- 二次根式教案 推薦度:
- 二次根式的乘除教案 推薦度:
- 相關(guān)推薦
二次根式教案(通用9篇)
作為一位杰出的教職工,就不得不需要編寫(xiě)教案,借助教案可以恰當地選擇和運用教學(xué)方法,調動(dòng)學(xué)生學(xué)習的積極性。那么什么樣的教案才是好的呢?下面是小編精心整理的二次根式教案,僅供參考,大家一起來(lái)看看吧。
二次根式教案 篇1
【 學(xué)習目標 】
1、知識與技能:了解二次根式的概念,能求根號內字母范圍,理解二次根式的雙重非負性,并能應用它解決相關(guān)問(wèn)題。
2、過(guò)程與方法:進(jìn)一步體會(huì )分類(lèi)討論的數學(xué)思想。
3、情感、態(tài)度與價(jià)值觀(guān):通過(guò)小組合作學(xué)習,體驗在合作探索中學(xué)習數學(xué)的樂(lè )趣。
【 學(xué)習重難點(diǎn) 】
1、重點(diǎn):準確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計算。
2、難點(diǎn):準確理解二次根式的'雙重非負性。
【 學(xué)習內容 】課本第2— 3頁(yè)
【 學(xué)習流程 】
一、 課前準備(預習學(xué)案見(jiàn)附件1)
學(xué)生在家中認真閱讀理解課本中相關(guān)內容的知識,并根據自己的理解完成預習學(xué)案。
二、 課堂教學(xué)
(一)合作學(xué)習階段。
教師出示課堂教學(xué)目標及引導材料,各學(xué)習小組結合本節課學(xué)習目標,根據課堂引導材料中得內容,以小組合作的形式,組內交流、總結,并記錄合作學(xué)習中碰到的問(wèn)題。組內各成員根據課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀(guān)察各小組合作學(xué)習的情況,并進(jìn)行及時(shí)的引導、點(diǎn)撥,對普遍存在的問(wèn)題做好記錄。
(二)集體講授階段。(15分鐘左右)
1. 各小組推選代表依次對課堂引導材料中的問(wèn)題進(jìn)行解答,不足的本組成員可以補充。
2. 教師對合作學(xué)習中存在的普遍的不能解決的問(wèn)題進(jìn)行集體講解。
3. 各小組提出本組學(xué)習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。
(三)當堂檢測階段
為了及時(shí)了解本節課學(xué)生的學(xué)習效果,及對本節課進(jìn)行及時(shí)的鞏固,對學(xué)生進(jìn)行當堂檢測,測試完試卷上交。
(注:合作學(xué)習階段與集體講授階段可以根據授課內容進(jìn)行適當調整次序或交叉進(jìn)行)
三、 課后作業(yè)(課后作業(yè)見(jiàn)附件2)
教師發(fā)放根據本節課所學(xué)內容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。
四、板書(shū)設計
課題:二次根式(1)
二次根式概念 例題 例題
二次根式性質(zhì)
二次根式教案 篇2
教材分析:
本節內容出自九年級數學(xué)上冊第二十一章第三節的第一課時(shí),本節在研究最簡(jiǎn)二次根式和二次根式的乘除的基礎上,來(lái)學(xué)習二次根式的加減運算法則和進(jìn)一步完善二次根式的化簡(jiǎn)。本小節重點(diǎn)是二次根式的加減運算,教材從一個(gè)實(shí)際問(wèn)題引出二次根式的加減運算,使學(xué)生感到研究二次根式的加減運算是解決實(shí)際問(wèn)題的需要。通過(guò)探索二次根式加減運算,并用其解決一些實(shí)際問(wèn)題,來(lái)提高我們用數學(xué)解決實(shí)際問(wèn)題的意識和能力。另外,通過(guò)本小節學(xué)習為后面學(xué)生熟練進(jìn)行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。
學(xué)生分析:
本節課的內容是知識的延續和創(chuàng )新,學(xué)生積極主動(dòng)的投入討論、交流、建構中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識和創(chuàng )新能力,通過(guò)自學(xué)、小組討論大部分學(xué)生能夠達到教學(xué)目標,少部分學(xué)生有困難,基礎差、自學(xué)能力差,因此要提供賞識性評價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當的精神激勵,克服自卑心理,讓他們逐步樹(shù)立自尊心與自信心,從而完成自己的學(xué)習任務(wù)。
設計理念:
新課程有效課堂教學(xué)明確倡導,學(xué)生是學(xué)習的主人,在學(xué)生自學(xué)文本的基礎上動(dòng)手實(shí)踐、自主探究、合作交流,來(lái)倡導新的學(xué)習觀(guān),讓他們完成二次根式加減知識研究。教師從過(guò)去知識的傳授者轉變?yōu)閷W(xué)生的'自主性、探究性、合作性學(xué)習活動(dòng)的設計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過(guò)程中教師設置開(kāi)放的、面向實(shí)際的、富有挑戰性的問(wèn)題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養分析、歸納、總結的能力,把“要我學(xué)”變成“我要學(xué)”,通過(guò)開(kāi)放式命題,嘗試從不同角度尋求解決問(wèn)題的方法,養成良好的學(xué)習習慣,掌握學(xué)習策略,并根據活動(dòng)中示范和指導培養學(xué)生大膽闡述并討論觀(guān)點(diǎn),說(shuō)明所獲討論的有效性,并對推論進(jìn)行評價(jià)。從而營(yíng)造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習。
教學(xué)目標知識與技能目標:
會(huì )化簡(jiǎn)二次根式,了解同類(lèi)二次根式的概念,會(huì )進(jìn)行簡(jiǎn)單的二次根式的加減法;通過(guò)加減運算解決生活的實(shí)際問(wèn)題。
過(guò)程與方法目標:
通過(guò)類(lèi)比整式加減法運算體驗二次根式加減法運算的過(guò)程;學(xué)生經(jīng)歷由實(shí)際問(wèn)題引入數學(xué)問(wèn)題的過(guò)程,發(fā)展學(xué)生的抽象概括能力。
情感態(tài)度與價(jià)值觀(guān):
通過(guò)對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數學(xué)學(xué)習的過(guò)程中來(lái),使他們體驗到成功的樂(lè )趣.
重點(diǎn)、難點(diǎn):重點(diǎn):
合并被開(kāi)放數相同的同類(lèi)二次根式,會(huì )進(jìn)行簡(jiǎn)單的二次根式的加減法。
難點(diǎn):
二次根式加減法的實(shí)際應用。
關(guān)鍵問(wèn)題 :
了解同類(lèi)二次根式的概念,合并同類(lèi)二次根式,會(huì )進(jìn)行二次根式的加減法。
教學(xué)方法:.
1. 引導發(fā)現法:在教師的啟發(fā)引導下,鼓勵學(xué)生積極參與,與實(shí)際問(wèn)題相結合,采用“問(wèn)題—探索—發(fā)現”的研究模式,讓學(xué)生自主探索,合作學(xué)習,歸納結論,掌握規律。
2. 類(lèi)比法:由實(shí)際問(wèn)題導入二次根式加減運算;類(lèi)比合并同類(lèi)項合并同類(lèi)二次根式。
3.嘗試訓練法:通過(guò)學(xué)生嘗試,教師針對個(gè)別問(wèn)題進(jìn)行點(diǎn)撥指導,實(shí)現全優(yōu)的教育效果。
[二次根式教案]相關(guān)文章:
1.同類(lèi)二次根式教學(xué)視頻
2.一元二次方程教案
3.整式的加減教案
4.誡子書(shū)教案
5.題西林壁教案
6.一元二次方程的解法教學(xué)設計
7.一元二次方程求根公式
8.一元二次方程的解法
9.一元二次方程練習題
10.一元二次方程及其應用
二次根式教案 篇3
一、內容和內容解析
1.內容
二次根式的概念.
2.內容解析
本節課是在學(xué)生學(xué)習了平方根、算術(shù)平方根、立方根的概念,會(huì )用根號表示數的平方根、立方根,知道開(kāi)方與乘方互為逆運算的基礎上,來(lái)學(xué)習二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應用,也為后面學(xué)習二次根式的性質(zhì)和四則運算打基礎.
教材先設置了三個(gè)實(shí)際問(wèn)題,這些問(wèn)題的結果都可以表示成二次根式的形式,它們都表示一些正數的算術(shù)平方根,由此引出二次根式的定義. 再通過(guò)例1討論了二次根式中被開(kāi)方數字母的取值范圍的問(wèn)題,加深學(xué)生對二次根式的定義的理解.
本節課的教學(xué)重點(diǎn)是:了解二次根式的概念;
二、目標和目標解析
1.教學(xué)目標
。1)體會(huì )研究二次根式是實(shí)際的需要.
。2)了解二次根式的概念.
2. 教學(xué)目標解析
。1)學(xué)生能用二次根式表示實(shí)際問(wèn)題中的數量和數量關(guān)系,體會(huì )研究二次根式的必要性.
。2)學(xué)生能根據算術(shù)平方根的意義了解二次根式的概念,知道被開(kāi)方數必須是非負數的理由,知道二次根式本身是一個(gè)非負數,會(huì )求二次根式中被開(kāi)方數字母的取值范圍.
三、教學(xué)問(wèn)題診斷分析
對于二次根式的定義,應側重讓學(xué)生理解 “ 的雙重非負性,”即被開(kāi)方數 ≥0是非負數, 的算術(shù)平方根 ≥0也是非負數.教學(xué)時(shí)注意引導學(xué)生回憶在實(shí)數一章所學(xué)習的`有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運用被開(kāi)方數是非負數這一條件進(jìn)行二次根式有意義的判斷.
本節課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負性.
四、教學(xué)過(guò)程設計
1.創(chuàng )設情境,提出問(wèn)題
問(wèn)題1你能用帶有根號的的式子填空嗎?
。1)面積為3 的正方形的邊長(cháng)為_(kāi)______,面積為S 的正方形的邊長(cháng)為_(kāi)______.
。2)一個(gè)長(cháng)方形圍欄,長(cháng)是寬的2 倍,面積為130?,則它的寬為_(kāi)_____.
。3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間 t(單位:s)與開(kāi)始落下的高度h(單位:)滿(mǎn)足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.
師生活動(dòng):學(xué)生獨立完成上述問(wèn)題,用算術(shù)平方根表示結果,教師進(jìn)行適當引導和評價(jià).
【設計意圖】讓學(xué)生在填空過(guò)程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì )研究二次根式的必要性.
問(wèn)題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?
師生活動(dòng):教師引導學(xué)生說(shuō)出各式的意義,概括它們的共同特征:都表示一個(gè)非負數(包括字母或式子表示的非負數)的算術(shù)平方根.
【設計意圖】為概括二次根式的概念作鋪墊.
2.抽象概括,形成概念
問(wèn)題3 你能用一個(gè)式子表示一個(gè)非負數的算術(shù)平方根嗎?
師生活動(dòng):學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱(chēng)為二次根號.
【設計意圖】讓學(xué)生體會(huì )由特殊到一般的過(guò)程,培養學(xué)生的概括能力.
追問(wèn):在二次根式的概念中,為什么要強調“a≥0”?
師生活動(dòng):教師引導學(xué)生討論,知道二次根式被開(kāi)方數必須是非負數的理由.
【設計意圖】進(jìn)一步加深學(xué)生對二次根式被開(kāi)方數必須是非負數的理解.
3.辨析概念,應用鞏固
例1 當 時(shí)怎樣的實(shí)數時(shí), 在實(shí)數范圍內有意義?
師生活動(dòng):引導學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對二次根式的被開(kāi)方數為非負數的理解.
例2 當 是怎樣的實(shí)數時(shí), 在實(shí)數范圍內有意義? 呢?
師生活動(dòng):先讓學(xué)生獨立思考,再追問(wèn).
【設計意圖】在辨析中,加深學(xué)生對二次根式被開(kāi)方數為非負數的理解.
問(wèn)題4 你能比較 與0的大小嗎?
師生活動(dòng):通過(guò)分 和 這兩種情況的討論,比較 與0的大小,引導學(xué)生得出 ≥0的結論,強化學(xué)生對二次根式本身為非負數的理解,
【設計意圖】通過(guò)這一活動(dòng)的設計,提高學(xué)生對所學(xué)知識的遷移能力和應用意識;培養學(xué)生分類(lèi)討論和歸納概括的能力.
4.綜合運用,鞏固提高
練習1 完成教科書(shū)第3頁(yè)的練習.
練習2 當x 是什么實(shí)數時(shí),下列各式有意義.
【設計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.
【設計意圖】設計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,開(kāi)闊學(xué)生的視野,訓練學(xué)生的思維.
5.總結反思
教師和學(xué)生一起回顧本節課所學(xué)主要內容,并請學(xué)生回答以下問(wèn)題.
。1)本節課你學(xué)到了哪一類(lèi)新的式子?
。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?
。3)二次根式與算術(shù)平方根有什么關(guān)系?
師生活動(dòng):教師引導,學(xué)生小結.
【設計意圖】:學(xué)生共同總結,互相取長(cháng)補短,再一次突出本節課的學(xué)習重點(diǎn),掌握解題方法.
6.布置作業(yè):
教科書(shū)習題16.1第1,3,5, 7,10題.
五、目標檢測設計
1. 下列各式中,一定是二次根式的是( )
A. B. C. D.
【設計意圖】考查對二次根式概念的了解,要特別注意被開(kāi)方數為非負數.
2. 當 時(shí),二次根式 無(wú)意義.
【設計意圖】考查二次根式無(wú)意義的條件,即被開(kāi)方數小于0,要注意審題.
3.當 時(shí),二次根式 有最小值,其最小值是 .
【設計意圖】本題主要考查二次根式被開(kāi)方數是非負數的靈活運用.
4.對于 ,小紅根據被開(kāi)方數是非負數,得 出的取值范圍是 ≥ .小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.
【設計意圖】考查二次根式的被開(kāi)方數為非負數和一個(gè)式子的分母不能為0,解題時(shí)需要綜合考慮.
二次根式教案 篇4
教學(xué)目的
1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì )應用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;
2.會(huì )運用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。
教學(xué)重點(diǎn)
最簡(jiǎn)二次根式的定義。
教學(xué)難點(diǎn)
一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
教學(xué)過(guò)程
一、復習引入
1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據:
2.引導學(xué)生觀(guān)察考慮:
化簡(jiǎn)前后的根式,被開(kāi)方數有什么不同?
化簡(jiǎn)前的被開(kāi)方數有分數,分式;化簡(jiǎn)后的被開(kāi)方數都是整數或整式,且被開(kāi)方數中開(kāi)得盡方的因數或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開(kāi)方數符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
二、講解新課
1.總結學(xué)生回答的內容后,給出最簡(jiǎn)二次根式定義:
滿(mǎn)足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開(kāi)方數的因數是整數,因式是整式;
(2)被開(kāi)方數中不含能開(kāi)得盡的因數或因式。
最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數中每個(gè)因式的指數小于2;特別注意被開(kāi)方數應化為因式連乘積的形式。
2.練習:
下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
3.例題:
例1 把下列各式化成最簡(jiǎn)二次根式:
例2 把下列各式化成最簡(jiǎn)二次根式:
4.總結
把二次根式化成最簡(jiǎn)二次根式的根據是什么?應用了什么方法?
當被開(kāi)方數為整數或整式時(shí),把被開(kāi)方數進(jìn)行因數或因式分解,根據積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數或因式用它的算術(shù)平方根代替移到根號外面去。
當被開(kāi)方數是分數或分式時(shí),根據分式的.基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據分式的基本性質(zhì)把被開(kāi)方數的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
三、鞏固練習
1.把下列各式化成最簡(jiǎn)二次根式:
2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
四、小結
本節課學(xué)習了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當被開(kāi)方數為多項式時(shí)要進(jìn)行因式分解,被開(kāi)方數為兩個(gè)分數的和則要先通分,再化簡(jiǎn)。
五、布置作業(yè)
下列各式化成最簡(jiǎn)二次根式:
二次根式教案 篇5
一、學(xué)習目標:
1.多項式除以單項式的運算法則及其應用.
2.多項式除以單項式的運算算理.
二、重點(diǎn)難點(diǎn):
重點(diǎn):多項式除以單項式的運算法則及其應用
難點(diǎn):探索多項式與單項式相除的運算法則的過(guò)程
三、合作學(xué)習:
(一)回顧單項式除以單項式法則
(二)學(xué)生動(dòng)手,探究新課
1.計算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2.提問(wèn):①說(shuō)說(shuō)你是怎樣計算的②還有什么發(fā)現嗎?
(三) 總結法則
1.多項式除以單項式:先把這個(gè)多項式的每一項除以___________,再把所得的商______
2.本質(zhì):把多項式除以單項式轉化成______________
四、精講精練
例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
隨堂練習:教科書(shū)練習
五、小結
1、單項式的除法法則
2、應用單項式除法法則應注意:
A、系數先相除,把所得的結果作為商的系數,運算過(guò)程中注意單項式的系數飽含它前面的符號
B、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的.指數不小于除式中同一字母的指數;
C、被除式單獨有的字母及其指數,作為商的一個(gè)因式,不要遺漏;
D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進(jìn)行.
E、多項式除以單項式法則
第三十四學(xué)時(shí):14.2.1平方差公式
一、學(xué)習目標:
1.經(jīng)歷探索平方差公式的過(guò)程.
2.會(huì )推導平方差公式,并能運用公式進(jìn)行簡(jiǎn)單的運算.
二、重點(diǎn)難點(diǎn)
重點(diǎn):平方差公式的推導和應用
難點(diǎn):理解平方差公式的結構特征,靈活應用平方差公式.
三、合作學(xué)習
你能用簡(jiǎn)便方法計算下列各題嗎?
(1)2001×1999 (2)998×1002
導入新課:計算下列多項式的積.
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
結論:兩個(gè)數的和與這兩個(gè)數的差的積,等于這兩個(gè)數的平方差.
即:(a+b)(a-b)=a2-b2
四、精講精練
例1:運用平方差公式計算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:計算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
隨堂練習
二次根式教案 篇6
教學(xué)目標
1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡(jiǎn)含二次根式的式子;
2.熟練地進(jìn)行二次根式的加、減、乘、除混合運算.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):含二次根式的式子的混合運算.
難點(diǎn):綜合運用二次根式的 性質(zhì)及運算法則化簡(jiǎn)和計算含二次根式的式子.
教學(xué)過(guò)程設計
一、復習
1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來(lái),并說(shuō)明各 式成立的條件.
指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應用于化簡(jiǎn)二次根式.
2.二次根式 的乘法及除法的法則是什么?用式子表示出來(lái).
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個(gè)二次根式相除,
計算結果要把分母有理化.
3.在二次根式的'化簡(jiǎn)或計算中,還常用到以下兩個(gè)二次根式的關(guān)系式:
4.在含有二次根式的式子的化簡(jiǎn)及求值等問(wèn)題中,常運用三個(gè)可逆的式子:
二、例題
例1 x取什么值時(shí),下列各式在實(shí)數范圍內有意義:
分析:
(1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;
(3)題是兩個(gè)二次根式的和, x的取值必須使兩個(gè)二次根式都有意義;
(4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零.
x-2且x0.
解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一個(gè)二次根式的被開(kāi)方數的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡(jiǎn),化簡(jiǎn)中應注意利用題中的隱含條件3 -a0和1-a>0.
解 因為1-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
這些性質(zhì)化簡(jiǎn)含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿(mǎn)足這些條件的.
問(wèn):上面的代數式中的兩個(gè)二次根式的被開(kāi)方數的式子如何化為完全平方式?
分析:先把第二個(gè)式子化簡(jiǎn),再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計算.
注意:
所以在化簡(jiǎn)過(guò)程中,
例6
分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計算,這兩種方法的運算量都較大,根據式子的結構特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運算變?yōu)楹?jiǎn)捷.
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、課堂練習
1.選擇題:
A.a(chǎn)2B.a(chǎn)2
C.a(chǎn)2D.a(chǎn)<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空題:
4.計算:
四、小結
1.本節課復習的五個(gè)基本問(wèn)題是“二次根式”這一章的主要基礎知識,同學(xué)們要深刻理解并牢固掌握.
2.在一次根式的化簡(jiǎn)、計算及求值的過(guò)程中,應注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開(kāi)方數為非負數,以確定被開(kāi)方數中的字母或式子的取值范圍.
3.運用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件.
4.通過(guò)例題的討論,要學(xué)會(huì )綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡(jiǎn)、計算及求值等問(wèn)題.
五、作業(yè)
1.x是什么值時(shí),下列各式在實(shí)數范圍內有意義?
2.把下列各式化成最簡(jiǎn)二次根式:
二次根式教案 篇7
1.教學(xué)目標
(1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過(guò)程;會(huì )進(jìn)行簡(jiǎn)單的二次根式的乘法運算;
(2)會(huì )用公式化簡(jiǎn)二次根式.
2.目標解析
(1)學(xué)生能通過(guò)計算發(fā)現規律并對其進(jìn)行一般化的推廣,得出乘法法則的內容;
(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式.
教學(xué)問(wèn)題診斷分析
本節課的學(xué)習中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時(shí)該選用何公式簡(jiǎn)化運算感到困難.運算習慣的養成與符號意識的養成、運算能力的形成緊密相關(guān),由于該內容與以前學(xué)過(guò)的實(shí)數內容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養學(xué)生良好的運算習慣.
在教學(xué)時(shí),通過(guò)實(shí)例運算,對于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:(1)如果被開(kāi)方數是分數或分式(包括小數),可以采用直接利用分式的性質(zhì),結合二次根式的性質(zhì)進(jìn)行化簡(jiǎn)(例見(jiàn)教科書(shū)例6解法1),也可以先寫(xiě)成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見(jiàn)教科書(shū)例6解法2);(2)如果被開(kāi)方數不含分母,可以先將它分解因數或分解因式,然后吧開(kāi)得盡方的因數或因式開(kāi)出來(lái),從而將式子化簡(jiǎn).
本節課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應用和二次根式的化簡(jiǎn).
教學(xué)過(guò)程設計
1.復習引入,探究新知
我們前面已經(jīng)學(xué)習了二次根式的概念和性質(zhì),本節課開(kāi)始我們要學(xué)習二次根式的乘除.本節課先學(xué)習二次根式的乘法.
問(wèn)題1 什么叫二次根式?二次根式有哪些性質(zhì)?
師生活動(dòng) 學(xué)生回答。
【設計意圖】乘法運算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì).
問(wèn)題2 教材第6頁(yè)“探究”欄目,計算結果如何?有何規律?
師生活動(dòng) 學(xué)生計算、思考并嘗試歸納,引導學(xué)生用自己的語(yǔ)言描述乘法法則的內容.
【設計意圖】學(xué)生在自主探究的過(guò)程中發(fā)現規律,運用類(lèi)比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數學(xué)語(yǔ)言和文字分別描述法則,以培養學(xué)生的符號意識.
2.觀(guān)察比較,理解法則
問(wèn)題3 簡(jiǎn)單的根式運算.
師生活動(dòng) 學(xué)生動(dòng)手操作,教師檢驗.
問(wèn)題4 二次根式的乘除成立的條件是什么?等式反過(guò)來(lái)有什么價(jià)值?
師生活動(dòng) 學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).
【設計意圖】讓學(xué)生運用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過(guò)來(lái)就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數或因式的算術(shù)平方根的積,利用整式的運算法則、乘法公式等可以簡(jiǎn)化二次根式,培養學(xué)生的運算能力.
3.例題示范,學(xué)會(huì )應用
例1 化簡(jiǎn):(1)二次根式的乘除; (2)二次根式的乘除.
師生活動(dòng) 提問(wèn):你是怎么理解例(1)的?
如果學(xué)生回答不完善,再追問(wèn):這個(gè)問(wèn)題中,就直接將結果算成二次根式的乘除可以嗎?你認為本題怎樣才達到了化簡(jiǎn)的效果?
師生合作回答上述問(wèn)題.對于根式運算的最后結果,一般被開(kāi)方數中有開(kāi)得盡方的因數或因式,應依據二次根式的性質(zhì)二次根式的乘除將其移出根號外.
再提問(wèn):你能仿照第(1)題的解答,能自己解決(2)嗎?
【設計意圖】通過(guò)運算,培養學(xué)生的運算能力,明確二次根式化簡(jiǎn)的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn).
例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除
師生活動(dòng) 學(xué)生計算,教師檢驗.
(1)在被開(kāi)方數相乘的時(shí)候,就可以考慮因數或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫(xiě)成二次根式的乘除再分解;
(2)二次根式的乘法運算類(lèi)似于整式的`乘法運算,交換律、結合律都是適用的.對于根號外有系數的根式在相乘時(shí),可以將系數先相乘作為積的系數,再對根式進(jìn)行運算;
(3)例(3)的運算是選學(xué)內容.讓學(xué)有余力的學(xué)生學(xué)到“根號下為字母的二次根式”的運算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.
【設計意圖】引導學(xué)生及時(shí)總結,強調利用運算律進(jìn)行運算,利用乘法公式簡(jiǎn)化運算.讓學(xué)生認識到,二次根式是一類(lèi)特殊的實(shí)數,因此滿(mǎn)足實(shí)數的運算律,關(guān)于整式運算的公式和方法也適用.
教材中雖然指明,如未特別說(shuō)明,本章中所有的字母都表示正數,但仍應強調,看到根號就要注意被開(kāi)方數的符號.可以根據二次根式的概念對字母的符號進(jìn)行判斷,在移出根號時(shí)正確處理符號問(wèn)題.
4.鞏固概念,學(xué)以致用
練習:教科書(shū)第7頁(yè)練習第1題. 第10頁(yè)習題16.2第1題.
【設計意圖】鞏固性練習,同時(shí)檢驗乘法法則的掌握情況.
5.歸納小結,反思提高
師生共同回顧本節課所學(xué)內容,并請學(xué)生回答以下問(wèn)題:
(1)你能說(shuō)明二次根式的乘法法則是如何得出的嗎?
(2)你能說(shuō)明乘法法則逆用的意義嗎?
(3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對最后結果有何要求?
6.布置作業(yè):教科書(shū)第7頁(yè)第2、3題.習題16.2第1,6題.
五、目標檢測設計
1.下列各式中,一定能成立的是( )
A.二次根式的乘除 B.二次根式的乘除
C.二次根式的乘除 D.二次根式的乘除
【設計意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運算的基礎.
2.化簡(jiǎn)二次根式的乘除 ______________________________。
【設計意圖】二次根式是特殊的實(shí)數,實(shí)數的相關(guān)運算法則也適用于二次根式.
3.已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結果是( )
A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除
【設計意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式.
二次根式教案 篇8
一、教學(xué)目標
1.理解分母有理化與除法的關(guān)系.
2.掌握二次根式的分母有理化.
3.通過(guò)二次根式的分母有理化,培養學(xué)生的運算能力.
4.通過(guò)學(xué)習分母有理化與除法的關(guān)系,向學(xué)生滲透轉化的數學(xué)思想
二、教學(xué)設計
小結、歸納、提高
三、重點(diǎn)、難點(diǎn)解決辦法
1.教學(xué)重點(diǎn):分母有理化.
2.教學(xué)難點(diǎn):分母有理化的技巧.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準備
投影儀、膠片、多媒體
六、師生互動(dòng)活動(dòng)設計
復習小結,歸納整理,應用提高,以學(xué)生活動(dòng)為主
七、教學(xué)過(guò)程
【復習提問(wèn)】
二次根式混合運算的.步驟、運算順序、互為有理化因式.
例1 說(shuō)出下列算式的運算步驟和順序:
。1) (先乘除,后加減).
。2) (有括號,先去括號;不宜先進(jìn)行括號內的運算).
。3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡(jiǎn)一個(gè)式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據分式的基本性質(zhì)).
例如:等式子的化簡(jiǎn),如果分母是兩個(gè)二次根式的和,應該怎樣化簡(jiǎn)?
引入新課題.
【引入新課】
化簡(jiǎn)式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結論是分子與分母要同乘以 的有理化因式,而這個(gè)式子就是 ,從而可將式子化簡(jiǎn).
解:略.
注:通過(guò)例題的講解,使學(xué)生理解和掌握化簡(jiǎn)的步驟、關(guān)鍵問(wèn)題、化簡(jiǎn)的依據.式子的化簡(jiǎn),若分子與分母可分解因式,則可先分解因式,再約分,使化簡(jiǎn)變得簡(jiǎn)單.
二次根式教案 篇9
教學(xué)目的:
1、在二次根式的混合運算中,使學(xué)生掌握應用有理化分母的方法化簡(jiǎn)和計算二次根式;
2、會(huì )求二次根式的代數的值;
3、進(jìn)一步提高學(xué)生的綜合運算能力。
教學(xué)重點(diǎn):在二次根式的混合運算中,靈活選擇有理化分母的方法化簡(jiǎn)二次根式
教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運算和求含有二次根式的`代數式的值
教學(xué)過(guò)程:
一、二次根式的混合運算
例1 計算:
分析:(1)題是二次根式的加減運算,可先把前三個(gè)二次根式化最簡(jiǎn)二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運算。
(2)題是含乘方、加、減和除法的混合運算,應按運算的順序進(jìn)行計算,先算括號內的式子,最后進(jìn)行除法運算。注意的計算。
練習1:P206 / 8--① P207 / 1①②
例2 計算
問(wèn):計算思路是什么?
答:先把第一人的括號內的式子通分,把第二個(gè)括號內的式子的分母有理化,再進(jìn)行計算。
二、求代數式的值。 注意兩點(diǎn):
(1)如果已知條件為含二次根式的式子,先把它化簡(jiǎn);
(2)如果代數式是含二次根式的式子,應先把代數式化簡(jiǎn),再求值。
例3 已知,求的值。
分析:多項式可轉化為用與表示的式子,因此可根據已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母?墒褂嬎愫(jiǎn)便。
例4 已知,求的值。
觀(guān)察代數式的特點(diǎn),請說(shuō)出求這個(gè)代數式的值的思路。
答:所求的代數式中,相減的兩個(gè)式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進(jìn)行]通分,把這個(gè)代數式化簡(jiǎn)后,再求值。
三、小結
1、對于二次根式的混合混合運算。應根據二次根式的加、減、乘除和乘方運算的順序進(jìn)行,即先進(jìn)行乘方運算,再進(jìn)行乘、除運算,最后進(jìn)行加、減運算。如果有括號,先進(jìn)行括號內的式子的運算,運算結果要化為最簡(jiǎn)二次根式。
2、在代數式求值問(wèn)題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡(jiǎn),然后再求值。
3、在進(jìn)行二次根式的混合運算時(shí),要根據題目特點(diǎn),靈活選擇解題方法,目的在于使計算更簡(jiǎn)捷。
四、作業(yè)
P206 / 7 P206 / 8---②③
【二次根式教案】相關(guān)文章:
二次根式的乘除教案01-01
初中二次根式教案07-12
二次根式練習題10-02
同類(lèi)二次根式是什么10-20
二次根式測試題08-02
中學(xué)二次函數教案08-23
服裝制版中的二次成型09-04
一元二次方程教案(通用8篇)06-12
二次裝修須的注意事項06-14
二次裝修注意事項有哪些07-20