激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频

高中數學(xué)說(shuō)課稿

時(shí)間:2021-07-24 16:50:48 高中說(shuō)課稿 我要投稿

關(guān)于高中數學(xué)說(shuō)課稿模板集合六篇

  作為一名為他人授業(yè)解惑的教育工作者,常常要根據教學(xué)需要編寫(xiě)說(shuō)課稿,說(shuō)課稿是進(jìn)行說(shuō)課準備的文稿,有著(zhù)至關(guān)重要的作用。那么優(yōu)秀的說(shuō)課稿是什么樣的呢?下面是小編為大家收集的高中數學(xué)說(shuō)課稿6篇,僅供參考,歡迎大家閱讀。

關(guān)于高中數學(xué)說(shuō)課稿模板集合六篇

高中數學(xué)說(shuō)課稿 篇1

  一、教學(xué)目標

  1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義.

  2.經(jīng)歷從銳角三角函數定義過(guò)度到任意角三角函數定義的推廣過(guò)程,體驗三角函數概念的產(chǎn)生、發(fā)展過(guò)程.領(lǐng)悟直角坐標系的工具功能,豐富數形結合的經(jīng)驗.

  3.培養學(xué)生通過(guò)現象看本質(zhì)的唯物主義認識論觀(guān)點(diǎn),滲透事物相互聯(lián)系、相互轉化的辯證唯物主義世界觀(guān).

  4.培養學(xué)生求真務(wù)實(shí)、實(shí)事求是的科學(xué)態(tài)度.

  二、重點(diǎn)、難點(diǎn)、關(guān)鍵

  重點(diǎn):任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法.

  難點(diǎn):把三角函數理解為以實(shí)數為自變量的函數.

  關(guān)鍵:如何想到建立直角坐標系;六個(gè)比值的確定性(α確定,比值也隨之確定)與依賴(lài)性(比值隨著(zhù)α的變化而變化).

  三、教學(xué)理念和方法

  教學(xué)中注意用新課程理念處理傳統教材,學(xué)生的數學(xué)學(xué)習活動(dòng)不僅要接受、記憶、模仿和練習,而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導者、合作者的作用,引導學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程.

  根據本節課內容、高一學(xué)生認知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節課采用"啟發(fā)探索、講練結合"的方法組織教學(xué).

  四、教學(xué)過(guò)程

  [執教線(xiàn)索:

  回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關(guān)系)--問(wèn)題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優(yōu)化認知:用直角坐標系研究銳角三角函數--探索發(fā)展:對任意角研究六個(gè)比值(與角之間的關(guān)系:確定性、依賴(lài)性,滿(mǎn)足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習--回顧小結--布置作業(yè)]

 。ㄒ唬⿵土曇、回想再認

  開(kāi)門(mén)見(jiàn)山,面對全體學(xué)生提問(wèn):

  在初中我們初步學(xué)習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學(xué)習了角度制和弧度制,這節課該研究什么呢?

  探索任意角的三角函數(板書(shū)課題),請同學(xué)們回想,再明確一下:

 。ㄇ榫1)什么叫函數?或者說(shuō)函數是怎樣定義的?

  讓學(xué)生回想后再點(diǎn)名回答,投影顯示規范的定義,教師根據回答情況進(jìn)行修正、強調:

  傳統定義:設在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有唯一確定的值和它對應,那么就說(shuō)y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域.

  現代定義:設A、B是非空的數集,如果按某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)映射?:A→B為從集合A到集合B的一個(gè)函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域.

  設計意圖:

  函數和三角函數是一般和特殊的關(guān)系,是共性和個(gè)性的關(guān)系,學(xué)生已經(jīng)學(xué)習了函數的概念,因此對三角函數的學(xué)習就是一個(gè)從一般到特殊的演繹的過(guò)程,也是以具體函數豐富函數概念的過(guò)程.教學(xué)經(jīng)驗表明:學(xué)生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對函數概念進(jìn)行回想再認,目的在于明確函數概念的本質(zhì),為演繹學(xué)習任意角三角函數概念作好知識和認知準備.

 。ㄇ榫2)我們在初中通過(guò)銳角三角形的邊角關(guān)系,學(xué)習了銳角的正弦、余弦、正切等三個(gè)三角函數.請回想:這三個(gè)三角函數分別是怎樣規定的?

  學(xué)生口述后再投影展示,教師再根據投影進(jìn)行強調:

  設計意圖:

  學(xué)生在初中學(xué)習了銳角的三角函數概念,現在學(xué)習任意角的三角函數,又是一種推廣和拓展的過(guò)程(類(lèi)似于從有理數到實(shí)數的擴展).溫故知新,要讓學(xué)生體會(huì )知識的產(chǎn)生、發(fā)展過(guò)程,就要從源頭上開(kāi)始,從學(xué)生現有認知狀況開(kāi)始,對銳角三角函數的復習就必不可少.

 。ǘ┮熹亯|、創(chuàng )設情景

 。ㄇ榫3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!

  留時(shí)間讓學(xué)生獨立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導.

  能推廣嗎?怎樣推廣?針對剛才的問(wèn)題點(diǎn)名讓學(xué)生回答.用角的對邊、臨邊、斜邊比值的說(shuō)法顯然是受到阻礙了,由于4.1節已經(jīng)以直角坐標系為工具來(lái)研究任意角了,學(xué)生一般會(huì )想到(否則教師進(jìn)行提示)繼續用直角坐標系來(lái)研究任意角的三角函數.

  設計意圖:

  從學(xué)生現有知識水平和認知能力出發(fā),創(chuàng )設問(wèn)題情景,讓學(xué)生產(chǎn)生認知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng )造"征程.

  教師對學(xué)生回答情況進(jìn)行點(diǎn)評后布置任務(wù)情景:請同學(xué)們用直角坐標系重新研究銳角三角函數定義!

  師生共做(學(xué)生口述,教師板書(shū)圖形和比值):

  把銳角α安裝(如何安裝?角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點(diǎn)P,作Pm⊥x軸于m,構造一個(gè)RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長(cháng)|oP∣=r.

  根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個(gè)比值,并補充對應列出三個(gè)倒數比值:

  設計意圖:

  此處做法簡(jiǎn)單,思想重要.為了順利實(shí)現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節已經(jīng)以直角坐標系為工具來(lái)研究任意角了,學(xué)生自然能想到仍然以直角坐標系為工具來(lái)研究任意角的三角函數.初中以直角三角形邊角關(guān)系來(lái)定義銳角三角函數,現在要用坐標系來(lái)研究,探索的結論既要滿(mǎn)足任意角的情形,又要包容初中銳角三角函數定義.這是一個(gè)認識的飛躍,是理解任意角三角函數概念的關(guān)鍵之一,也是數學(xué)發(fā)現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學(xué)生在以后學(xué)習中對某些知識進(jìn)行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實(shí)數到復數的擴展等).

 。ㄇ榫4)各個(gè)比值與角之間有怎樣的關(guān)系?比值是角的函數嗎?

  追問(wèn):銳角α大小發(fā)生變化時(shí),比值會(huì )改變嗎?

  先讓學(xué)生想象思考,作出主觀(guān)判斷,再用幾何畫(huà)板動(dòng)畫(huà)演示,同時(shí)作好解釋說(shuō)明:保持r不變,讓P繞原點(diǎn)o旋轉即α在銳角范圍內變化,六個(gè)比值隨之變化的直觀(guān)形象。結論是:比值隨α的變化而變化.

  引導學(xué)生觀(guān)察圖3,聯(lián)系相似三角形知識,

  探索發(fā)現:

  對于銳角α的每一個(gè)確定值,六個(gè)比值都是

  確定的,不會(huì )隨P在終邊上的移動(dòng)而變化.

  得出結論(強調):當α為銳角時(shí),六個(gè)比值隨α的變化而變化;但對于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì )隨P在終邊上的移動(dòng)而變化.所以,六個(gè)比值分別是以角α為自變量、以比值為函數值的函數.

  設計意圖:

  初中學(xué)生對函數理解較膚淺,這里在學(xué)生思維的最近發(fā)展區進(jìn)一步研究初中學(xué)過(guò)的銳角三角函數,在思維上更上了一個(gè)層次,扣準函數概念的內涵,突出變量之間的依賴(lài)關(guān)系或對應關(guān)系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關(guān)鍵,也是在認知上把三角函數知識納入函數知識結構的關(guān)鍵.這樣做能夠使學(xué)生有效地增強函數觀(guān)念.

 。ㄈ┓治鰵w納、自主定義

 。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?

  水到渠成,師生共同進(jìn)行探索和推廣:

  對于一個(gè)任意角α,它的終邊所在位置包括下列兩類(lèi)共八種情形(投影展示并作分析):

  終邊分別在四個(gè)象限的情形:終邊分別在四個(gè)半軸上的情形:

 ;

 。ㄖ赋觯翰划(huà)出角的方向,表明角具有任意性)

  怎樣刻畫(huà)任意角的三角函數呢?研究它的六個(gè)比值:

 。ò鍟(shū))設α是一個(gè)任意角,在α終邊上除原點(diǎn)外任意取一點(diǎn)P(x,y),P與原點(diǎn)o之間的距離記作r(r=>0),列出六個(gè)比值:

  α=kππ/2時(shí),x=0,比值y/x、r/x無(wú)意義;

  α=kπ時(shí),y=0,比值x/y、r/y無(wú)意義.

  追問(wèn):α大小發(fā)生變化時(shí),比值會(huì )改變嗎?

  先讓學(xué)生想象思考,作出主觀(guān)判斷,再用幾何畫(huà)板動(dòng)畫(huà)演示,同時(shí)作好解釋說(shuō)明:使r保持不變,P繞原點(diǎn)o逆時(shí)針、順時(shí)針旋轉即角α變化,六個(gè)比值隨之改變的直觀(guān)形象。結論是:各比值隨α的變化而變化.

  再引導學(xué)生利用相似三角形知識,探索發(fā)現:對于任意角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì )隨P在終邊上的移動(dòng)而變化.

  綜上得到(強調):當角α變化時(shí),六個(gè)比值隨之變化;對于確定的角α,六個(gè)比值(如果存在的話(huà))都不會(huì )隨P在角α終邊上的改變而改變,六個(gè)比值是確定的(對應的多值性即誘導公式一留到下節課分析).

  因此,六個(gè)比值分別是以角α為自變量、以比值為函數值的函數.

  根據歷史上的規定,對比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復合板書(shū)):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個(gè)整體,相當于函數記號f(x).其它幾個(gè)三角函數也如此

  投影顯示圖六,指導學(xué)生分析其對應關(guān)系,進(jìn)一步體會(huì )其函數內涵:

 。▓D六)

  指導學(xué)生識記六個(gè)比值及函數名稱(chēng).

  教師指出:正弦、余弦、正切、余切、正割、余割六個(gè)函數統稱(chēng)為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學(xué)習正弦、余弦、正切三個(gè)函數的相關(guān)知識和方法,對于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求).

  引導學(xué)生進(jìn)一步分析理解:

  已知角的集合與實(shí)數集之間可以建立一一對應關(guān)系,對于每一個(gè)確定的實(shí)數,把它看成一個(gè)弧度數,就對應著(zhù)唯一的一個(gè)角,從而分別對應著(zhù)六個(gè)唯一的三角函數值.因此,(板書(shū))三角函數可以看成是以實(shí)數為自變量的函數,這將為以后的應用帶來(lái)很多方便.

  設計意圖:

  把角的終邊分別在四個(gè)象限、四條半軸上的情形全作出來(lái),有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數定義域作準備.動(dòng)畫(huà)演示比值與角之間的依賴(lài)性與確定性關(guān)系,深化理解三角函數內涵.引導學(xué)生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務(wù).由于學(xué)生剛學(xué)弧度制,對弧度制的理解有待于在以后的學(xué)習應用中逐步感悟,因此部分學(xué)生對"三角函數可以看成是以實(shí)數為自變量的函數"的理解有半信半疑之感,有待通過(guò)后續的應用加深理解.

 。ㄋ模┨剿鞫x域

 。ㄇ榫6)(1)函數概念的三要素是什么?

  函數三要素:對應法則、定義域、值域.

  正弦函數sinα的對應法則是什么?

  正弦函數sinα的對應法則,實(shí)質(zhì)上就是sinα的定義:對α的每一個(gè)確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.

  (2)布置任務(wù)情景:什么是三角函數的定義域?請求出六個(gè)三角函數的定義域,填寫(xiě)下表:

  三角函數

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定義域

  引導學(xué)生自主探索:

  如果沒(méi)有特別說(shuō)明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍.

  關(guān)于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實(shí)數集R.

  對于tanα=y/x,α=kππ/2時(shí)x=0,y/x無(wú)意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........

  教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.

 。P(guān)于值域,到后面再學(xué)習).

  設計意圖:

  定義域是函數三要素之一,研究函數必須明確定義域.指導學(xué)生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進(jìn)對三角函數概念的掌握.

 。ㄎ澹┓柵袛、形象識記

 。ㄇ榫7)能判斷三角函數值的正、負嗎?試試看!

  引導學(xué)生緊緊抓住三角函數定義來(lái)分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:

 。ㄍ玫谜、異號得負)

  sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負

  設計意圖:

  判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學(xué)生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關(guān)鍵.

 。┚毩曥柟、理解記憶

  1、自學(xué)例1:已知角α的終邊經(jīng)過(guò)點(diǎn)P(2,-3),求α的六個(gè)三角函數值.

  要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書(shū)面表達格式,鞏固定義.

  課堂練習:

  p19題1:已知角α的終邊經(jīng)過(guò)點(diǎn)P(-3,-1),求α的六個(gè)三角函數值.

  要求心算,并提問(wèn)中下學(xué)生檢驗,--------

  點(diǎn)評:角α終邊上有無(wú)窮多個(gè)點(diǎn),根據三角函數的定義,只要知道α終邊上任意一個(gè)點(diǎn)的坐標,就可以計算這個(gè)角的三角函數值(或判斷其無(wú)意義).

  補充例題:已知角α的終邊經(jīng)過(guò)點(diǎn)P(x,-3),cosα=4/5,求α的其它五個(gè)三角函數值.

  師生探索:已知y=-3,要求其它五個(gè)三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

  2、自學(xué)例2:求下列各角的六個(gè)三角函數值:(1)0;(2)π/2;(3)3π/2.

  提問(wèn),據反饋信息作點(diǎn)評、修正.

  師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢?取定哪一點(diǎn)呢?任意點(diǎn)、還是特殊點(diǎn)?要靈活,只要能夠算出三角函數值,都可以。

  取特殊點(diǎn)能使計算更簡(jiǎn)明。課堂練習:p19題2.(改編)填表:

  角α(角度)

  0°

  90°

  180°

  270°

  360°

  角α(弧度)

  sinα

  cosα

  tanα

  處理:要求取點(diǎn)用定義求解,針對計算過(guò)程提問(wèn)、點(diǎn)評,理解鞏固定義.

  強調:終邊在坐標軸上的角叫軸線(xiàn)角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線(xiàn)角的三角函數值,要結合三角函數定義記熟這些值.

  設計意圖:

  及時(shí)安排自學(xué)例題、自做教材練習題,一般性與特殊性相結合,進(jìn)行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過(guò)課堂積極主動(dòng)的練習活動(dòng)進(jìn)行思維訓練,把"培養學(xué)生分析解決問(wèn)題的能力"貫穿在每一節課的課堂教學(xué)始終.

 。ㄆ撸┗仡櫺〗Y、建構網(wǎng)絡(luò )

  要求全體學(xué)生根據教師所提問(wèn)題進(jìn)行總結識記,提問(wèn)檢查并強調:

  1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說(shuō)任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點(diǎn)與坐標原點(diǎn)重合,---,在終邊上任意取定一點(diǎn)P,---)

  2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------)

  3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----)

  設計意圖:

  遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時(shí)總結識記主要內容是上策.此處以問(wèn)題形式讓學(xué)生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時(shí)建構知識網(wǎng)絡(luò ),優(yōu)化知識結構,培養認知能力.

 。ò耍┎贾谜n外作業(yè)

  1.書(shū)面作業(yè):習題4.3第3、4、5題.

  2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學(xué)習他對科學(xué)的摯著(zhù)精神和堅忍不拔的頑強毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況.

  教學(xué)設計說(shuō)明

  一、對本節教材的理解

  三角函數是描述周期運動(dòng)現象的重要的數學(xué)模型,有非常廣泛的應用.

  星星之火,可以燎原.

  直角三角形簡(jiǎn)單樸素的邊角關(guān)系,以直角坐標系為工具進(jìn)行自然地推廣而得到簡(jiǎn)明的任意角的三角函數定義,緊緊扣住三角函數定義這個(gè)寶貴的源泉,自然地導出三角函數線(xiàn)、定義域、符號判斷、值域、同角三角函數關(guān)系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線(xiàn)斜率公式、極坐標、部分曲線(xiàn)的參數方程等),定義還是直接解決某些問(wèn)題的工具,三角函數知識是物理學(xué)、高等數學(xué)、測量學(xué)、天文學(xué)的重要基礎.

  三角函數定義必然是學(xué)好全章內容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續內容的學(xué)習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點(diǎn)就是定義本身.

  二、教學(xué)法加工

  數學(xué)教材通常用抽象概括的形式化的數學(xué)書(shū)面語(yǔ)言闡述其知識和方法,教師只有通過(guò)教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀(guān),"將數學(xué)的學(xué)術(shù)形態(tài)轉化為教育形態(tài)"(張奠宙語(yǔ)),引導學(xué)生積極主動(dòng)地進(jìn)行思考活動(dòng),直接參與體驗數學(xué)知識產(chǎn)生發(fā)展的背景、過(guò)程,返璞歸真,揭示本質(zhì),體會(huì )其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數學(xué)知識和方法,有效地發(fā)展智力、培養能力.

  在本節教材中,三角函數定義是重點(diǎn),三角函數線(xiàn)是難點(diǎn),為了較好地突出重點(diǎn)和突破難點(diǎn),分散重點(diǎn)和難點(diǎn),同時(shí)兼顧例題、課堂練習的協(xié)調匹配,將不按教材順序來(lái)進(jìn)行教學(xué),第一課時(shí)安排三角函數的定義(突出重點(diǎn))、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時(shí)安排三角函數線(xiàn)、p15練習(突破難點(diǎn))、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時(shí).

  教學(xué)經(jīng)驗表明,三角函數定義"簡(jiǎn)單易記",學(xué)生很容易輕視它,不少學(xué)生機械記憶、一知半解.本課例堅持"教師主導、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結合"的常規教學(xué)方法,在學(xué)生的最近發(fā)展區圍繞學(xué)生的學(xué)習目標設計了一系列符合學(xué)生認知規律的程序,通過(guò)多媒體輔助教學(xué)動(dòng)畫(huà)演示比值與角之間的依賴(lài)關(guān)系,拓展思維活動(dòng)時(shí)空,力求使學(xué)生全員主動(dòng)參與,積極思考,體會(huì )定義產(chǎn)生、發(fā)展的過(guò)程,通過(guò)思維過(guò)程來(lái)理解知識、培養能力.

  將六個(gè)比值放在一起來(lái)研究,同時(shí)給出六個(gè)三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學(xué)中注意區分就行了.

  教學(xué)中關(guān)于符號sinα、cosα、tanα的出場(chǎng)安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關(guān)系;另外可以先研究六個(gè)比值與α之間的函數關(guān)系,然后再對六個(gè)比值取名給出記法.后者更能突出函數內涵,揭示三角函數本質(zhì).本課例采用后者組織教學(xué).

  三、教學(xué)過(guò)程分析(見(jiàn)穿插在教案中的設計意圖).

高中數學(xué)說(shuō)課稿 篇2

  尊敬的各位專(zhuān)家、評委:

  上午好!

  今天我說(shuō)課的課題是人教A版必修2第二章第二節《直線(xiàn)與圓的位置關(guān)系》。

  我嘗試利用新課標的理念來(lái)指導教學(xué),對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評價(jià)分析五個(gè)方面來(lái)談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設計,敬請各位專(zhuān)家、評委批評指正。

  一、教材分析

  地位和作用

  學(xué)生在初中的學(xué)習中已經(jīng)了解直線(xiàn)與圓的位置關(guān)系,并知道可以利用直線(xiàn)與圓的焦點(diǎn)的個(gè)數以及圓心與直線(xiàn)的距離d與半徑r的關(guān)系判斷直線(xiàn)與圓的位置關(guān)系。但是,在初中學(xué)習時(shí),利用圓心與直線(xiàn)的距離d與半徑r的關(guān)系判斷直線(xiàn)與圓的位置關(guān)系的方法卻以結論性的形式呈現。在高一學(xué)習了解析幾何后,要考慮的問(wèn)題是如何掌握由直線(xiàn)和圓的方程判斷直線(xiàn)與圓的位置關(guān)系的方法。解決問(wèn)題的方法主要是幾何法和代數法。其中幾何法應該是在初中學(xué)習的基礎上,結合高中所學(xué)的點(diǎn)到直線(xiàn)的距離公式求出圓心與直線(xiàn)的距離d后,比較與半徑r的關(guān)系。從而作出判斷,適可而止第引進(jìn)用聯(lián)立方程組轉化為二次方程判別根的“純代數判別法”,并與“幾何法”欣賞比較,以決優(yōu)劣,從而也深化了基本的“幾何法”。含參數的問(wèn)題、簡(jiǎn)單的弦的問(wèn)題、切線(xiàn)問(wèn)題等綜合問(wèn)題作為進(jìn)一步的拓展提高或綜合應用,也適度第引入課堂教學(xué)中,但以深化“判定直線(xiàn)與圓的位置關(guān)系”為目的,要控制難度。雖然學(xué)生學(xué)習解析幾何了,但是把幾何問(wèn)題代數化無(wú)論是思維習慣還是具體轉化方法,學(xué)生仍是似懂非懂,因此應不斷強化,逐漸內化為學(xué)生的習慣和基本素質(zhì)。

  二、目標分析

  (一)、教學(xué)目標

  1、知識與技能

  理解直線(xiàn)與圓的位置的種類(lèi);

  利用平面直角坐標系中點(diǎn)到直線(xiàn)的距離公式求圓心到直線(xiàn)的距離;

  會(huì )用點(diǎn)到直線(xiàn)的距離來(lái)判斷直線(xiàn)與圓的位置關(guān)系。

  2、過(guò)程與方法

  設直線(xiàn)L:ax+by+c=o,圓C:x2+y2+Dx+Ey+F=0,圓的半徑為r,圓心(- ,- )到直線(xiàn)的距離為d,則判別直線(xiàn)與圓的位置關(guān)系的根據有以下幾點(diǎn):

  當d >r時(shí),直線(xiàn)l與圓c相離;

  當d =r時(shí),直線(xiàn)l與圓c相切;

  當d

  3、情態(tài)與價(jià)值觀(guān)

  讓學(xué)生通過(guò)觀(guān)察圖形,理解并掌握直線(xiàn)與圓的位置關(guān)系,培養學(xué)生數形結合的思想。

  (二)、教學(xué)重點(diǎn)與難點(diǎn)

  1、重點(diǎn):直線(xiàn)與圓的位置關(guān)系的幾何圖形及其判斷方法。

  2、難點(diǎn):用坐標判斷直線(xiàn)與圓的位置關(guān)系。

  三、教法學(xué)法分

  (一)、教法

  教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法:

  1、啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納。

  2、采用“從特殊到一般”、“從具體到抽象”的方法。

  3、體現“對比聯(lián)系”、“數形結合”及“分類(lèi)討論”的思想方法。

  4、投影儀演示法。

  在整個(gè)過(guò)程中,應以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細觀(guān)察、類(lèi)比、想象的基礎上通過(guò)問(wèn)題串的形式加以引導點(diǎn)撥,對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺(jué)地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。

  (二)、學(xué)法

  建構主義學(xué)習理論認為,學(xué)習是學(xué)生積極主動(dòng)地建構知識的過(guò)程,學(xué)習應該與學(xué)生熟悉的背景相聯(lián)系。在教學(xué)中,讓學(xué)生在問(wèn)題情境中,經(jīng)歷知識的形成和發(fā)展,通過(guò)觀(guān)察、操作、歸納、探索、交流、反思參與學(xué)習,認識和理解數學(xué)知識,學(xué)會(huì )學(xué)習,發(fā)展能力。

  四、教學(xué)過(guò)程分析

  (一)、教學(xué)過(guò)程設計

  問(wèn)題 設計意圖 師生活動(dòng)

  1、初中學(xué)過(guò)的平面幾何中,直線(xiàn)與圓的位置關(guān)系有幾類(lèi)? 啟發(fā)學(xué)生由圖形獲取判斷直線(xiàn)與圓的位置關(guān)系的直觀(guān)認知,引入新課 師:讓學(xué)生之間進(jìn)行討論,交流,引導學(xué)生觀(guān)察圖形,導入新課

  生:看圖,并說(shuō)出自己的看法

  2、直線(xiàn)與圓的位置關(guān)系有幾種? 得出直線(xiàn)與圓的位置關(guān)系的幾何特征與種類(lèi) 師:引導學(xué)生利用類(lèi)比,歸納的思想,總結直線(xiàn)與圓的位置關(guān)系的種類(lèi),進(jìn)一步神話(huà)數形結合的數學(xué)思想

  生:學(xué)生觀(guān)察圖形,利用類(lèi)比,歸納的思想,總結直線(xiàn)與圓的位置關(guān)

  3、在初中,我們怎么樣判斷直線(xiàn)與圓的位置關(guān)系呢?如何用直線(xiàn)與圓的方程判斷他們之間的位置關(guān)系呢?

  你能說(shuō)出判斷直線(xiàn)與圓的位置關(guān)系的兩

  種方法嗎? 使學(xué)生回憶初中的數學(xué)知識,培養抽象的概括能力。

  抽象判斷呢直線(xiàn)與圓的位置關(guān)系的思路和方法 師:引導學(xué)生回憶初中判斷直線(xiàn)與圓的位置關(guān)系的思想過(guò)程

  生:回憶直線(xiàn)與圓的位置關(guān)系的判斷過(guò)程

  師:引導學(xué)生從集合的角度判斷直線(xiàn)與圓的方法

  生:利用圖形,尋求兩種方法的數學(xué)思路

  5、你能用兩種判斷直線(xiàn)與圓的位置關(guān)系的數學(xué)思路解決例1的問(wèn)題嗎? 體會(huì )判斷直線(xiàn)與圓的位置關(guān)系的思想方法,關(guān)注量與量的之間的關(guān)系 師:指導學(xué)生閱讀教材書(shū)上的例1

  生:閱讀教材書(shū)上的例1,并完成教材書(shū)上的136頁(yè)的練習題2

  6、通過(guò)學(xué)習教材書(shū)上的例1,你能總結下判斷直線(xiàn)與圓的位置 關(guān)系的步驟嗎? 是學(xué)生熟悉判斷直線(xiàn)與圓的位置關(guān)系的基本步驟 生:于都例1

  師:分析例1 ,并展示解答過(guò)程,啟發(fā)學(xué)生概括判斷直線(xiàn)與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有思考的時(shí)間

  生:交流自己總結的步驟

  7、通過(guò)學(xué)習教材書(shū)上的例2,你能說(shuō)明例2中體現的數學(xué)思想方法嗎? 進(jìn)一步深化數形結合的數學(xué)思想 師:指導學(xué)生閱讀并完成教材書(shū)上的例2 ,啟發(fā)學(xué)生利用數形結合的數學(xué)思想解決問(wèn)題

  生:閱讀教材書(shū)上的例2 ,并完成137的練習題

  8、通過(guò)例2的學(xué)習,你發(fā)現了什么? 明確弦長(cháng)的運算方法 師:引導并啟發(fā)學(xué)生探索直線(xiàn)與圓的相交弦的求法

  生:通過(guò)分析,抽象,歸納,得出相交弦的運算方法

  9、完成教材書(shū)上的136頁(yè)的習題1234 鞏固所學(xué)過(guò)的知識,進(jìn)一步理解和掌握直線(xiàn)與圓的位置關(guān)系 師:指導學(xué)生完成練習題

  生:互相討論交流,完成練習題

  10、課堂小結

  教師提出下列問(wèn)題讓學(xué)生思考

  通過(guò)直線(xiàn)與圓的位置關(guān)系的判斷,你學(xué)到什么了?

  判斷直線(xiàn)與圓的位置關(guān)系有幾種方法?他們的特點(diǎn)是什么?

  如何求直線(xiàn)與圓的相交弦長(cháng)?

  (二)、作業(yè)設計

  作業(yè)分為必做題和選擇題,必做題是對本節課學(xué)生知識水平的反饋,選擇題是對本節課內容的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習氛圍的形成。

  我設計了以下作業(yè):

  必做題:課后習題A 1,2,3;

  選擇題:課后習題B1,2,3;

  (三)、板書(shū)設計

  板書(shū)要基本體現課堂的內容和方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互關(guān)系:能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。

  五、評價(jià)分析

  學(xué)生學(xué)習的結果評價(jià)固然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用了及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對本節是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。

  以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。

  謝謝!

高中數學(xué)說(shuō)課稿 篇3

  說(shuō)課內容:普通高中課程標準實(shí)驗教科書(shū)(人教A版)《數學(xué)必修4》第二章第四節“平面向量的數量積”的第一課時(shí)---平面向量數量積的物理背景及其含義。

  下面,我從背景分析、教學(xué)目標設計、課堂結構設計、教學(xué)過(guò)程設計、教學(xué)媒體設計及教學(xué)評價(jià)設計六個(gè)方面對本節課的思考進(jìn)行說(shuō)明。

  一、 背景分析

  1、學(xué)習任務(wù)分析

  平面向量的數量積是繼向量的線(xiàn)性運算之后的又一重要運算,也是高中數學(xué)的一個(gè)重要概念,在數學(xué)、物理等學(xué)科中應用十分廣泛。本節內容教材共安排兩課時(shí),其中第一課時(shí)主要研究數量積的概念,第二課時(shí)主要研究數量積的坐標運算,本節課是第一課時(shí)。

  本節課的主要學(xué)習任務(wù)是通過(guò)物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質(zhì)與運算律,使學(xué)生體會(huì )類(lèi)比的思想方法,進(jìn)一步培養學(xué)生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運算律的基礎。同時(shí)也因為在這個(gè)概念中,既有長(cháng)度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點(diǎn),不僅應用廣泛,而且很好的體現了數形結合的數學(xué)思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學(xué)的重點(diǎn)。

  2、學(xué)生情況分析

  學(xué)生在學(xué)習本節內容之前,已熟知了實(shí)數的運算體系,掌握了向量的概念及其線(xiàn)性運算,具備了功等物理知識,并且初步體會(huì )了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實(shí)數運算類(lèi)比的基礎上研究性質(zhì)和運算律。這為學(xué)生學(xué)習數量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數量積概念的理解,一方面,相對于線(xiàn)性運算而言,數量積的結果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數的向量經(jīng)過(guò)數量積運算后,形卻消失了,學(xué)生對這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數乘法運算的影響,也會(huì )造成學(xué)生對數量積理解上的偏差,特別是對性質(zhì)和運算律的理解。因而本節課教學(xué)的難點(diǎn)數量積的概念。

  二、 教學(xué)目標設計

  《普通高中數學(xué)課程標準(實(shí)驗)》 對本節課的要求有以下三條:

  (1)通過(guò)物理中“功”等事例,理解平面向量數量積的含義及其物理意義。

  (2)體會(huì )平面向量的數量積與向量投影的關(guān)系。

  (3)能用運數量積表示兩個(gè)向量的夾角,會(huì )用數量積判斷兩個(gè)平面向量的垂直關(guān)系。

  從以上的背景分析可以看出,數量積的概念既是本節課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無(wú)論是在概念的引入還是應用過(guò)程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數量積概念延伸的性質(zhì)和運算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計算和判斷的理論依據。最后,無(wú)論是數量積的性質(zhì)還是運算律,都希望學(xué)生在類(lèi)比的基礎上,通過(guò)主動(dòng)探究來(lái)發(fā)現,因而對培養學(xué)生的抽象概括能力、推理論證能力和類(lèi)比思想都無(wú)疑是很好的載體。

  綜上所述,結合“課標”要求和學(xué)生實(shí)際,我將本節課的教學(xué)目標定為:

  1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;

  2、體會(huì )平面向量的數量積與向量投影的關(guān)系,掌握數量積的性質(zhì)和運算律,

  并能運用性質(zhì)和運算律進(jìn)行相關(guān)的運算和判斷;

  3、體會(huì )類(lèi)比的數學(xué)思想和方法,進(jìn)一步培養學(xué)生抽象概括、推理論證的能力。

  三、課堂結構設計

  本節課從總體上講是一節概念教學(xué),依據數學(xué)課程改革應關(guān)注知識的發(fā)生和發(fā)展過(guò)程的理念,結合本節課的知識的邏輯關(guān)系,我按照以下順序安排本節課的教學(xué):

  即先從數學(xué)和物理兩個(gè)角度創(chuàng )設問(wèn)題情景,通過(guò)歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質(zhì)和運算律,使學(xué)生進(jìn)一步加深對概念的理解,然后通過(guò)例題和練習使學(xué)生鞏固概念,加深印象,最后通過(guò)課堂小結提高學(xué)生認識,形成知識體系。

  四、 教學(xué)媒體設計

  和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來(lái)分兩節課完成的內容合并成一節,相比較而言本節課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現本節課的教學(xué)目標,考慮到本節課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設想主要有以下兩點(diǎn):

  1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內容的呈現方式,以此來(lái)節約課時(shí),增加課堂容量。

  2、設計科學(xué)合理的板書(shū)(見(jiàn)下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生清楚本節內容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò )。

  平面向量數量積的物理背景及其含義

  一、 數量積的概念 二、數量積的性質(zhì) 四、應用與提高

  1、 概念: 例1:

  2、 概念強調 (1)記法 例2:

  (2)“規定” 三、數量積的運算律 例3:

  3、幾何意義:

  4、物理意義:

  五、 教學(xué)過(guò)程設計

  課標指出:數學(xué)教學(xué)過(guò)程是教師引導學(xué)生進(jìn)行學(xué)習活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節課我主要安排以下六個(gè)活動(dòng):

  活動(dòng)一:創(chuàng )設問(wèn)題情景,激發(fā)學(xué)習興趣

  正如教材主編寄語(yǔ)所言,數學(xué)是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線(xiàn)性運算一樣,也有其數學(xué)背景和物理背景,為了體現這一點(diǎn),我設計以下幾個(gè)問(wèn)題:

  問(wèn)題1:我們已經(jīng)研究了向量的哪些運算?這些運算的結果是什么?

  問(wèn)題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?

  期望學(xué)生回答:物理模型→概念→性質(zhì)→運算律→應用

  問(wèn)題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,

  (1)力F所做的功W= 。

  (2)請同學(xué)們分析這個(gè)公式的特點(diǎn):

  W(功)是 量,

  F(力)是 量,

  S(位移)是 量,

  α是 。

  問(wèn)題1的設計意圖在于使學(xué)生了解數量積的數學(xué)背景,讓學(xué)生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線(xiàn)性運算相比,數量積運算又有其特殊性,那就是其結果發(fā)生了本質(zhì)的變化。

  問(wèn)題2的設計意圖在于使學(xué)生在與向量加法類(lèi)比的基礎上明了本節課的研究方法和順序,為教學(xué)活動(dòng)指明方向。

  問(wèn)題3的設計意圖在于使學(xué)生了解數量積的物理背景,讓學(xué)生知道,我們研究數量積絕不僅僅是為了數學(xué)自身的完善,而是有其客觀(guān)背景和現實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運算的愿望。同時(shí),也為抽象數量積的概念做好鋪墊。

  活動(dòng)二:探究數量積的概念

  1、概念的抽象

  在分析“功”的計算公式的基礎上提出問(wèn)題4

  問(wèn)題4:你能用文字語(yǔ)言來(lái)表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?

  學(xué)生通過(guò)思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數量積概念的'文字表述了,在此基礎上,我進(jìn)一步明晰數量積的概念。

  2、概念的明晰

  已知兩個(gè)非零向量

  與

  ,它們的夾角為

  ,我們把數量 ︱

  ︱·︱

  ︱cos

  叫做

  與

  的數量積(或內積),記作:

  ·

  ,即:

  ·

  = ︱

  ︱·︱

  ︱cos

  在強調記法和“規定”后 ,為了讓學(xué)生進(jìn)一步認識這一概念,提出問(wèn)題5

  問(wèn)題5:向量的數量積運算與線(xiàn)性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:

  角

  的范圍0°≤

  <90°

  =90°0°<

  ≤180°

  ·

  的符號

  通過(guò)此環(huán)節不僅使學(xué)生認識到數量積的結果與線(xiàn)性運算的結果有著(zhù)本質(zhì)的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質(zhì)和運算律做好鋪墊。

  3、探究數量積的幾何意義

  這個(gè)問(wèn)題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學(xué)生,我覺(jué)得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問(wèn)題5。

  如圖,我們把│

  │cos

  (│

  │cos

  )叫做向量

  在

  方向上(

  在

  方向上)的投影,記做:OB1=│

  │cos

  問(wèn)題6:數量積的幾何意義是什么?

  這樣做不僅讓學(xué)生從“形”的角度重新認識數量積的概念,從中體會(huì )數量積與向量投影的關(guān)系,同時(shí)也更符合知識的連貫性,而且也節約了課時(shí)。

  4、研究數量積的物理意義

  數量積的概念是由物理中功的概念引出的,學(xué)習了數量積的概念后,學(xué)生就會(huì )明白功的數學(xué)本質(zhì)就是力與位移的數量積。為此,我設計以下問(wèn)題 一方面使學(xué)生嘗試計算數量積,另一方面使學(xué)生理解數量積的物理意義,同時(shí)也為數量積的性質(zhì)埋下伏筆。

  問(wèn)題7:

  (1) 請同學(xué)們用一句話(huà)來(lái)概括功的數學(xué)本質(zhì):功是力與位移的數量積 。

  (2)嘗試練習:一物體質(zhì)量是10千克,分別做以下運動(dòng):

 、、在水平面上位移為10米;

 、、豎直下降10米;

 、、豎直向上提升10米;

 、、沿傾角為30度的斜面向上運動(dòng)10米;

  分別求重力做的功。

  活動(dòng)三:探究數量積的運算性質(zhì)

  1、性質(zhì)的發(fā)現

  教材中關(guān)于數量積的三條性質(zhì)是以探究的形式出現的,為了很好地完成這一探究活動(dòng),在完成上述練習后,我不失時(shí)機地提出問(wèn)題8:

  (1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?

  (2)比較︱

  ·

  ︱與︱

  ︱×︱

  ︱的大小,你有什么結論?

  在學(xué)生討論交流的基礎上,教師進(jìn)一步明晰數量積的性質(zhì),然后再由學(xué)生利用數量積的定義給予證明,完成探究活動(dòng)。

  2、明晰數量積的性質(zhì)

  3、性質(zhì)的證明

  這樣設計體現了教師只是教學(xué)活動(dòng)的引領(lǐng)者,而學(xué)生才是學(xué)習活動(dòng)的主體,讓學(xué)生成為學(xué)習的研究者,不斷地體驗到成功的喜悅,激發(fā)學(xué)生參與學(xué)習活動(dòng)的熱情,不僅使學(xué)生獲得了知識,更培養了學(xué)生由特殊到一般的思維品質(zhì)。

  活動(dòng)四:探究數量積的運算律

  1、運算律的發(fā)現

  關(guān)于運算律,教材仍然是以探究的形式出現,為此,首先提出問(wèn)題9

  問(wèn)題9:我們學(xué)過(guò)了實(shí)數乘法的哪些運算律?這些運算律對向量是否也適用?

  通過(guò)此問(wèn)題主要是想使學(xué)生在類(lèi)比的基礎上,猜測提出數量積的運算律。

  學(xué)生可能會(huì )提出以下猜測: ①

  ·

  =

  ·

 、(

  ·

  )

  =

  (

  ·

  ) ③(

  +

  )·

  =

  ·

  +

  ·

  猜測①的正確性是顯而易見(jiàn)的。

  關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問(wèn)題:

  猜測②的左右兩邊的結果各是什么?它們一定相等嗎?

  學(xué)生通過(guò)討論不難發(fā)現,猜測②是不正確的。

  這時(shí)教師在肯定猜測③的基礎上明晰數量積的運算律:

  2、明晰數量積的運算律

  3、證明運算律

  學(xué)生獨立證明運算律(2)

  我把運算運算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問(wèn)題:

  當λ<0時(shí),向量

  與λ

  ,

  與λ

  的方向 的關(guān)系如何?此時(shí),向量λ

  與

  及

  與λ

  的夾角與向量

  與

  的夾角相等嗎?

  師生共同證明運算律(3)

  運算律(3)的證明對學(xué)生來(lái)說(shuō)是比較困難的,為了節約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。

  在這個(gè)環(huán)節中,我仍然是首先為學(xué)生創(chuàng )設情景,讓學(xué)生在類(lèi)比的基礎上進(jìn)行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學(xué)生推理論證的能力,同時(shí)也增強了學(xué)生類(lèi)比創(chuàng )新的意識,將知識的獲得和能力的培養有機的結合在一起。

  活動(dòng)五:應用與提高

  例1、(師生共同完成)已知︱

  ︱=6,︱

  ︱=4,

  與

  的夾角為60°,求

  (

  +2

  )·(

  -3

  ),并思考此運算過(guò)程類(lèi)似于哪種運算?

  例2、(學(xué)生獨立完成)對任意向量

  ,b是否有以下結論:

  (1)(

  +

  )2=

  2+2

  ·

  +

  2

  (2)(

  +

  )·(

  -

  )=

  2—

  2

  例3、(師生共同完成)已知︱

  ︱=3,︱

  ︱=4, 且

  與

  不共線(xiàn),k為何值時(shí),向量

  +k

  與

  -k

  互相垂直?并思考:通過(guò)本題你有什么收獲?

  本節教材共安排了四道例題,我根據學(xué)生實(shí)際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質(zhì)和運算律的綜合應用,教學(xué)時(shí),我重點(diǎn)從對運算原理的分析和運算過(guò)程的規范書(shū)寫(xiě)兩個(gè)方面加強示范。完成計算后,進(jìn)一步提出問(wèn)題:此運算過(guò)程類(lèi)似于哪種運算?目的是想讓學(xué)生在類(lèi)比多項式乘法的基礎上自己猜測提出例2給出的兩個(gè)公式,再由學(xué)生獨立完成證明,一方面這并不困難,另一方面培養了學(xué)生通過(guò)類(lèi)比這一思維模式達到創(chuàng )新的目的。例3的主要作用是,在繼續鞏固性質(zhì)和運算律的同時(shí),教給學(xué)生如何利用數量積來(lái)判斷兩個(gè)向量的垂直,是平面向量數量積的基本應用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數與形的轉化原理。

  為了使學(xué)生更好的理解數量積的含義,熟練掌握性質(zhì)及運算律,并能夠應用數量積解決有關(guān)問(wèn)題,再安排如下練習:

  1、 下列兩個(gè)命題正確嗎?為什么?

 、、若

  ≠0,則對任一非零向量

  ,有

  ·

  ≠0.

 、、若

  ≠0,

  ·

  =

  ·

  ,則

  =

  .

  2、已知△ABC中,

  =

  ,

  =

  ,當

  ·

  <0或

  ·

  =0時(shí),試判斷△ABC的形狀。

  安排練習1的主要目的是,使學(xué)生在與實(shí)數乘法比較的基礎上全面認識數量積這一重要運算,

  通過(guò)練習2使學(xué)生學(xué)會(huì )用數量積表示兩個(gè)向量的夾角,進(jìn)一步感受數量積的應用價(jià)值。

  活動(dòng)六:小結提升與作業(yè)布置

  1、本節課我們學(xué)習的主要內容是什么?

  2、平面向量數量積的兩個(gè)基本應用是什么?

  3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運算律的探究過(guò)程中,滲透了哪些數學(xué)思想?

  4、類(lèi)比向量的線(xiàn)性運算,我們還應該怎樣研究數量積?

  通過(guò)上述問(wèn)題,使學(xué)生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時(shí)也為下

  一節做好鋪墊,繼續激發(fā)學(xué)生的求知欲。

  布置作業(yè):

  1、課本P121習題2.4A組1、2、3。

  2、拓展與提高:

  已知

  與

  都是非零向量,且

  +3

  與7

  -5

  垂直,

  -4

  與 7

  -2

  垂直求

  與

  的夾角。

  在這個(gè)環(huán)節中,我首先考慮檢測全體學(xué)生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學(xué)生繼續加深對數量積概念的理解和應用,為后續學(xué)習打好基礎。其次,為了能讓不同的學(xué)生在數學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問(wèn)題供學(xué)有余力的同學(xué)選做。

  六、教學(xué)評價(jià)設計

  評價(jià)方式的轉變是新課程改革的一大亮點(diǎn),課標指出:相對于結果,過(guò)程更能反映每個(gè)學(xué)生的發(fā)展變化,體現出學(xué)生成長(cháng)的歷程。因此,數學(xué)學(xué)習的評價(jià)既要重視結果,也要重視過(guò)程。結合“課標”對數學(xué)學(xué)習的評價(jià)建議,對本節課的教學(xué)我主要通過(guò)以下幾種方式進(jìn)行:

  1、 通過(guò)與學(xué)生的問(wèn)答交流,發(fā)現其思維過(guò)程,在鼓勵的基礎上,糾正偏差,并對其進(jìn)行定

  性的評價(jià)。

  2、在學(xué)生討論、交流、協(xié)作時(shí),教師通過(guò)觀(guān)察,就個(gè)別或整體參與活動(dòng)的態(tài)度和表現做出評價(jià),以此來(lái)調動(dòng)學(xué)生參與活動(dòng)的積極性。

  3、 通過(guò)練習來(lái)檢驗學(xué)生學(xué)習的效果,并在講評中,肯定優(yōu)點(diǎn),指出不足。

  4、 通過(guò)作業(yè),反饋信息,再次對本節課做出評價(jià),以便查漏補缺。

高中數學(xué)說(shuō)課稿 篇4

  一、教材分析:

  "數列"是中學(xué)數學(xué)的重要內容之一。不僅在歷年的高考中占有一定的比重,而且在實(shí)際生活中也經(jīng)常要用到數列的一些知識。例如:儲蓄、分期付款中的有關(guān)計算就要用到數列知識。

  就本節課而言,在給出數列的基本概念之后,結合例題,指出數列可以看作定義域為正整數集(或它的有限子集)的函數。因此,本節課的內容,一方面是前面函數知識的延伸及應用,可以使學(xué)生加深對函數概念的理解;另一方面也可以為后面學(xué)習等差數列、等比數列的通項、求和等知識打下鋪墊。所以本節課在教材中起到了"承上啟下"的作用,必須講清、講透。

  二、教學(xué)目標:

  根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標。

  1、知識目標:

 。1)形成并掌握數列及其有關(guān)概念,識記數列的表示和分類(lèi),了解數列通項公式的意義。

 。2)理解數列的通項公式,能根據數列的通項公式寫(xiě)出數列的任意一項。對比較簡(jiǎn)單的數列,使學(xué)生能根據數列的前幾項觀(guān)察歸納出數列的通項公式,并通過(guò)數列與函數的比較加深對數列的認識。

  2、能力目標:

  培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等分析問(wèn)題的能力,同時(shí)加深理解數學(xué)知識之間相互滲透性的思想。

  3、情感目標:

  通過(guò)滲透函數、方程思想,培養學(xué)生的思維能力,使學(xué)生在民主、和諧的活動(dòng)中感受學(xué)習的樂(lè )趣。通過(guò)介紹數列與函數間存在的特殊到一般關(guān)系,向學(xué)生進(jìn)行辯證唯物主義思想教育。

  三、重點(diǎn)、難點(diǎn):

  1、教學(xué)重點(diǎn)

  理解數列的概念及其通項公式,加強與函數的聯(lián)系,并能根據通項公式寫(xiě)出數列中的任意一項。

  2、教學(xué)難點(diǎn)

  根據數列前幾項的特點(diǎn),通過(guò)多角度、多層次的觀(guān)察和分析,歸納出數列的通項公式。

  四、教法學(xué)法

  本節課以"問(wèn)題情境——歸納抽象——鞏固訓練"的模式展開(kāi),引導學(xué)生從知識和生活經(jīng)驗出發(fā),提出問(wèn)題并與學(xué)生共同探索、討論解決問(wèn)題的方法,讓學(xué)生經(jīng)歷知識的形成過(guò)程,從而理解更加透徹。

  現代教學(xué)觀(guān)明確指出:教師是主導,學(xué)生是主體,學(xué)生應成為學(xué)習的主人。根據本節內容及學(xué)生的認知規律,針對不同內容應選擇不同的方法。對于國際象棋棋盤(pán)麥粒采用電腦動(dòng)畫(huà)演示,增強感性認識;所舉的引例及數列的函數定義,可采用探索發(fā)現法;對通項公式及數列的分類(lèi)等概念采用指導閱讀法;對于難題(根據數列的前幾項寫(xiě)出一個(gè)通項公式)采用講練結合法。

  "授人以魚(yú),不如授人以漁",平時(shí)在教學(xué)中教師應不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課從學(xué)生實(shí)際出發(fā),創(chuàng )設情境,引導學(xué)生觀(guān)察、分析,探索發(fā)現,歸納總結,培養學(xué)生積極思維的品質(zhì),加強主動(dòng)學(xué)習的能力。

  為了有效地突出重點(diǎn),突破難點(diǎn),增大課堂容量,提高課堂效率,本節課將常規教學(xué)手段與現代教學(xué)手段相結合,將引例、例題、練習等實(shí)物投影。

  五、教學(xué)過(guò)程

  1、創(chuàng )設情景,激發(fā)興趣,引入新課

 。1)電腦動(dòng)畫(huà)演示:國際象棋棋盤(pán)格子中放有麥粒的示意圖,從而得到一組數:1,2,22,23……263

  敘述故事:給你一張報紙,你可以用它登上月球,你相信嗎?只要不斷地將報紙對折42次以后,報紙的厚度就可以達到月球和地球的距離。

  設計意圖:以實(shí)例引入概念,再配以電腦動(dòng)畫(huà),敘述小故事,增強了感性認識,調動(dòng)學(xué)生學(xué)習新知識的積極性。

 。2)投影演示,再觀(guān)察以下幾列數:

 、倌嘲鄬W(xué)生的學(xué)號:1,2,3,4……,50

 、趶1984年到20xx年,中國體育健兒參加奧運會(huì )每屆所得的金牌數:

  15,5,16,16,28,32

 、勰炒位顒(dòng),在1km長(cháng)的路段,從起點(diǎn)開(kāi)始,每隔10m放置一個(gè)垃圾筒,由近及遠各筒與起點(diǎn)的距離排成一列數:0.10.20.30,……1000

 、芊派湫晕镔|(zhì)衰變,設原質(zhì)量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,……

  2、歸納抽象,形成概念

 。1)學(xué)生嘗試敘述數列的定義:?jiǎn)l(fā)學(xué)生觀(guān)察上述幾組數據后,進(jìn)行歸納總結定義:按一定次序排成的一列數,叫數列,便于培養學(xué)生的抽象概括能力。

  舉例1:1,3,5,7與7,5,3,1 這兩個(gè)數列有何區別?

  舉例2:-1,1,-1,1,……是不是一個(gè)數列?

  設計意圖:使學(xué)生注意把數列中的數和集合中的元素區分開(kāi)來(lái):

 、贁盗兄械臄凳怯许樞虻,而集合中的元素是無(wú)序的。

 、跀盗兄械臄悼梢灾貜统霈F,而集中的元素不能重復出現。

  進(jìn)一步加深學(xué)生對數列定義的理解。

 。2)數列的項及項的表示方法: an

 。3)數列的表示方法:可寫(xiě)成:a1,a2,a3,……,an……

  或簡(jiǎn)記為:{an},注意an與{an}的區別

  上述(2)(3)采用指導閱讀法(書(shū)P106頁(yè)第7節~第8節第一句話(huà)),對an與{an}的區別進(jìn)行集體討論歸納。

  3、通項公式的探索

 。1)觀(guān)察歸納定義

  由學(xué)生觀(guān)察引例中數列的項與它在數列中的位置(即項的序號)間的關(guān)系:

  實(shí)物投影:

  序號 1 2 3 …… 64

  ↓ ↓ ↓ ↓

  項 1= 21-1 2=22-1 22 = 23-1 …… 263

  從而可看出項與項的序號之間可用一個(gè)公式:an =2n-1表示,該公式叫數列的通項公式,然后歸納抽象出數列的通項公式的定義(略)。

 。2)用函數觀(guān)點(diǎn)看待數列:這是一個(gè)難點(diǎn),講解必須清楚、透徹。數列可看作是以自然數集或它的有限子集為定義域的函數,當自變量由小到大依次取值時(shí)對應的一列函數值(這是數列的本質(zhì)),其圖象是一群孤立的點(diǎn),畫(huà)圖(棋盤(pán)麥粒這個(gè)數列)

  設計意圖:加深對函數概念的理解。

 。3)數列的分類(lèi),并口答引例及數列①②③④分別歸于哪類(lèi)數列。

  4、講解例題

  設計例題:①根據通項公式寫(xiě)出前幾項并會(huì )判斷某個(gè)數是否為該數列中的項;②根據數列的前幾項寫(xiě)出一個(gè)通項公式。

  例1,根據下列數列{an}的通項公式,寫(xiě)出它的前5項

 。1) an= n/(n+1) (2)an=(-1)n · n

  設計意圖:使學(xué)生正確掌握通項與序號的關(guān)系。

  變式訓練:?jiǎn)?wèn) 2589/2590是否為數列(1)中的項

  設計意圖:使學(xué)生明確方程思想是解決數列問(wèn)題的重要方法。

  例2,寫(xiě)出下列數列的一個(gè)通項公式,使它的前4項分別是下列各數:

 。1)1,3,5,7

 。2)2, -2,2 ,-2

 。3)1 ,11 ,111 ,

  設計意圖:引導學(xué)生進(jìn)行解題后反思,對完善學(xué)生的認知結構是十分必要。寫(xiě)通項公式時(shí),就是要去發(fā)現an與n的關(guān)系,對各項進(jìn)行多角度、多層次觀(guān)察,找出這些項與相應的項數(即序號)之間的對應關(guān)系。(注:遇到分數,可分別觀(guān)察分子組的數列特征與分母組成的數列特征;若為正負相間的項,則可用-1的奇次冪或偶次冪進(jìn)行符號交換,有時(shí)也可根據相鄰的項,適當調整有關(guān)的表達式。)

  5、練習鞏固

  投影演示:

 。1)寫(xiě)出數列1,-1,1,-1,……的一個(gè)通項公式

 。2)是否所有數列都有通項公式?

  上述(1)的設計意圖:an=(-1)n+1也可寫(xiě)成 (分段函數的形式)(當n為奇數時(shí),n為偶數時(shí)),說(shuō)明根據數列的前幾項寫(xiě)出的通項公式可能不唯一。(2):引例②就沒(méi)有通項公式。通過(guò)這些練習,使學(xué)生能及時(shí)消化,及時(shí)鞏固所學(xué)內容。

  6、歸納小結

  由學(xué)生試著(zhù)總結本節課所學(xué)內容,老師適當補充,可以訓練學(xué)生的收斂思維,有助于完善學(xué)生的思維結構。

 。1) 數列及有關(guān)概念。

 。2) 根據數列的通項公式求任意一項,并能判斷某數是否為該數列中的項。

 。3) 根據數列的前幾項寫(xiě)出數列的一個(gè)通項公式。

 。4) 數列與函數的關(guān)系

  7、課后作業(yè):

 。1)課本P110/習題3.1/1(3)(4)(5);2、書(shū)P108/4(1)(3)(4)

 。2)復習看書(shū)P106-107

  六、評價(jià)與分析

  本節課,教師可通過(guò)創(chuàng )設情景,適時(shí)引導的方式來(lái)激發(fā)學(xué)生積極思考的欲望,有時(shí)直接講解,有時(shí)組織掌握學(xué)生集體討論、探索發(fā)現,課堂上除反復強調注意點(diǎn)外,還應通過(guò)課堂練習和課后作業(yè)來(lái)強化它們。

  通過(guò)本節課的學(xué)習,學(xué)生不僅掌握了數列及有關(guān)概念,而且可體會(huì )到數學(xué)概念形成過(guò)程中蘊含的基本數學(xué)思想:"函數思想、數形結合思想、特殊化思想",使之獲得內心感受,提高了基本技能和解決問(wèn)題的能力,也可以逐漸學(xué)會(huì )辯證地看待問(wèn)題。

高中數學(xué)說(shuō)課稿 篇5

  各位老師:

  大家好!我叫***,來(lái)自**。我說(shuō)課的題目是《概率的基本性質(zhì)》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時(shí)安排為三個(gè)課時(shí),本節課內容為第三課時(shí)。下面我將從教材分析、教學(xué)目標分析、教法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:

  一、教材分析

  1、教材所處的地位和作用

  本節課主要包含了兩部分內容:一是事件的關(guān)系與運算,二是概率的基本性質(zhì),多以基本概念和性質(zhì)為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個(gè)教學(xué)中起到承上啟下的作用。同時(shí)也是新課改以來(lái)考查的熱點(diǎn)之一。

  2、教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):概率的加法公式及其應用;事件的關(guān)系與運算。

  難點(diǎn):互斥事件與對立事件的區別與聯(lián)系

  二、教學(xué)目標分析

  1.知識與技能目標

 、帕私怆S機事件間的基本關(guān)系與運算;

 、普莆崭怕实膸讉(gè)基本性質(zhì),并會(huì )用其解決簡(jiǎn)單的概率問(wèn)題。

  2、過(guò)程與方法:

 、磐ㄟ^(guò)觀(guān)察、類(lèi)比、歸納培養學(xué)生運用數學(xué)知識的綜合能力;

 、仆ㄟ^(guò)學(xué)生自主探究,合作探究培養學(xué)生的動(dòng)手探索的能力。

  3、情感態(tài)度與價(jià)值觀(guān):

  通過(guò)數學(xué)活動(dòng),了解教學(xué)與實(shí)際生活的密切聯(lián)系,感受數學(xué)知識應用于現實(shí)世界的具體情境,從而激發(fā)學(xué)習數學(xué)的情趣。

  三、教法分析

  采用實(shí)驗觀(guān)察、質(zhì)疑啟發(fā)、類(lèi)比聯(lián)想、探究歸納的教學(xué)方法。

  四、教學(xué)過(guò)程分析

  1、創(chuàng )設情境,引入新課

  在擲骰子的試驗中,我們可以定義許多事件,如:

  c1=﹛出現的點(diǎn)數=1﹜,c2=﹛出現的點(diǎn)數=2﹜

  c3=﹛出現的點(diǎn)數=3﹜,c4=﹛出現的點(diǎn)數=4﹜

  c5=﹛出現的點(diǎn)數=5﹜,c6=﹛出現的點(diǎn)數=6﹜

  D1=﹛出現的點(diǎn)數不大于1﹜D2=﹛出現的點(diǎn)數大于3﹜

  D3=﹛出現的點(diǎn)數小于5﹜,E=﹛出現的點(diǎn)數小于7﹜

  f=﹛出現的點(diǎn)數大于6﹜,G=﹛出現的點(diǎn)數為偶數﹜

  H=﹛出現的點(diǎn)數為奇數﹜

 、乓砸肜械氖录㧟1和事件H,事件c1和事件D1為例講授事件之的包含關(guān)系和相等關(guān)系。

 、茝囊陨蟽蓚(gè)關(guān)系學(xué)生不難發(fā)現事件間的關(guān)系與集合間的關(guān)系相類(lèi)似。進(jìn)而引導學(xué)生思考,是否可以把事件和集合對應起來(lái)。

  「設計意圖」引出我們接下來(lái)要學(xué)習的主要內容:事件之間的關(guān)系與運算

  2、探究新知

 、迨录年P(guān)系與運算

 、沤(jīng)過(guò)上面的思考,我們得出:

  試驗的可能結果的全體←→全集

  ↓↓

  每一個(gè)事件←→子集

  這樣我們就把事件和集合對應起來(lái)了,用已有的集合間關(guān)系來(lái)分析事件間的關(guān)系。

  集合的并→兩事件的并事件(和事件)

  集合的交→兩事件的交事件(積事件)

  在此過(guò)程中要注意幫助學(xué)生區分集合關(guān)系與事件關(guān)系之間的不同。

 。ɡ纾簝杉螦∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發(fā)生,表示或者事件A發(fā)生,或者事件B發(fā)生。)

  「設計意圖」為更好地理解互斥事件和對立事件打下基礎,

 、扑伎迹孩偃糁粩S一次骰子,則事件c1和事件c2有可能同時(shí)發(fā)生么?

 、谠跀S骰子實(shí)驗中事件G和事件H是否一定有一個(gè)會(huì )發(fā)生?

  「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來(lái)將要學(xué)習的互斥事件和對立事件,讓學(xué)生從實(shí)際案例中體驗它們各自的特征以及它們之間的區別與聯(lián)系。

 、强偨Y出互斥事件和對立事件的概念,并通過(guò)多媒體的圖形演示使學(xué)生們能更好地理解它們的特征以及它們之間的區別與聯(lián)系。

 、染毩暎和ㄟ^(guò)多媒體顯示兩道練習,目的是讓學(xué)生們能夠及時(shí)鞏固對互斥事件和對立事件的學(xué)習,加深理解。

 、娓怕实幕拘再|(zhì):

 、呕仡櫍侯l率=頻數/試驗的次數

  我們知道當試驗次數足夠大時(shí),用頻率來(lái)估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì)、

 。ㄍㄟ^(guò)對頻率的理解并結合前面投硬幣的實(shí)驗來(lái)總結出概率的基本性質(zhì),師生共同交流得出結果)

  3、典型例題探究

  例1一個(gè)射手進(jìn)行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?

  事件A:命中環(huán)數大于7環(huán);事件B:命中環(huán)數為10環(huán);

  事件c:命中環(huán)數小于6環(huán);事件D:命中環(huán)數為6、7、8、9、10環(huán)、

  分析:要判斷所給事件是對立還是互斥,首先將兩個(gè)概念的聯(lián)系與區別弄清楚

  例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問(wèn):

 。1)取到紅色牌(事件c)的概率是多少?

 。2)取到黑色牌(事件D)的概率是多少?

  分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).

  「設計意圖」通過(guò)這兩道例題,進(jìn)一步鞏固學(xué)生對本節課知識的掌握,并將所學(xué)知識應用到實(shí)際解決問(wèn)題中去。

  4、課堂小結

 、爬斫馐录年P(guān)系和運算

 、普莆崭怕实幕拘再|(zhì)

  「設計意圖」小結是引導學(xué)生對問(wèn)題進(jìn)行回味與深化,使知識成為系統。讓學(xué)生嘗試小結,提高學(xué)生的總結能力和語(yǔ)言表達能力。教師補充幫助學(xué)生全面地理解,掌握新知識。

  5、布置作業(yè)

  習題3、1A1、3、4

  「設計意圖」課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。

  五、板書(shū)設計

  概率的基本性質(zhì)

  一、事件間的關(guān)系和運算

  二、概率的基本性質(zhì)

  三、例1的板書(shū)區

  例2的板書(shū)區

  四、規律性質(zhì)總結

高中數學(xué)說(shuō)課稿 篇6

  一、教材分析

 。ㄒ唬┑匚慌c作用

  《冪函數》選自高一數學(xué)新教材必修1第2章第3節。是基本初等函數之一,它不僅有著(zhù)廣泛的實(shí)際應用,而且起著(zhù)承前啟后的作用。從教材的整體安排看,學(xué)習了解冪函數是為了讓學(xué)生進(jìn)一步獲得比較系統的函數知識和研究函數的方法,為今后學(xué)習三角函數等其他函數打下良好的基礎.在初中曾經(jīng)研究過(guò)y=x,y=x2,y=x—1三種冪函數。這節內容,是對初中有關(guān)內容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節內容之后, 將把指數函數,對數函數,冪函數科學(xué)的組織起來(lái),體現充滿(mǎn)在整個(gè)數學(xué)中的組織化,系統化的精神。讓學(xué)生了解系統研究一類(lèi)函數的方法.這節課要特別讓學(xué)生去體會(huì )研究的方法,以便能將該方法遷移到對其他函數的研究.

 。ǘ⿲W(xué)情分析

 。1)學(xué)生已經(jīng)接觸的函數,確立利用函數的定義域、值域、奇偶性、單調性研究一個(gè)函數的意識 ,已初步形成對數學(xué)問(wèn)題的合作探究能力。

 。2)雖然前面學(xué)生已經(jīng)學(xué)會(huì )用描點(diǎn)畫(huà)圖的方法來(lái)繪制指數函數,對數函數圖像,但是對于冪函數的圖像畫(huà)法仍然缺乏感性認識。

 。3)學(xué)生層次參差不齊,個(gè)體差異比較明顯。

  二、目標分析

  新課標指出“三維目標”是一個(gè)密切聯(lián)系的有機整體。

 。ㄒ唬┙虒W(xué)目標

 。1)知識與技能

 、偈箤W(xué)生理解冪函數的概念,會(huì )畫(huà)冪函數的圖象。

 、谧寣W(xué)生結合這幾個(gè)冪函數的圖象,理解冪函圖象的變化情況和性質(zhì)。

 。2)過(guò)程與方法

 、僮寣W(xué)生通過(guò)觀(guān)察、總結冪函數的性質(zhì),培養學(xué)生概括抽象和識圖能力。

 、谑箤W(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。

 。3)情感態(tài)度與價(jià)值觀(guān)

 、偻ㄟ^(guò)熟悉的例子讓學(xué)生消除對冪函數的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習興趣。

 、诶枚嗝襟w,了解冪函數圖象的變化規律,使學(xué)生認識到現代技術(shù)在數學(xué)認知過(guò)程中的作用,從而激發(fā)學(xué)生的學(xué)習欲望。

 、叟囵B學(xué)生從特殊歸納出一般的意識,培養學(xué)生利用圖像研究函數奇偶性的能力。并引導學(xué)生發(fā)現數學(xué)中的對稱(chēng)美,讓學(xué)生在畫(huà)圖與識圖中獲得學(xué)習的快樂(lè )。

 。ǘ┲攸c(diǎn)難點(diǎn)

  根據我對本節課的內容的理解,我將重難點(diǎn)定為:

  重點(diǎn):從五個(gè)具體的冪函數中認識概念和性質(zhì)

  難點(diǎn):從冪函數的圖象中概括其性質(zhì)。

  三、教法、學(xué)法分析

 。ㄒ唬┙谭

  教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,教師要善于啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性,要有效地滲透數學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法。

  1、引導發(fā)現比較法

  因為有五個(gè)冪函數,所以可先通過(guò)學(xué)生動(dòng)手畫(huà)出函數的圖象,觀(guān)察它們的解析式和圖象并從式的角度和形的角度發(fā)現異同,并進(jìn)行比較,從而更深刻地領(lǐng)會(huì )冪函數概念以及五個(gè)冪函數的圖象與性質(zhì)。

  2、借助信息技術(shù)輔助教學(xué)

  由于多媒體信息技術(shù)能具有形象生動(dòng)易吸引學(xué)生注意的特點(diǎn),故此,可用多媒體制作引入情境,將學(xué)生引到這節課的學(xué)習中來(lái)。再利用《幾何畫(huà)板》畫(huà)出五個(gè)冪函數的圖象,為學(xué)生創(chuàng )設豐富的數形結合環(huán)境,幫助學(xué)生更深刻地理解冪函數概念以及在冪函數中指數的變化對函數圖象形狀和單調性的影響,并由此歸納冪函數的性質(zhì)。

  3、練習鞏固討論學(xué)習法

  這樣更能突出重點(diǎn),解決難點(diǎn),使學(xué)生既能夠進(jìn)行深入地獨立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來(lái)學(xué)生對這五個(gè)冪函數領(lǐng)會(huì )得會(huì )更加深刻,在這個(gè)過(guò)程中學(xué)生們分析問(wèn)題和解決問(wèn)題的能力得到進(jìn)一步的提高,班級整體學(xué)習氛氛圍也變得更加濃厚。

 。ǘ⿲W(xué)法

  本節課主要是通過(guò)對冪函數模型的特征進(jìn)行歸納,動(dòng)手探索冪函數的圖像,觀(guān)察發(fā)現其有關(guān)性質(zhì),再改變觀(guān)察角度發(fā)現奇偶函數的特征。重在動(dòng)手操作、觀(guān)察發(fā)現和歸納的過(guò)程。

  由于冪函數在第一象限的特征是學(xué)生不容易發(fā)現的問(wèn)題,因此在教學(xué)過(guò)程中引導學(xué)生將抽象問(wèn)題具體化,借助多媒體進(jìn)行動(dòng)態(tài)演化,以形成較完整的知識結構。

  四、教學(xué)過(guò)程分析

 。ㄒ唬┙虒W(xué)過(guò)程設計

 。1)創(chuàng )設情境,提出問(wèn)題。 新課標指出:“應該讓學(xué)生在具體生動(dòng)的情境中學(xué)習數學(xué)”。在本節課的教學(xué)中,從我們熟悉的生活情境中提出問(wèn)題,問(wèn)題的設計改變了傳統目的明確的設計方式,給學(xué)生最大的思考空間,充分體現學(xué)生主體地位。

  問(wèn)題1:下列問(wèn)題中的函數各有什么共同特征?是否為指數函數?

  由學(xué)生討論,總結,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

  這時(shí)學(xué)生觀(guān)察可能有些困難,老師提示可以用x表示自變量,用y表示函數值,上述函數式變成:

  都是自變量的若干次冪的形式。都是形如

  的函數。

  揭示課題:今天這節課,我們就來(lái)研究:冪函數

 。ㄒ唬┱n堂主要內容

 。1)冪函數的概念

 、賰绾瘮档亩x。

  一般地,函數

  叫做冪函數,其中x 是自變量,a是常數。

 、趦绾瘮蹬c指數函數之間的區別。

  冪函數——底數是自變量,指數是常數;

  指數函數——指數是自變量,底數是常數。

 。2)幾個(gè)常見(jiàn)冪函數的圖象和性質(zhì)

  由同學(xué)們畫(huà)出下列常見(jiàn)的冪函數的圖象,并根據圖象將發(fā)現的性質(zhì)填入表格

  根據上表的內容并結合圖象,總結函數的共同性質(zhì)。讓學(xué)生交流,老師結合學(xué)生的回答組織學(xué)生總結出性質(zhì)。

  以上問(wèn)題的設計意圖:數形結合是一個(gè)重要的數學(xué)思想方法,它包含以數助形,和以形助數的思想。通過(guò)問(wèn)題設計讓學(xué)生著(zhù)手實(shí)際,借助行的生動(dòng)來(lái)闡明冪函數的性質(zhì)。

  教師講評:冪函數的性質(zhì).

 、偎械膬绾瘮翟冢0,+∞)上都有定義,并且圖像都過(guò)點(diǎn)(1,1).

 、谌绻鸻>0,則冪函數的圖像通過(guò)原點(diǎn),并在區間〔0,+∞)上是增函數.

 、廴绻鸻<0,則冪函數在(0,+∞)上是減函數,在第一象限內,當x從右邊趨向于原點(diǎn)時(shí),圖像在y軸右方無(wú)限地趨近y軸;當x趨向于+∞時(shí),圖像在x軸上方無(wú)限地趨近x軸.

 、墚攁為奇數時(shí),冪函數為奇函數;當a為偶數時(shí),冪函數為偶函數。

  以問(wèn)題設計為主,通過(guò)問(wèn)題,讓學(xué)生由已經(jīng)學(xué)過(guò)的指數函數,對數函數,描點(diǎn)作圖得到五個(gè)冪函數的圖像,但是我們應該知道繪制冪函數的圖像比繪制指數函數和對數函數的圖像更為復雜,因為冪函數隨著(zhù)冪指數的輕微變化會(huì )出現較大的變化,因此,在描點(diǎn)作圖之前,應引導學(xué)生對幾個(gè)特殊的冪函數的性質(zhì)先進(jìn)行初步的探究,如分析函數的定義域,奇偶性等,在根據研究結果和描點(diǎn)作圖畫(huà)出圖像,讓學(xué)生觀(guān)察所作圖像特征,并由圖象特征得到相應的函數性質(zhì),讓學(xué)生充分體會(huì )系統的研究方法。同時(shí)學(xué)生對于歸納性質(zhì)這一環(huán)節相對指數函數,對數函數的性質(zhì),學(xué)生會(huì )有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認識,而不必在一般冪函數上作過(guò)多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。

  通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識識的再次深化。

 。3)當堂訓練,鞏固深化

  例題和練習題的選取應結合學(xué)生認知探究,鞏固本節課的重點(diǎn)知識,并能用知識加以運用。本節課選取主要選取了兩道例題。

  例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數。這題先從“形”的角度判斷函數的單調區間和單調性,再用到定義從“數”的角度對函數的單調性進(jìn)行推理論證,培養學(xué)生的數形結合的數學(xué)思想和解決問(wèn)題的專(zhuān)業(yè)素養。

  例2是補充例題,主要培養學(xué)生根據體例構造出函數,并利用函數的性質(zhì)來(lái)解決問(wèn)題的能力,從而加深學(xué)生對冪函數及其性質(zhì)的理解。注意:由于學(xué)生對冪函數還不是很熟悉,所以在講評中要刻意體現出冪函數y=x1。3是增函數與y=x—5/4的圖像的畫(huà)法,即再一次讓學(xué)生體會(huì )根據解析式來(lái)畫(huà)圖像解題這一基本思路

 。4)小結歸納,回顧反思。 小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。我設計了三個(gè)問(wèn)題:

 。1)通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識?

 。2)通過(guò)本節課的學(xué)習,你最大的體驗是什么?

 。3)通過(guò)本節課的學(xué)習,你掌握了哪些技能?

 。ǘ┳鳂I(yè)設計 作業(yè)分為必做題和選做題,必做題對本節課學(xué)生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習氛圍的形成. 我設計了以下作業(yè):

 。1)必做題

 。2)選做題

 。ㄈ┌鍟(shū)設計

  板書(shū)要基本體現整堂課的內容與方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。

  五、評價(jià)分析

  學(xué)生學(xué)習的結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對冪函數是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。

  謝謝!

【關(guān)于高中數學(xué)說(shuō)課稿模板集合六篇】相關(guān)文章:

關(guān)于高中數學(xué)說(shuō)課稿模板集合八篇08-07

關(guān)于高中數學(xué)說(shuō)課稿模板集合七篇08-12

高中數學(xué)說(shuō)課稿模板集合五篇07-18

關(guān)于高中數學(xué)說(shuō)課稿集合10篇07-19

關(guān)于高中數學(xué)說(shuō)課稿模板六篇06-22

精選高中數學(xué)說(shuō)課稿模板集合8篇08-06

精選高中數學(xué)說(shuō)課稿模板集合五篇08-02

有關(guān)高中數學(xué)說(shuō)課稿模板集合八篇08-02

高中數學(xué)說(shuō)課稿模板集合七篇07-30

激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频