第一個(gè)層次要求所有學(xué)生完成,第二個(gè)層次,只要求學(xué)有余力的同學(xué)完成。體現了差異發(fā)展教學(xué)。 六、板書(shū)設計: §1.1.3(3)循環(huán)結構 1、循環(huán)過(guò)程 2、循環(huán)結構 3、循環(huán)變量、循環(huán)條件、循環(huán)體 引例及引例的解答 小結 作業(yè) 教學(xué)設計的說(shuō)明: 建構主義學(xué)習理論認為,建構就是認知結構的組建,其過(guò)程一般是引導學(xué)生從身邊的、生活中的實(shí)際問(wèn)題出發(fā),發(fā)現問(wèn)題,思考如何解決問(wèn)題,進(jìn)而聯(lián)系所學(xué)的舊知識,首先明確問(wèn)題的實(shí)質(zhì),然后總結出新知識的有關(guān)概念和規律,形成知識點(diǎn),把知識點(diǎn)按照邏輯線(xiàn)索和內在聯(lián)系,串成知識線(xiàn),再由若干條知識線(xiàn)形成知識面,最后由知識面按照其內容、性質(zhì)、作用、因果等關(guān)系組成綜合的知識體。也就是以學(xué)生為主體,強調學(xué)生對知識的主動(dòng)探索、主動(dòng)發(fā)現以及學(xué)生對所學(xué)知識意義的主動(dòng)建構。本節課的整體設計和處理方法正是基于此理論的體現。 。ㄒ唬﹦(chuàng )設情境,溫故求新 通過(guò)引例,復習舊知識,提出新問(wèn)題,導入新課。 一題多解,鼓勵學(xué)生創(chuàng )新。此環(huán)節旨在提升學(xué)生的求知欲、探索欲,讓學(xué)生帶著(zhù)問(wèn)題進(jìn)入下一環(huán)節。使學(xué)生保持良好、積極的情感體驗。 。ǘ┲v授新課 1、循序漸進(jìn),探求新知 學(xué)生在教師引導下,在已有探索經(jīng)驗的基礎上,借助多媒體的形象直觀(guān),共同完成問(wèn)題的抽象過(guò)程和算法的構建過(guò)程。體現研究問(wèn)題常用的"由特殊到一般"的思維方式。 2、類(lèi)比探究,掌握知識 通過(guò)類(lèi)比,自主探究,幫助學(xué)生深入理解知識,完善知識結構,提升認知水平。通過(guò)小組討論,實(shí)現生生互動(dòng),師生互助,豐富情感體驗,活躍課堂氣氛。 3、溝通發(fā)展,應用知識 以習題為載體,進(jìn)一步鞏固知識。溝通發(fā)展,有助于及時(shí)查漏補缺,保持學(xué)生學(xué)習的熱情和信心。 練習和例題的難度在逐漸加強這也適合學(xué)生學(xué)習的規律。 。ㄈ┍竟澬〗Y,布置作業(yè) 1、使學(xué)生對本節課的知識有一個(gè)全面的認識,掌握知識。為今后學(xué)習其它知識打基礎。 2、書(shū)面作業(yè)第一個(gè)層次要求所有學(xué)生完成,第二個(gè)層次,只要求學(xué)有余力的同學(xué)完成。體現了差異發(fā)展教學(xué)。 3、通過(guò)練習,反映學(xué)生掌握新知識的程度。教師及時(shí)調控、講評,幫助學(xué)生完善知識結構。 開(kāi)始:各位專(zhuān)家領(lǐng)導, 好! 今天我將要為大家講的課題是 首先,我對本節教材進(jìn)行一些分析 一、教材結構與內容簡(jiǎn)析 本節內容在全書(shū)及章節的地位:《 》是高中數學(xué)新教材第 冊( )第 章第 節。在此之前,學(xué)生已學(xué)習了 ,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是 部分,因此,在 中,占據 的地位。 數學(xué)思想方法分析:作為一名數學(xué)老師,不僅要傳授給學(xué)生數學(xué)知識,更重要的是傳授給學(xué)生數學(xué)思想、數學(xué)意識,因此本節課在教學(xué)中力圖向學(xué)生: 二、 教學(xué)目標 根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標: 1 基礎知識目標: 2 能力訓練目標: 3 創(chuàng )新素質(zhì)目標: 4 個(gè)性品質(zhì)目標: 三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵 本著(zhù)課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn) 重點(diǎn): 通過(guò) 突出重點(diǎn) 難點(diǎn): 通過(guò) 突破難點(diǎn) 關(guān)鍵: 下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊?/p> 四、 教法 數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生 “知其然”而且要使學(xué)生“知其所以然”, 我們在以師生既為主體,又為客體的原則下,展現獲取知識和方法的思維過(guò)程;诒竟澱n的特點(diǎn): ,應著(zhù)重采用 的教學(xué)方法。即: 五、 學(xué)法 我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。 1、理論: 2、實(shí)踐: 3、能力: 最后我來(lái)具體談一談這一堂課的教學(xué)過(guò)程: 六、 教學(xué)程序及設想 1、由 引入: 把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。 在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。 對于本題: 2、由實(shí)例得出本課新的知識點(diǎn)是: 3、講解例題。 我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中: 4、能力訓練。 課后練習 使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。 5、總結結論,強化認識。 知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的.素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。 6、變式延伸,進(jìn)行重構。 重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。 7、板書(shū)。 8、布置作業(yè)。 針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。 結束:說(shuō)課是教師面對同行和其它聽(tīng)眾口頭講述具體課題的教學(xué)設想及其根據的新的教學(xué)研究形式。以上,我僅從說(shuō)教材,說(shuō)學(xué)情,說(shuō)教法,說(shuō)學(xué)法,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說(shuō)課對我們大家仍是新事物,今后我也將進(jìn)一步說(shuō)好課,并希望各位專(zhuān)家領(lǐng)導對本堂說(shuō)課提出寶貴意見(jiàn)。 注意時(shí)間掌握 六、注意靈活導入新知識點(diǎn)。 電腦課件 使用投影 根據時(shí)間進(jìn)行增刪 【一】教學(xué)背景分析 1.教材結構分析 《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節.圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用.圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用. 2.學(xué)情分析 圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的.但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難.另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強. 根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標: 3.教學(xué)目標 (1) 知識目標:①掌握圓的標準方程; 、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程; 、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題. (2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力; 、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用; 、墼鰪妼W(xué)生用數學(xué)的意識. (3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識; 、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣. 根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn): 4. 教學(xué)重點(diǎn)與難點(diǎn) (1)重點(diǎn):圓的標準方程的求法及其應用. (2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程; 、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題. 為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析: 好學(xué)教育: 【二】教法學(xué)法分析 1.教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上.另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程. 2.學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓.通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程. 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明: 【三】教學(xué)過(guò)程與設計 整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節: 創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高 反饋訓練 形成方法 小結反思 拓展引申 下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖. 首先:縱向敘述教學(xué)過(guò)程 (一)創(chuàng )設情境——啟迪思維 問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道? 通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的'方程來(lái)解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望.這樣獲取的知識,不但易于保持,而且易于遷移. 通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節. (二)深入探究——獲得新知 問(wèn)題二 1.根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程? 2.如果圓心在,半徑為時(shí)又如何呢? 好學(xué)教育: 這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程.然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究.我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法. 得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節. (三)應用舉例——鞏固提高 I.直接應用 內化新知 問(wèn)題三 1.寫(xiě)出下列各圓的標準方程: (1)圓心在原點(diǎn),半徑為3; (2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn). 2.寫(xiě)出圓的圓心坐標和半徑. 我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備. II.靈活應用 提升能力 問(wèn)題四 1.求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程. 2.求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程. 3.已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程. 你能歸納出具有一般性的結論嗎? 已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么? 我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程.第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓.第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間.最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮. III.實(shí)際應用 回歸自然 問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0.01m). 好學(xué)教育: 我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識. (四)反饋訓練——形成方法 問(wèn)題六 1.求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程. 2.求圓過(guò)點(diǎn)的切線(xiàn)方程. 3.求圓過(guò)點(diǎn)的切線(xiàn)方程. 接下來(lái)是第四環(huán)節——反饋訓練.這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心.另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果. (五)小結反思——拓展引申 1.課堂小結 把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為: 圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:. 、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:. 2.分層作業(yè) (A)鞏固型作業(yè):教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程. 3.激發(fā)新疑 問(wèn)題七 1.把圓的標準方程展開(kāi)后是什么形式? 2.方程表示什么圖形? 在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備. 以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計 (一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn) 好學(xué)教育: 求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn). 第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五.這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破. (二)學(xué)生主體 教師主導 探究主線(xiàn) 本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終.從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的.另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù). (三)培養思維 提升能力 激勵創(chuàng )新 為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力.在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行. 以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變.最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”. 各位同仁,各位專(zhuān)家: 我說(shuō)課的課題是《任意角的三角函數》,內容取自蘇教版高中實(shí)驗教科書(shū)《數學(xué)》第四冊 第1。2節 先對教材進(jìn)行分析 教學(xué)內容:任意角三角函數的定義、定義域,三角函數值的符號。 地位和作用: 任意角的三角函數是本章教學(xué)內容的基本概念對三角內容的整體學(xué)習至關(guān)重要。同時(shí)它又為平面向量、解析幾何等內容的學(xué)習作必要的準備,通過(guò)這部分內容的學(xué)習,又可以幫助學(xué)生更加深入理解函數這一基本概念。所以這個(gè)內容要認真探討教材,精心設計過(guò)程。 教學(xué)重點(diǎn):任意角三角函數的定義 教學(xué)難點(diǎn):正確理解三角函數可以看作以實(shí)數為自變量的函數、初中用邊長(cháng)比值來(lái)定義轉變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀(guān)念的轉換以及坐標定義的合理性的理解; 學(xué)情分析: 學(xué)生已經(jīng)掌握的內容,學(xué)生學(xué)習能力 1。初中學(xué)生已經(jīng)學(xué)習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見(jiàn)的知識和求法。 2。我們南山區經(jīng)過(guò)多年的初中課改,學(xué)生已經(jīng)具備較強的自學(xué)能力,多數同學(xué)對數學(xué)的學(xué)習有相當的興趣和積極性。 3。在探究問(wèn)題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進(jìn)行 針對對教材內容重難點(diǎn)的和學(xué)生實(shí)際情況的分析我們制定教學(xué)目標如下 知識目標: 。1)任意角三角函數的定義;三角函數的定義域;三角函數值的符號, 能力目標: 。1)理解并掌握任意角的三角函數的定義; 。2)正確理解三角函數是以實(shí)數為自變量的函數; 。3)通過(guò)對定義域,三角函數值的符號的推導,提高學(xué)生分析探究解決問(wèn)題的能力。 德育目標: 。1)學(xué)習轉化的思想,(2)培養學(xué)生嚴謹治學(xué)、一絲不茍的科學(xué)精神; 針對學(xué)生實(shí)際情況為達到教學(xué)目標須精心設計教學(xué)方法 教法學(xué)法:溫故知新,逐步拓展 。1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發(fā)展新知識,形成新的概念; 。2)通過(guò)例題講解分析,逐步引出新知識,完善三角定義 運用多媒體工具 。1)提高直觀(guān)性增強趣味性。 教學(xué)過(guò)程分析 總體來(lái)說(shuō), 由舊及新,由易及難, 逐步加強,逐步推進(jìn) 先由初中的直角三角形中銳角三角函數的定義 過(guò)度到直角坐標系中銳角三角函數的定義 再發(fā)展到直角坐標系中任意角三角函數的定義 給定定義后通過(guò)應用定義又逐步發(fā)現新知識拓展完善定義。 具體教學(xué)過(guò)程安排 引入: 復習提問(wèn):初中直角三角形中銳角的正弦余弦正切是怎樣定義的? 由學(xué)生回答 SinA=對邊/斜邊=BC/AB cosA=對邊/斜邊=AC/AB tanA=對邊/斜邊=BC/AC 逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。 我們知道,隨著(zhù)角的概念的推廣,研究角時(shí)多放在直角坐標系里, 那么三角函數的定義能否也放到坐標系去研究呢? 引導學(xué)生發(fā)現B的坐標和邊長(cháng)的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現由于相似三角形的相似比導致OB上任一P點(diǎn)都可以代換B,把三角函數的定義發(fā)展到用終邊上任一點(diǎn)的坐標來(lái)表示, 從而銳角三角函數可以使用直角坐標系來(lái)定義,自然地,要想定義任意一個(gè)角三角函數,便考慮放在直角坐標中進(jìn)行合理進(jìn)行定義了 從而得到 知識點(diǎn)一:任意一個(gè)角的三角函數的定義 提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個(gè)比值的大小和P點(diǎn)在角的終邊上的位置無(wú)關(guān)。 精心設計例題,引出新內容深化概念,完善定義 例1已知角A 的終邊經(jīng)過(guò)P(2,—3),求角A的三個(gè)三角函數值 。ù祟}由學(xué)生自己分析獨立動(dòng)手完成) 例題變式1,已知角A 的大小是30度,由定義求角A的`三個(gè)三角函數值 結合變式我們發(fā)現三個(gè)三角函數值的大小與角的大小有關(guān),只會(huì )隨角的大小而變化,符合當初函數的定義,而我們又一直稱(chēng)呼為三角函數, 提出問(wèn)題:這三個(gè)新的定義確實(shí)問(wèn)是函數嗎?為什么? 從而引出函數極其定義域 由學(xué)生分析討論,得出結論 知識點(diǎn)二:三個(gè)三角函數的定義域 同時(shí)教師強調:由于弧度制使角和實(shí)數建立了一一對應關(guān)系,所以三角函數是以實(shí)數為自變量的函數 例題變式2, 已知角A 的終邊經(jīng)過(guò)P(—2a,—3a)( a不為0),求角A的三個(gè)三角函數值 解答中需要對變量的正負即角所在象限進(jìn)行討論, 讓學(xué)生意識到三角函數值的正負與角所在象限有關(guān),從而導出第三個(gè)知識點(diǎn) 知識點(diǎn)三:三角函數值的正負與角所在象限的關(guān)系 由學(xué)生推出結論,教師總結符號記憶方法,便于學(xué)生記憶 例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA 求cosA,tanA 綜合練習鞏固提高,更為下節的同角關(guān)系式打下基礎 拓展,如果不限制A的象限呢,可以留作課外探討 小結回顧課堂內容 課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解 課堂作業(yè)P16 1,2,4 。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案) 課后分層作業(yè)(有利于全體學(xué)生的發(fā)展) 必作P23 1(2),5(2),6(2)(4) 選作P23 3,4 板書(shū)設計(見(jiàn)PPT) 一、教材分析 1、教學(xué)內容 本節課內容教材共分兩課時(shí)進(jìn)行,這是第一課時(shí),該課時(shí)主要學(xué)習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。 2、教材的地位和作用 函數單調性是高中數學(xué)中相當重要的一個(gè)基礎知識點(diǎn),是研究和討論初等函數有關(guān)性質(zhì)的基礎。掌握本節內容不僅為今后的函數學(xué)習打下理論基礎,還有利于培養學(xué)生的抽象思維能力,及分析問(wèn)題和解決問(wèn)題的能力。 3、教材的重點(diǎn)﹑難點(diǎn)﹑關(guān)鍵 教學(xué)重點(diǎn):函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個(gè)局部概念。 教學(xué)難點(diǎn):領(lǐng)會(huì )函數單調性的實(shí)質(zhì)與應用,明確單調性是一個(gè)局部的概念。 教學(xué)關(guān)鍵:從學(xué)生的學(xué)習心理和認知結構出發(fā),講清楚概念的形成過(guò)程、 4、學(xué)情分析 高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節總是創(chuàng )設恰當的問(wèn)題情境,引導學(xué)生積極思考,培養他們的邏輯思維能力。從學(xué)生的認知結構來(lái)看,他們只能根據函數的圖象觀(guān)察出“隨著(zhù)自變量的增大函數值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數圖象的直觀(guān)性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統性、嚴謹性,在教學(xué)中注意加強。 二、目標分析 。ㄒ唬┲R目標: 1、知識目標:理解函數單調性的概念,掌握判斷一些簡(jiǎn)單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說(shuō)出函數的單調區間。 2、能力目標:通過(guò)證明函數的單調性的學(xué)習,使學(xué)生體驗和理解從特殊到一般的數學(xué)歸納推理思維方式,培養學(xué)生的觀(guān)察能力,分析歸納能力,領(lǐng)會(huì )數學(xué)的歸納轉化的思想方法,增加學(xué)生的知識聯(lián)系,增強學(xué)生對知識的主動(dòng)構建的能力。 3、情感目標:讓學(xué)生積極參與觀(guān)察、分析、探索等課堂教學(xué)的雙邊活動(dòng),在掌握知識的過(guò)程中體會(huì )成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會(huì )用運動(dòng)變化的觀(guān)點(diǎn)去觀(guān)察分析事物的方法。通過(guò)滲透數形結合的數學(xué)思想,對學(xué)生進(jìn)行辨證唯物主義的思想教育。 。ǘ┻^(guò)程與方法 培養學(xué)生嚴密的邏輯思維能力以及用運動(dòng)變化、數形結合、分類(lèi)討論的方法去分析和處理問(wèn)題,以提高學(xué)生的思維品質(zhì),通過(guò)函數的單調性的學(xué)習,掌握自變量和因變量的關(guān)系。通過(guò)多媒體手段激發(fā)學(xué)生學(xué)習興趣,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題和解題的邏輯推理能力。 三、教法與學(xué)法 1、教學(xué)方法 在教學(xué)中,要注重展開(kāi)探索過(guò)程,充分利用好函數圖象的直觀(guān)性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節課采用問(wèn)答式教學(xué)法、探究式教學(xué)法進(jìn)行教學(xué),教師在課堂中只起著(zhù)主導作用,讓學(xué)生在教師的提問(wèn)中自覺(jué)的發(fā)現新知,探究新知,并且加入激勵性的語(yǔ)言以提高學(xué)生的積極性,提高學(xué)生參與知識形成的全過(guò)程。 2、學(xué)習方法 自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學(xué)生學(xué)習的主要方式。 四、過(guò)程分析 本節課的教學(xué)過(guò)程包括:?jiǎn)?wèn)題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業(yè)六個(gè)板塊。這里分別就其過(guò)程和設計意圖作一一分析。 。ㄒ唬﹩(wèn)題情景: 為了激發(fā)學(xué)生的學(xué)習興趣,本節課借助多媒體設計了多個(gè)生活背景問(wèn)題,并就圖表和圖象所提供的信息,提出一系列問(wèn)題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習興趣和求知欲望,為學(xué)習函數的單調性做好鋪墊。(祥見(jiàn)課件) 新課程理念認為:情境應貫穿課堂教學(xué)的始終。本節課所創(chuàng )設的生活情境,讓學(xué)生親近數學(xué),感受到數學(xué)就在他們的周?chē),強化學(xué)生的感性認識,從而達到學(xué)生對數學(xué)的理解。讓學(xué)生在課堂的一開(kāi)始就感受到數學(xué)就在我們身邊,讓學(xué)生學(xué)會(huì )用數學(xué)的眼光去關(guān)注生活。 。ǘ┖瘮祮握{性的定義引入 1、幾何畫(huà)板動(dòng)畫(huà)演示,請學(xué)生認真觀(guān)察,并回答問(wèn)題:通過(guò)學(xué)生已學(xué)過(guò)的函數y=2x+4,,的圖象的動(dòng)態(tài)形式形象出x、y間的'變化關(guān)系,使學(xué)生對函數單調性有感性認識。,進(jìn)行比較,分析其變化趨勢。并探討、回答以下問(wèn)題: 問(wèn)題1、觀(guān)察下列函數圖象,從左向右看圖象的變化趨勢? 問(wèn)題2:你能明確說(shuō)出“圖象呈上升趨勢”的意思嗎? 通過(guò)學(xué)生的交流、探討、總結,得到單調性的“通俗定義”: 從在某一區間內當x的值增大時(shí),函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來(lái)描述上升的圖象? 通過(guò)問(wèn)題逐步向抽象的定義靠攏,將圖形語(yǔ)言轉化為數學(xué)符號語(yǔ)言。幾何畫(huà)板的靈活使用,數形有機結合,引導學(xué)生從圖形語(yǔ)言到數學(xué)符號語(yǔ)言的翻譯變得輕松。 設計意圖: 、偻ㄟ^(guò)學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習興趣和學(xué)習熱情,同時(shí)也可以培養學(xué)生觀(guān)察、猜想、歸納的思維能力和創(chuàng )新意識,增強學(xué)生自主學(xué)習、獨立思考,由學(xué)會(huì )向會(huì )學(xué)的轉化,形成良好的思維品質(zhì)。 、谕ㄟ^(guò)學(xué)生已學(xué)過(guò)的一次y=2x+4,,的圖象的動(dòng)態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對函數單調性有感性認識。 、蹚膶W(xué)生的原有認知結構入手,探討單調性的概念,符合“最近發(fā)展區的理論”要求。 、軓膱D形、直觀(guān)認識入手,研究單調性的概念,其本身就是研究、學(xué)習數學(xué)的一種方法,符合新課程的理念。 。ㄈ┰龊瘮、減函數的定義 在前面的基礎上,讓學(xué)生討論歸納:如何使用數學(xué)語(yǔ)言來(lái)準確描述函數的單調性?在學(xué)生回答的基礎上,給出增函數的概念,同時(shí)要求學(xué)生討論概念中的關(guān)鍵詞和注意點(diǎn)。 定義中的“當x1x2時(shí),都有f(x1) 注意: 。1)函數的單調性也叫函數的增減性; 。2)注意區間上所取兩點(diǎn)x1,x2的任意性; 。3)函數的單調性是對某個(gè)區間而言的,它是一個(gè)局部概念。 讓學(xué)生自已嘗試寫(xiě)出減函數概念,由兩名學(xué)生板演。提出單調區間的概念。 設計意圖:通過(guò)給出函數單調性的嚴格定義,目的是為了讓學(xué)生更準確地把握概念,理解函數的單調性其實(shí)也叫做函數的增減性,它是對某個(gè)區間而言的,它是一個(gè)局部概念,同時(shí)明確判定函數在某個(gè)區間上的單調性的一般步驟。這樣處 理,同時(shí)也是讓學(xué)生感悟、體驗學(xué)習數學(xué)感念的方法,提高其個(gè)性品質(zhì)。 。ㄋ模├}分析 在理解概念的基礎上,讓學(xué)生總結判別函數單調性的方法:圖象法和定義法。 2、例2、證明函數在區間(—∞,+∞)上是減函數。 在本題的解決過(guò)程中,要求學(xué)生對照定義進(jìn)行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過(guò)自己的解決,總結證明單調性問(wèn)題的一般方法。 變式一:函數f(x)=—3x+b在R上是減函數嗎?為什么? 變式二:函數f(x)=kx+b(k 變式三:函數f(x)=kx+b(k 錯誤:實(shí)質(zhì)上并沒(méi)有證明,而是使用了所要證明的結論 例題設計意圖:在理解概念的基礎上,讓學(xué)生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學(xué)生應用數形結合的思想方法解題的意識,進(jìn)一步加深對概念的理解,同時(shí)也是依托具體問(wèn)題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進(jìn)行觀(guān)察是一種常用而又粗略的方法。嚴格地說(shuō),它需要根據單調函數的定義進(jìn)行證明。例2是教材練習題改編,通過(guò)師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過(guò)例2的解決是學(xué)生初步掌握運用概念進(jìn)行簡(jiǎn)單論證的基本方法,強化證題的規范性訓練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數學(xué)問(wèn)題。目的是進(jìn)一步強化解題的規范性,提高邏輯推理能力,同時(shí)讓學(xué)生學(xué)會(huì )一些常見(jiàn)的變形方法。 。ㄎ澹╈柟膛c探究 1、教材p36練習2,3 2、探究:二次函數的單調性有什么規律? 。◣缀萎(huà)板演示,學(xué)生探究)本問(wèn)題作為機動(dòng)題。時(shí)間不允許時(shí),就為課后思考題。 設計意圖:通過(guò)觀(guān)察圖象,對函數是否具有某種性質(zhì)作出一種猜想,然后通過(guò)推理的辦法,證明這種猜想的正確性,是發(fā)現和解決問(wèn)題的一種常用數學(xué)方法。 通過(guò)課堂練習加深學(xué)生對概念的理解,進(jìn)一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時(shí)強化解題步驟,形成并提高解題能力。對練習的思考,讓學(xué)生學(xué)會(huì )反思、學(xué)會(huì )總結。 。┗仡櫩偨Y 通過(guò)師生互動(dòng),回顧本節課的概念、方法。本節課我們學(xué)習了函數單調性的知識,同學(xué)們要切記:?jiǎn)握{性是對某個(gè)區間而言的,同時(shí)在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進(jìn)行判斷和證明。 設計意圖:通過(guò)小結突出本節課的重點(diǎn),并讓學(xué)生對所學(xué)知識的結構有一個(gè)清晰的認識,學(xué)會(huì )一些解決問(wèn)題的思想與方法,體會(huì )數學(xué)的和諧美。 。ㄆ撸┱n外作業(yè) 1、教材p43習題1。3A組1(單調區間),2(證明單調性); 2、判斷并證明函數在上的單調性。 3、數學(xué)日記:談?wù)勀惚竟澱n中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。 設計意圖:通過(guò)作業(yè)1、2進(jìn)一步鞏固本節課所學(xué)的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學(xué)生對本結內容各項目標落實(shí)的評價(jià)。新課標要求:不同的學(xué)生學(xué)習不同的數學(xué),在數學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現。 。ㄆ撸┌鍟(shū)設計(見(jiàn)ppt) 五、評價(jià)分析 有效的概念教學(xué)是建立在學(xué)生已有知識結構基礎上,,因此在教學(xué)設計過(guò)程中注意了: 第一、教要按照學(xué)的法子來(lái)教; 第二、在學(xué)生已有知識結構和新概念間尋找“最近發(fā)展區”; 第三、強化了重探究、重交流、重過(guò)程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng )設情境——探究概念——注重反思——拓展應用——歸納總結”的活動(dòng)過(guò)程,體驗了參與數學(xué)知識的發(fā)生、發(fā)展過(guò)程,培養“用數學(xué)”的意識和能力,成為積極主動(dòng)的建構者。 本節課圍繞教學(xué)重點(diǎn),針對教學(xué)目標,以多媒體技術(shù)為依托,展現知識的發(fā)生和形成過(guò)程,使學(xué)生始終處于問(wèn)題探索研究狀態(tài)之中,激情引趣,并注重數學(xué)科學(xué)研究方法的學(xué)習,是順應新課改要求的,是研究性教學(xué)的一次有益嘗試。 一、教學(xué)目標 1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義。 2.經(jīng)歷從銳角三角函數定義過(guò)度到任意角三角函數定義的推廣過(guò)程,體驗三角函數概念的產(chǎn)生、發(fā)展過(guò)程。領(lǐng)悟直角坐標系的工具功能,豐富數形結合的經(jīng)驗。 3.培養學(xué)生通過(guò)現象看本質(zhì)的唯物主義認識論觀(guān)點(diǎn),滲透事物相互聯(lián)系、相互轉化的辯證唯物主義世界觀(guān)。 4.培養學(xué)生求真務(wù)實(shí)、實(shí)事求是的科學(xué)態(tài)度。 二、重點(diǎn)、難點(diǎn)、關(guān)鍵 重點(diǎn):任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法。 難點(diǎn):把三角函數理解為以實(shí)數為自變量的函數。 關(guān)鍵:如何想到建立直角坐標系;六個(gè)比值的確定性(α確定,比值也隨之確定)與依賴(lài)性(比值隨著(zhù)α的變化而變化). 三、教學(xué)理念和方法 教學(xué)中注意用新課程理念處理傳統教材,學(xué)生的數學(xué)學(xué)習活動(dòng)不僅要接受、記憶、模仿和練習,而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導者、合作者的作用,引導學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程。 根據本節課內容、高一學(xué)生認知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節課采用"啟發(fā)探索、講練結合"的方法組織教學(xué)。 四、教學(xué)過(guò)程 執教線(xiàn)索: 回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關(guān)系)--問(wèn)題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優(yōu)化認知:用直角坐標系研究銳角三角函數--探索發(fā)展:對任意角研究六個(gè)比值(與角之間的關(guān)系:確定性、依賴(lài)性,滿(mǎn)足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習--回顧小結--布置作業(yè)] 。ㄒ唬⿵土曇、回想再認 開(kāi)門(mén)見(jiàn)山,面對全體學(xué)生提問(wèn): 在初中我們初步學(xué)習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學(xué)習了角度制和弧度制,這節課該研究什么呢? 探索任意角的三角函數(板書(shū)課題),請同學(xué)們回想,再明確一下: 。ㄇ榫1)什么叫函數?或者說(shuō)函數是怎樣定義的? 讓學(xué)生回想后再點(diǎn)名回答,投影顯示規范的。定義,教師根據回答情況進(jìn)行修正、強調: 傳統定義:設在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有唯一確定的值和它對應,那么就說(shuō)y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域。 現代定義:設A、B是非空的數集,如果按某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)映射?:A→B為從集合A到集合B的一個(gè)函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域。 設計意圖: 函數和三角函數是一般和特殊的關(guān)系,是共性和個(gè)性的關(guān)系,學(xué)生已經(jīng)學(xué)習了函數的概念,因此對三角函數的學(xué)習就是一個(gè)從一般到特殊的演繹的過(guò)程,也是以具體函數豐富函數概念的過(guò)程。教學(xué)經(jīng)驗表明:學(xué)生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對函數概念進(jìn)行回想再認,目的在于明確函數概念的本質(zhì),為演繹學(xué)習任意角三角函數概念作好知識和認知準備。 。ㄇ榫2)我們在初中通過(guò)銳角三角形的邊角關(guān)系,學(xué)習了銳角的正弦、余弦、正切等三個(gè)三角函數。請回想:這三個(gè)三角函數分別是怎樣規定的? 學(xué)生口述后再投影展示,教師再根據投影進(jìn)行強調: 設計意圖: 學(xué)生在初中學(xué)習了銳角的三角函數概念,現在學(xué)習任意角的三角函數,又是一種推廣和拓展的過(guò)程(類(lèi)似于從有理數到實(shí)數的擴展).溫故知新,要讓學(xué)生體會(huì )知識的產(chǎn)生、發(fā)展過(guò)程,就要從源頭上開(kāi)始,從學(xué)生現有認知狀況開(kāi)始,對銳角三角函數的復習就必不可少。 。ǘ┮熹亯|、創(chuàng )設情景 。ㄇ榫3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論! 留時(shí)間讓學(xué)生獨立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導。 能推廣嗎?怎樣推廣?針對剛才的問(wèn)題點(diǎn)名讓學(xué)生回答。用角的對邊、臨邊、斜邊比值的說(shuō)法顯然是受到阻礙了,由于4.1節已經(jīng)以直角坐標系為工具來(lái)研究任意角了,學(xué)生一般會(huì )想到(否則教師進(jìn)行提示)繼續用直角坐標系來(lái)研究任意角的三角函數。 設計意圖: 從學(xué)生現有知識水平和認知能力出發(fā),創(chuàng )設問(wèn)題情景,讓學(xué)生產(chǎn)生認知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng )造"征程。 教師對學(xué)生回答情況進(jìn)行點(diǎn)評后布置任務(wù)情景:請同學(xué)們用直角坐標系重新研究銳角三角函數定義! 師生共做(學(xué)生口述,教師板書(shū)圖形和比值): 把銳角α安裝(如何安裝?角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點(diǎn)P,作Pm⊥x軸于m,構造一個(gè)RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長(cháng)|oP∣=r. 根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個(gè)比值,并補充對應列出三個(gè)倒數比值: 設計意圖: 此處做法簡(jiǎn)單,思想重要。為了順利實(shí)現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形。由于前一節已經(jīng)以直角坐標系為工具來(lái)研究任意角了,學(xué)生自然能想到仍然以直角坐標系為工具來(lái)研究任意角的三角函數。初中以直角三角形邊角關(guān)系來(lái)定義銳角三角函數,現在要用坐標系來(lái)研究,探索的結論既要滿(mǎn)足任意角的情形,又要包容初中銳角三角函數定義。這是一個(gè)認識的飛躍,是理解任意角三角函數概念的關(guān)鍵之一,也是數學(xué)發(fā)現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學(xué)生在以后學(xué)習中對某些知識進(jìn)行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實(shí)數到復數的擴展等). 。ㄇ榫4)各個(gè)比值與角之間有怎樣的關(guān)系?比值是角的函數嗎? 追問(wèn):銳角α大小發(fā)生變化時(shí),比值會(huì )改變嗎? 先讓學(xué)生想象思考,作出主觀(guān)判斷,再用幾何畫(huà)板動(dòng)畫(huà)演示,同時(shí)作好解釋說(shuō)明:保持r不變,讓P繞原點(diǎn)o旋轉即α在銳角范圍內變化,六個(gè)比值隨之變化的直觀(guān)形象。結論是:比值隨α的變化而變化。 引導學(xué)生觀(guān)察圖3,聯(lián)系相似三角形知識, 探索發(fā)現: 對于銳角α的每一個(gè)確定值,六個(gè)比值都是 確定的,不會(huì )隨P在終邊上的移動(dòng)而變化。 得出結論(強調):當α為銳角時(shí),六個(gè)比值隨α的變化而變化;但對于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì )隨P在終邊上的移動(dòng)而變化。所以,六個(gè)比值分別是以角α為自變量、以比值為函數值的函數。 設計意圖: 初中學(xué)生對函數理解較膚淺,這里在學(xué)生思維的最近發(fā)展區進(jìn)一步研究初中學(xué)過(guò)的銳角三角函數,在思維上更上了一個(gè)層次,扣準函數概念的內涵,突出變量之間的依賴(lài)關(guān)系或對應關(guān)系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關(guān)鍵,也是在認知上把三角函數知識納入函數知識結構的關(guān)鍵。這樣做能夠使學(xué)生有效地增強函數觀(guān)念。 。ㄈ┓治鰵w納、自主定義 。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎? 水到渠成,師生共同進(jìn)行探索和推廣: 對于一個(gè)任意角α,它的`終邊所在位置包括下列兩類(lèi)共八種情形(投影展示并作分析): 終邊分別在四個(gè)象限的情形:終邊分別在四個(gè)半軸上的情形: ; 。ㄖ赋觯翰划(huà)出角的方向,表明角具有任意性) 怎樣刻畫(huà)任意角的三角函數呢?研究它的六個(gè)比值: 。ò鍟(shū))設α是一個(gè)任意角,在α終邊上除原點(diǎn)外任意取一點(diǎn)P(x,y),P與原點(diǎn)o之間的距離記作r(r=>0),列出六個(gè)比值: α=kππ/2時(shí),x=0,比值y/x、r/x無(wú)意義; α=kπ時(shí),y=0,比值x/y、r/y無(wú)意義。 追問(wèn):α大小發(fā)生變化時(shí),比值會(huì )改變嗎? 先讓學(xué)生想象思考,作出主觀(guān)判斷,再用幾何畫(huà)板動(dòng)畫(huà)演示,同時(shí)作好解釋說(shuō)明:使r保持不變,P繞原點(diǎn)o逆時(shí)針、順時(shí)針旋轉即角α變化,六個(gè)比值隨之改變的直觀(guān)形象。結論是:各比值隨α的變化而變化。 再引導學(xué)生利用相似三角形知識,探索發(fā)現:對于任意角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì )隨P在終邊上的移動(dòng)而變化。 綜上得到(強調):當角α變化時(shí),六個(gè)比值隨之變化;對于確定的角α,六個(gè)比值(如果存在的話(huà))都不會(huì )隨P在角α終邊上的改變而改變,六個(gè)比值是確定的(對應的多值性即誘導公式一留到下節課分析). 因此,六個(gè)比值分別是以角α為自變量、以比值為函數值的函數。 根據歷史上的規定,對比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復合板書(shū)): =sinα(正弦)=cosα(余弦)=tanα(正切) =cscα(余割)=sec(正弦)=cotα(余切) 教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個(gè)整體,相當于函數記號f(x).其它幾個(gè)三角函數也如此 投影顯示圖六,指導學(xué)生分析其對應關(guān)系,進(jìn)一步體會(huì )其函數內涵: 。▓D六) 指導學(xué)生識記六個(gè)比值及函數名稱(chēng)。 教師指出:正弦、余弦、正切、余切、正割、余割六個(gè)函數統稱(chēng)為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學(xué)習正弦、余弦、正切三個(gè)函數的相關(guān)知識和方法,對于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求). 引導學(xué)生進(jìn)一步分析理解: 已知角的集合與實(shí)數集之間可以建立一一對應關(guān)系,對于每一個(gè)確定的實(shí)數,把它看成一個(gè)弧度數,就對應著(zhù)唯一的一個(gè)角,從而分別對應著(zhù)六個(gè)唯一的三角函數值。因此,(板書(shū))三角函數可以看成是以實(shí)數為自變量的函數,這將為以后的應用帶來(lái)很多方便。 設計意圖: 把角的終邊分別在四個(gè)象限、四條半軸上的情形全作出來(lái),有利于對任意性的全面把握。明確比值存在與否的條件,為確定函數定義域作準備。動(dòng)畫(huà)演示比值與角之間的依賴(lài)性與確定性關(guān)系,深化理解三角函數內涵。引導學(xué)生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務(wù)。由于學(xué)生剛學(xué)弧度制,對弧度制的理解有待于在以后的學(xué)習應用中逐步感悟,因此部分學(xué)生對"三角函數可以看成是以實(shí)數為自變量的函數"的理解有半信半疑之感,有待通過(guò)后續的應用加深理解。 。ㄋ模┨剿鞫x域 。ㄇ榫6)(1)函數概念的三要素是什么? 函數三要素:對應法則、定義域、值域。 正弦函數sinα的對應法則是什么? 正弦函數sinα的對應法則,實(shí)質(zhì)上就是sinα的定義:對α的每一個(gè)確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα. (2)布置任務(wù)情景:什么是三角函數的定義域?請求出六個(gè)三角函數的定義域,填寫(xiě)下表: 三角函數 sinα cosα tanα cotα cscα secα 定義域 引導學(xué)生自主探索: 如果沒(méi)有特別說(shuō)明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍。 關(guān)于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實(shí)數集R. 對于tanα=y/x,α=kππ/2時(shí)x=0,y/x無(wú)意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}.......... 教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶。 。P(guān)于值域,到后面再學(xué)習). 設計意圖: 定義域是函數三要素之一,研究函數必須明確定義域。指導學(xué)生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進(jìn)對三角函數概念的掌握。 。ㄎ澹┓柵袛、形象識記 。ㄇ榫7)能判斷三角函數值的正、負嗎?試試看! 引導學(xué)生緊緊抓住三角函數定義來(lái)分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣: 。ㄍ玫谜、異號得負) sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負 設計意圖: 判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求。要引導學(xué)生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關(guān)鍵。 。┚毩曥柟、理解記憶 1、自學(xué)例1:已知角α的終邊經(jīng)過(guò)點(diǎn)P(2,-3),求α的六個(gè)三角函數值。 要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書(shū)面表達格式,鞏固定義。 課堂練習: p19題1:已知角α的終邊經(jīng)過(guò)點(diǎn)P(-3,-1),求α的六個(gè)三角函數值。 要求心算,并提問(wèn)中下學(xué)生檢驗,-------- 點(diǎn)評:角α終邊上有無(wú)窮多個(gè)點(diǎn),根據三角函數的定義,只要知道α終邊上任意一個(gè)點(diǎn)的坐標,就可以計算這個(gè)角的三角函數值(或判斷其無(wú)意義). 補充例題:已知角α的終邊經(jīng)過(guò)點(diǎn)P(x,-3),cosα=4/5,求α的其它五個(gè)三角函數值。 師生探索:已知y=-3,要求其它五個(gè)三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略。 2、自學(xué)例2:求下列各角的六個(gè)三角函數值:(1)0;(2)π/2;(3)3π/2. 提問(wèn),據反饋信息作點(diǎn)評、修正。 師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢?取定哪一點(diǎn)呢?任意點(diǎn)、還是特殊點(diǎn)?要靈活,只要能夠算出三角函數值,都可以。 取特殊點(diǎn)能使計算更簡(jiǎn)明。課堂練習:p19題2.(改編)填表: 角α(角度) 0° 90° 180° 270° 360° 角α(弧度) sinα cosα tanα 處理:要求取點(diǎn)用定義求解,針對計算過(guò)程提問(wèn)、點(diǎn)評,理解鞏固定義。 強調:終邊在坐標軸上的角叫軸線(xiàn)角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線(xiàn)角的三角函數值,要結合三角函數定義記熟這些值。 設計意圖: 及時(shí)安排自學(xué)例題、自做教材練習題,一般性與特殊性相結合,進(jìn)行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過(guò)課堂積極主動(dòng)的練習活動(dòng)進(jìn)行思維訓練,把"培養學(xué)生分析解決問(wèn)題的能力"貫穿在每一節課的課堂教學(xué)始終。 。ㄆ撸┗仡櫺〗Y、建構網(wǎng)絡(luò ) 要求全體學(xué)生根據教師所提問(wèn)題進(jìn)行總結識記,提問(wèn)檢查并強調: 1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說(shuō)任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點(diǎn)與坐標原點(diǎn)重合,---,在終邊上任意取定一點(diǎn)P,---) 2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------) 3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----) 設計意圖: 遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時(shí)總結識記主要內容是上策。此處以問(wèn)題形式讓學(xué)生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時(shí)建構知識網(wǎng)絡(luò ),優(yōu)化知識結構,培養認知能力。 。ò耍┎贾谜n外作業(yè) 1.書(shū)面作業(yè):習題4.3第3、4、5題。 2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學(xué)習他對科學(xué)的摯著(zhù)精神和堅忍不拔的頑強毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況。 教學(xué)設計說(shuō)明 一、對本節教材的理解 三角函數是描述周期運動(dòng)現象的重要的數學(xué)模型,有非常廣泛的應用。 星星之火,可以燎原。 直角三角形簡(jiǎn)單樸素的邊角關(guān)系,以直角坐標系為工具進(jìn)行自然地推廣而得到簡(jiǎn)明的任意角的三角函數定義,緊緊扣住三角函數定義這個(gè)寶貴的源泉,自然地導出三角函數線(xiàn)、定義域、符號判斷、值域、同角三角函數關(guān)系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內容的具體安排。定義直接用于解析幾何(如直線(xiàn)斜率公式、極坐標、部分曲線(xiàn)的參數方程等),定義還是直接解決某些問(wèn)題的工具,三角函數知識是物理學(xué)、高等數學(xué)、測量學(xué)、天文學(xué)的重要基礎。 三角函數定義必然是學(xué)好全章內容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續內容的學(xué)習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點(diǎn)就是定義本身。 二、教學(xué)法加工 數學(xué)教材通常用抽象概括的形式化的數學(xué)書(shū)面語(yǔ)言闡述其知識和方法,教師只有通過(guò)教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀(guān),"將數學(xué)的學(xué)術(shù)形態(tài)轉化為教育形態(tài)"(張奠宙語(yǔ)),引導學(xué)生積極主動(dòng)地進(jìn)行思考活動(dòng),直接參與體驗數學(xué)知識產(chǎn)生發(fā)展的背景、過(guò)程,返璞歸真,揭示本質(zhì),體會(huì )其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數學(xué)知識和方法,有效地發(fā)展智力、培養能力。 在本節教材中,三角函數定義是重點(diǎn),三角函數線(xiàn)是難點(diǎn),為了較好地突出重點(diǎn)和突破難點(diǎn),分散重點(diǎn)和難點(diǎn),同時(shí)兼顧例題、課堂練習的協(xié)調匹配,將不按教材順序來(lái)進(jìn)行教學(xué),第一課時(shí)安排三角函數的定義(突出重點(diǎn))、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時(shí)安排三角函數線(xiàn)、p15練習(突破難點(diǎn))、誘導公式一及課本例題3、4和其它練習。本課例屬第一課時(shí)。 教學(xué)經(jīng)驗表明,三角函數定義"簡(jiǎn)單易記",學(xué)生很容易輕視它,不少學(xué)生機械記憶、一知半解。本課例堅持"教師主導、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結合"的常規教學(xué)方法,在學(xué)生的最近發(fā)展區圍繞學(xué)生的學(xué)習目標設計了一系列符合學(xué)生認知規律的程序,通過(guò)多媒體輔助教學(xué)動(dòng)畫(huà)演示比值與角之間的依賴(lài)關(guān)系,拓展思維活動(dòng)時(shí)空,力求使學(xué)生全員主動(dòng)參與,積極思考,體會(huì )定義產(chǎn)生、發(fā)展的過(guò)程,通過(guò)思維過(guò)程來(lái)理解知識、培養能力。 將六個(gè)比值放在一起來(lái)研究,同時(shí)給出六個(gè)三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學(xué)中注意區分就行了。 教學(xué)中關(guān)于符號sinα、cosα、tanα的出場(chǎng)安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關(guān)系;另外可以先研究六個(gè)比值與α之間的函數關(guān)系,然后再對六個(gè)比值取名給出記法。后者更能突出函數內涵,揭示三角函數本質(zhì)。本課例采用后者組織教學(xué)。 三、教學(xué)過(guò)程分析(見(jiàn)穿插在教案中的設計意圖). 一、說(shuō)教材 1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類(lèi)型函數,本節課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數的概念,并進(jìn)一步體會(huì )函數是刻畫(huà)變量之間關(guān)系的數學(xué)模型,從中體會(huì )函數的模型思想。因此本節課重點(diǎn)是理解和領(lǐng)悟反比例函數的概念,所滲透的數學(xué)思想方法有:類(lèi)比,轉化,建模。 2.學(xué)情分析:對八年級學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對函數,正比例函數,一次函數的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數時(shí),還可能存在一些思維障礙,如學(xué)生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結出反比例函數的概念,因此,本節課的難點(diǎn)是理解和領(lǐng)悟反比例函數的概念。 二、說(shuō)教學(xué)目標 根據本人對《數學(xué)課程標準》的理解與分析,考慮學(xué)生已有的認知結構、心理特征,我把本課的目標定為: 1.從現實(shí)的情境和已有的知識經(jīng)驗出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數概念的理解。 2.經(jīng)歷抽象反比例函數概念的過(guò)程,領(lǐng)會(huì )反比例函數的意義,理解反比例函數的概念。 三、說(shuō)教法 本節課從知識結構呈現的角度看,為了實(shí)現教學(xué)目標,我建立了“創(chuàng )設情境→建立模型→解釋知識→應用知識”的學(xué)習模式,這種模式清晰地再現了知識的生成與發(fā)展的過(guò)程,也符合學(xué)生的認知規律。于是,從教學(xué)內容的性質(zhì)出發(fā),我設計了如下的課堂結構:創(chuàng )設出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現新知,把上述問(wèn)題進(jìn)行類(lèi)比,導出概念,獲得新知,最后總結評價(jià)、內化新知。 四、說(shuō)學(xué)法 我認為學(xué)生將實(shí)際問(wèn)題轉化成函數的'能力是有限的,所以我借助多媒體輔助教學(xué),指導學(xué)生通過(guò)類(lèi)比、轉化、直觀(guān)形象的觀(guān)察與演示,親身經(jīng)歷函數模型的轉化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng )造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。 好學(xué)教育: 因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著(zhù)問(wèn)題的深入而跳躍。 以下是高中數學(xué)《等差數列前n項和的公式》說(shuō)課稿,僅供參考。 教學(xué)目標 A、知識目標: 掌握等差數列前n項和公式的推導方法;掌握公式的運用。 B、能力目標: (1)通過(guò)公式的探索、發(fā)現,在知識發(fā)生、發(fā)展以及形成過(guò)程中培養學(xué)生觀(guān)察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。 (2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認知規律,讓學(xué)生在實(shí)踐中通過(guò)觀(guān)察、嘗試、分析、類(lèi)比的方法導出等差數列的求和公式,培養學(xué)生類(lèi)比思維能力。 (3)通過(guò)對公式從不同角度、不同側面的剖析,培養學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。 C、情感目標:(數學(xué)文化價(jià)值) (1)公式的發(fā)現反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。 (2)通過(guò)公式的運用,樹(shù)立學(xué)生"大眾教學(xué)"的思想意識。 (3)通過(guò)生動(dòng)具體的現實(shí)問(wèn)題,令人著(zhù)迷的數學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹(shù)立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數學(xué)的心理體驗,產(chǎn)生熱愛(ài)數學(xué)的情感。 教學(xué)重點(diǎn):等差數列前n項和的公式。 教學(xué)難點(diǎn):等差數列前n項和的公式的靈活運用。 教學(xué)方法:?jiǎn)l(fā)、討論、引導式。 教具:現代教育多媒體技術(shù)。 教學(xué)過(guò)程 一、創(chuàng )設情景,導入新課。 師:上幾節,我們已經(jīng)掌握了等差數列的概念、通項公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數列的前n項和公式。提起數列求和,我們自然會(huì )想到德國偉大的數學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時(shí),一次教師布置了一道數學(xué)習題:"把從1到100的自然數加起來(lái),和是多少?"年僅10歲的.小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計算出來(lái)的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀(guān)察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。 例1,計算:1+2+3+4+5+6+7+8+9+10. 這道題除了累加計算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。 生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個(gè)11,得到55。 生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫(xiě)成 S=10+9+8+7+6+5+4+3+2+1。 上面兩式相加得2S=11+10+......+11=10×11=110 10個(gè) 所以我們得到S=55, 即1+2+3+4+5+6+7+8+9+10=55 師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學(xué)的方法相類(lèi)似。 理由是:1+100=2+99=3+98=......=50+51=101,有50個(gè)101,所以1+2+3+......+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數列的哪一個(gè)性質(zhì)呢? 生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq. 二、教授新課(嘗試推導) 師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質(zhì),如何來(lái)導出它的前n項和Sn計算公式呢?根據上面的例子同學(xué)們自己完成推導,并請一位學(xué)生板演。 生4:Sn=a1+a2+......an-1+an也可寫(xiě)成 Sn=an+an-1+......a2+a1 兩式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1) n個(gè) =n(a1+an) 所以Sn= #FormatImgID_0# (I) 師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n-1)d代入公式(1)得 Sn=na1+ #FormatImgID_1# d(II) 上面(I)、(II)兩個(gè)式子稱(chēng)為等差數列的前n項和公式。公式(I)是基本的,我們可以發(fā)現,它可與梯形面積公式(上底+下底)×高÷2相類(lèi)比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學(xué)生總結:這些公式中出現了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n-1)d,Sn= #FormatImgID_2# =na1+ #FormatImgID_3# d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應用。 三、公式的應用(通過(guò)實(shí)例演練,形成技能)。 1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量觀(guān)點(diǎn)認識公式)例2、計算: (1)1+2+3+......+n (2)1+3+5+......+(2n-1) (3)2+4+6+......+2n (4)1-2+3-4+5-6+......+(2n-1)-2n 請同學(xué)們先完成(1)-(3),并請一位同學(xué)回答。 生5:直接利用等差數列求和公式(I),得 (1)1+2+3+......+n= #FormatImgID_4# (2)1+3+5+......+(2n-1)= #FormatImgID_5# (3)2+4+6+......+2n= #FormatImgID_6# =n(n+1) 師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學(xué)生發(fā)言解答。 生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開(kāi),可看成兩個(gè)等差數列,所以 原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n) =n2-n(n+1)=-n 生7:上題雖然不是等差數列,但有一個(gè)規律,兩項結合都為-1,故可得另一解法: 原式=-1-1-......-1=-n n個(gè) 師:很好!在解題時(shí)我們應仔細觀(guān)察,尋找規律,往往會(huì )尋找到好的方法。注意在運用Sn公式時(shí),要看清等差數列的項數,否則會(huì )引起錯解。 例3、(1)數列{an}是公差d=-2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。 生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4 又∵d=-2,∴a1=6 ∴S12=12 a1+66×(-2)=-60 生9:(2)由a1+a2+a3=12,a1+d=4 a8+a9+a10=75,a1+8d=25 解得a1=1,d=3 ∴S10=10a1+ #FormatImgID_7# =145 師:通過(guò)上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個(gè)變量。已知三個(gè)變量,可利用構造方程或方程組求另外兩個(gè)變量(知三求二),請同學(xué)們根據例3自己編題,作為本節的課外練習題,以便下節課交流。 師:(繼續引導學(xué)生,將第(2)小題改編) 、贁盗衶an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n 、谌舸祟}不求a1,d而只求S10時(shí),是否一定非來(lái)求得a1,d不可呢?引導學(xué)生運用等差數列性質(zhì),用整體思想考慮求a1+a10的值。 2、用整體觀(guān)點(diǎn)認識Sn公式。 例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解) 師:來(lái)看第(1)小題,寫(xiě)出的計算公式S16= #FormatImgID_8# =8(a1+a6)與已知相比較,你發(fā)現了什么? 生10:根據等差數列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。 師:對!(簡(jiǎn)單小結)這個(gè)題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質(zhì)可求a1與an的和,于是這個(gè)問(wèn)題就得到解決。這是整體思想在解數學(xué)問(wèn)題的體現。 師:由于時(shí)間關(guān)系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學(xué)生觀(guān)察當d≠0時(shí),Sn是n的二次函數,那么從二次(或一次)的函數的觀(guān)點(diǎn)如何來(lái)認識Sn公式后,這留給同學(xué)們課外繼續思考。 最后請大家課外思考Sn公式(1)的逆命題: 已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn= #FormatImgID_9# 。數列{an}是否為等差數列,并說(shuō)明理由。 四、小結與作業(yè)。 師:接下來(lái)請同學(xué)們一起來(lái)小結本節課所講的內容。 生11:1、用倒序相加法推導等差數列前n項和公式。 2、用所推導的兩個(gè)公式解決有關(guān)例題,熟悉對Sn公式的運用。 生12:1、運用Sn公式要注意此等差數列的項數n的值。 2、具體用Sn公式時(shí),要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。 3、當已知條件不足以求此項a1和公差d時(shí),要認真觀(guān)察,靈活應用等差數列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。 師:通過(guò)以上幾例,說(shuō)明在解題中靈活應用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習方法。同時(shí)希望大家在學(xué)習中做一個(gè)有心人,去發(fā)現更多的性質(zhì),主動(dòng)積極地去學(xué)習。 本節所滲透的數學(xué)方法;觀(guān)察、嘗試、分析、歸納、類(lèi)比、特定系數等。 數學(xué)思想:類(lèi)比思想、整體思想、方程思想、函數思想等。 【高中數學(xué)說(shuō)課稿】相關(guān)文章: 高中數學(xué)經(jīng)典說(shuō)課稿11-25 高中數學(xué)的說(shuō)課稿04-19 高中數學(xué)向量說(shuō)課稿09-09 高中數學(xué)數列說(shuō)課稿11-20 高中數學(xué)說(shuō)課稿12-12 高中數學(xué)數列說(shuō)課稿06-07 高中數學(xué)優(yōu)秀說(shuō)課稿03-08 高中數學(xué)說(shuō)課稿06-12高中數學(xué)說(shuō)課稿5
高中數學(xué)說(shuō)課稿6
高中數學(xué)說(shuō)課稿7
高中數學(xué)說(shuō)課稿8
高中數學(xué)說(shuō)課稿9
高中數學(xué)說(shuō)課稿10
高中數學(xué)說(shuō)課稿11
高中數學(xué)說(shuō)課稿12
高中數學(xué)說(shuō)課稿13
高中數學(xué)說(shuō)課稿14
高中數學(xué)說(shuō)課稿15