精選高中數學(xué)說(shuō)課稿模板匯總9篇
作為一位杰出的教職工,總不可避免地需要編寫(xiě)說(shuō)課稿,說(shuō)課稿有助于提高教師的語(yǔ)言表達能力。說(shuō)課稿應該怎么寫(xiě)呢?以下是小編幫大家整理的高中數學(xué)說(shuō)課稿9篇,歡迎大家分享。
高中數學(xué)說(shuō)課稿 篇1
一、教學(xué)內容分析
圓錐曲線(xiàn)的定義反映了圓錐曲線(xiàn)的本質(zhì)屬性,它是無(wú)數次實(shí)踐后的高度抽象.恰當地利用定義解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習了橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義及標準方程、幾何性質(zhì)后,再一次強調定義,學(xué)會(huì )利用圓錐曲線(xiàn)定義來(lái)熟練的解題”。
二、學(xué)生學(xué)習情況分析
我所任教班級的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學(xué)語(yǔ)言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開(kāi)感性認識,容易使學(xué)生陷入困境,降低學(xué)習熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導學(xué)生主動(dòng)發(fā)現問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現、獲取新知,提高教學(xué)效率.
四、教學(xué)目標
1.深刻理解并熟練掌握圓錐曲線(xiàn)的定義,能靈活應用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標、頂點(diǎn)坐標、焦距、離心率、準線(xiàn)方程、漸近線(xiàn)、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線(xiàn)的方程。
2.通過(guò)對練習,強化對圓錐曲線(xiàn)定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對問(wèn)題的不斷引申,精心設問(wèn),引導學(xué)生學(xué)習解題的一般方法。
3.借助多媒體輔助教學(xué),激發(fā)學(xué)習數學(xué)的興趣.
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1.對圓錐曲線(xiàn)定義的理解
2.利用圓錐曲線(xiàn)的定義求“最值”
3.“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線(xiàn)定義解題
六、教學(xué)過(guò)程設計
【設計思路】
(一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題
一上課,我就直截了當地給出——
例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿(mǎn)足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。
(A)橢圓 (B)雙曲線(xiàn) (C)線(xiàn)段 (D)不存在
(2)已知動(dòng)點(diǎn) M(x,y)滿(mǎn)足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。
(A)橢圓 (B)雙曲線(xiàn) (C)拋物線(xiàn) (D)兩條相交直線(xiàn)
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習和研究數學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習之后,學(xué)生們對圓錐曲線(xiàn)的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節課首先要弄清楚的問(wèn)題。
為了加深學(xué)生對圓錐曲線(xiàn)定義理解,我以圓錐曲線(xiàn)的定義的運用為主線(xiàn),精心準備了兩道練習題。
【學(xué)情預設】
估計多數學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線(xiàn)的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著(zhù)說(shuō)出:若想答案是其他選項的話(huà),條件要怎么改?這對于已學(xué)完圓錐曲線(xiàn)這部分知識的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費一番周折—— 如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著(zhù)他的思路,先對原等式做變形:(x1)2(y2)2
5這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5
入手,考慮通過(guò)適當的變形,轉化為學(xué)生們熟知的兩個(gè)距離公式。
在對學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線(xiàn)的中心坐標是 ,實(shí)軸長(cháng)為 ,焦距為 。以深化對概念的理解。
(二)理解定義、解決問(wèn)題
例2 (1)已知動(dòng)圓A過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|
七、教學(xué)反思
1.本課將借助于“XXX”,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運用“多媒體課件”輔助教學(xué),節省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結合的教學(xué)優(yōu)勢。
2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學(xué)生思維能力,使學(xué)生從學(xué)會(huì )一個(gè)問(wèn)題的求解到掌握一類(lèi)問(wèn)題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類(lèi)問(wèn)題的解法;將學(xué)生容易混淆的兩類(lèi)求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運動(dòng)量并不會(huì )小。
總之,如何更好地選擇符合學(xué)生具體情況,滿(mǎn)足教學(xué)目標的例題與練習、靈活把握課堂教學(xué)節奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養學(xué)生的創(chuàng )新意識,自己首先必須更新觀(guān)念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機會(huì ),能夠使學(xué)生在學(xué)習新知識的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗,于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數學(xué)思維能力。
高中數學(xué)說(shuō)課稿 篇2
一、說(shuō)教材
1.從在教材中的地位與作用來(lái)看
《等比數列的前n項和》是數列這一章中的一個(gè)重要內容,它不僅在現實(shí)生活中有著(zhù)廣泛的實(shí)際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習和工作中必備的數學(xué)素養.
2.從學(xué)生認知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節內容與等差數列前n項和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著(zhù)本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯.
3.學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.
4.重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導、公式的特點(diǎn)和公式的運用.
教學(xué)難點(diǎn):公式的推導方法和公式的靈活運用.
公式推導所使用的“錯位相減法”是高中數學(xué)數列求和方法中最常用的方法之一,它蘊含了重要的數學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).
二、說(shuō)目標
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過(guò)程、公式的特點(diǎn),在此基礎上能初步應用公式解決與之有關(guān)的問(wèn)題.
過(guò)程與方法目標:
通過(guò)對公式推導方法的探索與發(fā)現,向學(xué)生滲透特殊到一般、類(lèi)比與轉化、分類(lèi)討論等數學(xué)思想,培養學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態(tài)度價(jià)值觀(guān):
通過(guò)對公式推導方法的探索與發(fā)現,優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉化和理論聯(lián)系實(shí)際的辯證唯物主義觀(guān)點(diǎn).
三、說(shuō)過(guò)程
學(xué)生是認知的主體,設計教學(xué)過(guò)程必須遵循學(xué)生的認知規律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程,結合本節課的特點(diǎn),我設計了如下的教學(xué)過(guò)程:
1.創(chuàng )設情境,提出問(wèn)題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當時(shí)的印度國王大為贊賞,對他說(shuō):我可以滿(mǎn)足你的任何要求.西薩說(shuō):請給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數學(xué)家計算,結果出來(lái)后,國王大吃一驚.為什么呢?
設計意圖:設計這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調動(dòng)學(xué)習的積極性.故事內容緊扣本節課的主題與重點(diǎn).
此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導學(xué)生寫(xiě)出麥?倲.帶著(zhù)這樣的問(wèn)題,學(xué)生會(huì )動(dòng)手算了起來(lái),他們想到用計算器依次算出各項的值,然后再求和.這時(shí)我對他們的這種思路給予肯定.
設計意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉過(guò)彎來(lái),因而在教學(xué)中應舍得花時(shí)間營(yíng)造知識形成過(guò)程的氛圍,突破學(xué)生學(xué)習的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆.
2.師生互動(dòng),探究問(wèn)題
在肯定他們的思路后,我接著(zhù)問(wèn):1,2,22,…,263是什么數列?有何特征?應歸結為什么數學(xué)問(wèn)題呢?
探討1:,記為(1)式,注意觀(guān)察每一項的特征,有何聯(lián)系?(學(xué)生會(huì )發(fā)現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現?
設計意圖:留出時(shí)間讓學(xué)生充分地比較,等比數列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應著(zhù)力在這兒做文章,從而抓住培養學(xué)生的辯證思維能力的良好契機.
經(jīng)過(guò)比較、研究,學(xué)生發(fā)現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經(jīng)過(guò)繁難的計算之苦后,突然發(fā)現上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗,從而增強學(xué)習數學(xué)的興趣和學(xué)好數學(xué)的信心.
3.類(lèi)比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢引導學(xué)生將結論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個(gè)別學(xué)生進(jìn)行指導.
設計意圖:在教師的指導下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習的愉快和成就感.
對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時(shí)是什么數列?此時(shí)sn=?(這里引導學(xué)生對q進(jìn)行分類(lèi)討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎.)
再次追問(wèn):結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導學(xué)生得出公式的另一形式)
設計意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對知識的認識,完善知識結構,另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷χR的主動(dòng)認識,從而進(jìn)一步提高分析、類(lèi)比和綜合的能力.這一環(huán)節非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話(huà),然而卻有畫(huà)龍點(diǎn)睛之妙用.
4.討論交流,延伸拓展
高中數學(xué)說(shuō)課稿 篇3
一、教材分析:
1、教材的地位與作用:
線(xiàn)性規劃是運籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著(zhù)廣泛的應用。本節內容是在學(xué)習了不等式、直線(xiàn)方程的基礎上,利用不等式和直線(xiàn)方程的有關(guān)知識展開(kāi)的,它是對二元一次不等式的深化和再認識、再理解。通過(guò)這一部分的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,體驗數形結合和轉化的思想方法,培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。
2、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):畫(huà)可行域;在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。
難點(diǎn):在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。
二、目標分析:
在新課標讓學(xué)生經(jīng)歷“學(xué)數學(xué)、做數學(xué)、用數學(xué)”的理念指導下,本節課的教學(xué)目標分設為知識目標、能力目標和情感目標。
知識目標:
1、了解線(xiàn)性規劃的意義,了解線(xiàn)性約束條件、線(xiàn)性目標函數、可行解、可行
域和最優(yōu)解等概念;
2、理解線(xiàn)性規劃問(wèn)題的圖解法;
3、會(huì )利用圖解法求線(xiàn)性目標函數的最優(yōu)解.
能力目標:
1、在應用圖解法解題的過(guò)程中培養學(xué)生的觀(guān)察能力、理解能力。
2、在變式訓練的過(guò)程中,培養學(xué)生的分析能力、探索能力。
3、在對具體事例的感性認識上升到對線(xiàn)性規劃的理性認識過(guò)程中,培養學(xué)生運用數形結合思想解題的能力和化歸能力。
情感目標:
1、讓學(xué)生體驗數學(xué)來(lái)源于生活,服務(wù)于生活,體驗數學(xué)在建設節約型社會(huì )中的作用,品嘗學(xué)習數學(xué)的樂(lè )趣。
2、讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索與創(chuàng )造,培養學(xué)生勤于思考、勇于探索的精神;
3、讓學(xué)生學(xué)會(huì )用運動(dòng)觀(guān)點(diǎn)觀(guān)察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。
高中數學(xué)說(shuō)課稿 篇4
【一】教學(xué)背景分析
1。教材結構分析
《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。
2。學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3。教學(xué)目標
。1) 知識目標:①掌握圓的標準方程;
、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;
、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。
。2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W(xué)生用數學(xué)的意識。
。3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;
、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。
根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4。 教學(xué)重點(diǎn)與難點(diǎn)
。1)重點(diǎn):圓的標準方程的求法及其應用。
。2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。
為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1。教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。
2。學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
【三】教學(xué)過(guò)程與設計
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:
創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。
首先:縱向敘述教學(xué)過(guò)程
。ㄒ唬﹦(chuàng )設情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?
通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
。ǘ┥钊胩骄俊@得新知
問(wèn)題二 1。根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2。如果圓心在,半徑為時(shí)又如何呢?
好學(xué)教育:
這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。
。ㄈ⿷门e例——鞏固提高
I。直接應用 內化新知
問(wèn)題三 1。寫(xiě)出下列各圓的標準方程:
。1)圓心在原點(diǎn),半徑為3;
。2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。
2。寫(xiě)出圓的圓心坐標和半徑。
我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。
II。靈活應用 提升能力
問(wèn)題四 1。求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。
2。求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。
3。已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?
我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮。
III。實(shí)際應用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。
好學(xué)教育:
我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。
。ㄋ模┓答佊柧殹纬煞椒
問(wèn)題六 1。求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。
2。求圓過(guò)點(diǎn)的切線(xiàn)方程。
3。求圓過(guò)點(diǎn)的切線(xiàn)方程。
接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。
。ㄎ澹┬〗Y反思——拓展引申
1。課堂小結
把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。
2。分層作業(yè)
。ˋ)鞏固型作業(yè):教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。
3。激發(fā)新疑
問(wèn)題七 1。把圓的標準方程展開(kāi)后是什么形式?
2。方程表示什么圖形?
在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計
。ㄒ唬┩怀鲋攸c(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
好學(xué)教育:
求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。
。ǘ⿲W(xué)生主體 教師主導 探究主線(xiàn)
本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。
。ㄈ┡囵B思維 提升能力 激勵創(chuàng )新
為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
高中數學(xué)說(shuō)課稿 篇5
一、說(shuō)教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類(lèi)型函數,本節課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數的概念,并進(jìn)一步體會(huì )函數是刻畫(huà)變量之間關(guān)系的數學(xué)模型,從中體會(huì )函數的模型思想。因此本節課重點(diǎn)是理解和領(lǐng)悟反比例函數的概念,所滲透的數學(xué)思想方法有:類(lèi)比,轉化,建模。
2.學(xué)情分析:對八年級學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對函數,正比例函數,一次函數的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數時(shí),還可能存在一些思維障礙,如學(xué)生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結出反比例函數的概念,因此,本節課的難點(diǎn)是理解和領(lǐng)悟反比例函數的概念。
二、說(shuō)教學(xué)目標
根據本人對《數學(xué)課程標準》的理解與分析,考慮學(xué)生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實(shí)的情境和已有的知識經(jīng)驗出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數概念的理解。
2.經(jīng)歷抽象反比例函數概念的過(guò)程,領(lǐng)會(huì )反比例函數的意義,理解反比例函數的概念。
三、說(shuō)教法
本節課從知識結構呈現的角度看,為了實(shí)現教學(xué)目標,我建立了“創(chuàng )設情境→建立模型→解釋知識→應用知識”的學(xué)習模式,這種模式清晰地再現了知識的生成與發(fā)展的過(guò)程,也符合學(xué)生的認知規律。于是,從教學(xué)內容的性質(zhì)出發(fā),我設計了如下的課堂結構:創(chuàng )設出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現新知,把上述問(wèn)題進(jìn)行類(lèi)比,導出概念,獲得新知,最后總結評價(jià)、內化新知。
四、說(shuō)學(xué)法
我認為學(xué)生將實(shí)際問(wèn)題轉化成函數的能力是有限的,所以我借助多媒體輔助教學(xué),指導學(xué)生通過(guò)類(lèi)比、轉化、直觀(guān)形象的觀(guān)察與演示,親身經(jīng)歷函數模型的轉化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng )造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。
好學(xué)教育:
因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著(zhù)問(wèn)題的深入而跳躍。
高中數學(xué)說(shuō)課稿 篇6
各位老師,大家好!
我是08數學(xué)本科(2)班的xx,我今天說(shuō)課的題目是集合的含義與表示.下面我先對教材進(jìn)行分析.
一、教材分析
集合的含義與表示是選自高中新課標A版教材必修1第一章第一節內容。在此之前,學(xué)生已經(jīng)接觸過(guò)集合的一些相關(guān)概念,如自然數的集合、有理數的集合.集合是一個(gè)基礎性概念,是數學(xué)以至所有科學(xué)的基礎,應用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現,在高考中具有不可忽視的地位.本節內容能夠培養學(xué)生的探索精神和數學(xué)素養.
二、教學(xué)目標
根據上述對教材的分析,我確定本節課的教學(xué)目標為 1. 知識與技能目標 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數集.培養學(xué)生的抽象思維能力、分析能力、判斷能力.
2. 過(guò)程與方法目標
應用自然語(yǔ)言與集合語(yǔ)言描述不同的具體問(wèn)題,與學(xué)生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.
3. 情感態(tài)度價(jià)值觀(guān)目標
使得學(xué)生感受數學(xué)的簡(jiǎn)潔美與和諧統一美. 培養學(xué)生正確的、高尚的、唯物的價(jià)值觀(guān).培養學(xué)生獨立思考、敢于創(chuàng )新、勇于探索的科學(xué)精神,激發(fā)同學(xué)們學(xué)習數學(xué)的興趣. 三、重點(diǎn)和難點(diǎn)
重點(diǎn):根據上述對教材的分析,確定的教學(xué)目標,我確定本節課的教學(xué)重點(diǎn)為:集合的含義,集合的表示方法.
難點(diǎn):考慮到學(xué)生已有的知識基礎與認知能力,我認為教學(xué)難點(diǎn)是集合的表示方法. 關(guān)鍵:學(xué)好本節課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學(xué)方法 1.學(xué)情分析
。1)生理特點(diǎn):高中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步走向理論型發(fā)展,觀(guān)察能力、記憶能力和想象能力也隨之迅速發(fā)展.
。2)心理特點(diǎn):高中學(xué)生雖有好奇,好表現的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說(shuō)教.
。3)認知障礙:有的學(xué)生遺忘了學(xué)過(guò)的知識,有的學(xué)生想象能力與歸納能力較差. 2.教法學(xué)法
根據上面的分析,從高中生的心理特點(diǎn)和認知水平出發(fā),結合學(xué)生的實(shí)際情況與認知障礙,按照突出重點(diǎn),突破難點(diǎn),本節課采用學(xué)生廣泛參與,師生共同探討的啟發(fā)式教學(xué)法. 五、教學(xué)過(guò)程(用描述性語(yǔ)言,不要具體化。
根據以上分析,我對本節課的教學(xué)過(guò)程作如下安排:
1.引入課題
先引導學(xué)生回顧自然數的集合,有理數的集合,再提出問(wèn)題:集合的含義是什么呢? 2.新課講解
。1)分析自然數的集合,有理數的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.
。2)根據上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見(jiàn)的數集.
。3)為了化解教學(xué)難點(diǎn),我將結合具體的例子,講解列舉法與描述法.
。4)為了加強學(xué)生對集合的含義的理解,我將與學(xué)生一起歸納出集合的元素的特征. (5)為了提高學(xué)生解決實(shí)際問(wèn)題的能力,我將講解三個(gè)不同題型、不同難度的例題. 3.課堂練習
為了使得學(xué)生掌握等差數列的定義與通項公式,提高解題技能,我將在課堂上布置3道不同類(lèi)型、不同難度的練習題.
4.歸納小結
完成以上的教學(xué)內容后,我將組織學(xué)生對本節課的內容做一個(gè)總結,強調重點(diǎn). 5.布置作業(yè)
為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置3道不同類(lèi)型、不同難度的作業(yè)題. 六、板書(shū)設計
結合中學(xué)黑板的特點(diǎn),我將如下板書(shū)本節教學(xué)內容: 集合的含義與表示 實(shí)例 1. 2. 3. 集合的含義 常見(jiàn)數集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習 作業(yè) 各位老師,以上只是我的一種預設方案,但課堂千變萬(wàn)化,我將根據實(shí)際情況靈活掌握,隨機發(fā)揮.本說(shuō)課一定存在諸多不足,懇請各位老師提出寶貴意見(jiàn),謝謝! 1.1.2集合間的基本關(guān)系
數學(xué)必修1第一章第二節第1小節《集合間的基本關(guān)系》說(shuō)課稿.
一 、教學(xué)內容分析
集合概念及其理論是近代數學(xué)的基石,集合語(yǔ)言是現代數學(xué)的基本語(yǔ)言,通過(guò)學(xué)習、使用集合語(yǔ)言,有利于學(xué)生簡(jiǎn)潔、準確地表達數學(xué)內容,高中課程只將集合作為一種語(yǔ)言來(lái)學(xué)
習,學(xué)生將學(xué)會(huì )使用最基本的集合語(yǔ)言表示有關(guān)的數學(xué)對象,發(fā)展運用數學(xué)語(yǔ)言進(jìn)行交流的能力.
本章集合的初步知識是學(xué)生學(xué)習、掌握和使用數學(xué)語(yǔ)言的基礎,是高中數學(xué)學(xué)習的出發(fā)點(diǎn)。本小節內容是在學(xué)習了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎上,進(jìn)一步學(xué)習集合與集合之間的關(guān)系,同時(shí)也是下一節學(xué)習集合之間的運算的基礎,因此本小節起著(zhù)承上啟下的重要作用.
本節課的教學(xué)重視過(guò)程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過(guò)問(wèn)題情境的設置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數學(xué)思維。
二、學(xué)情分析
本節課是學(xué)生進(jìn)入高中學(xué)習的第3節數學(xué)課,也是學(xué)生正式學(xué)習集合語(yǔ)言的第3節課。由于一切對于學(xué)生來(lái)說(shuō)都是新的,所以學(xué)生的學(xué)習興趣相對來(lái)說(shuō)比較濃厚,有利于學(xué)習活動(dòng)的展開(kāi)。而集合對于學(xué)生來(lái)說(shuō)既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數軸求簡(jiǎn)單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語(yǔ)言來(lái)描述集合之間的關(guān)系。而從具體的實(shí)例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學(xué)生是一個(gè)挑戰。
根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標和教學(xué)重、難點(diǎn)如下:
三、教學(xué)目標: 知識與技能目標:
。1)理解集合之間包含和相等的含義; (2)能識別給定集合的子集;
。3)能使用Venn圖表達集合之間的包含關(guān)系 過(guò)程與方法目標:
。1)通過(guò)復習元素與集合之間的關(guān)系,對照實(shí)數的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;
。2)初步經(jīng)歷使用最基本的集合語(yǔ)言表示有關(guān)的數學(xué)對象的過(guò)程,體會(huì )集合語(yǔ)言,發(fā)展運用數學(xué)語(yǔ)言進(jìn)行交流的能力;
情感、態(tài)度、價(jià)值觀(guān)目標:
。1)了解集合的包含、相等關(guān)系的含義,感受集合語(yǔ)言在描述客觀(guān)現實(shí)和數學(xué)問(wèn)題中的意義;
。2)探索利用直觀(guān)圖示(Venn圖)理解抽象概念,體會(huì )數形結合的思想。
四、本節課教學(xué)的重、難點(diǎn):
重點(diǎn):(1)幫助學(xué)生由具體到抽象地認識集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點(diǎn):集合關(guān)系與其特征性質(zhì)之間的關(guān)系 五、教學(xué)過(guò)程設計
1.新課的引入——設置問(wèn)題情境,激發(fā)學(xué)習興趣
我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習方式。那我們來(lái)思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當學(xué)生感興趣時(shí);當學(xué)生智力遭遇到挑戰時(shí);當學(xué)生能自主地參與探索和創(chuàng )新時(shí);當學(xué)生能夠學(xué)以致用時(shí);當學(xué)生得到鼓勵與信任時(shí),他們學(xué)得最好。數學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上,這樣才能讓學(xué)生體驗到成就感,保持積極的興奮狀態(tài)。而集合的語(yǔ)言對于學(xué)生來(lái)說(shuō)是陌生的,雖然比較容易理解,但是由于概念多,符號多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長(cháng)時(shí)間興趣盎然地投入到集合關(guān)系的學(xué)習中呢?我在整個(gè)教學(xué)過(guò)程中層層設問(wèn),不斷地向學(xué)生提出挑戰,以激發(fā)學(xué)生的學(xué)習興趣。在引入的環(huán)節,我設計了下面的問(wèn)題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數與數之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問(wèn)題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎上提出這一節課我們來(lái)共同探討集合之間的基本關(guān)系。(板書(shū)課題)
2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問(wèn)題情境1的探究:
具體實(shí)例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};
此環(huán)節設置了三個(gè)具體實(shí)例,包含了有限集、無(wú)限集、數集(包括不等式)、圖形的集合。第一個(gè)例子為有限集數集,最為簡(jiǎn)單直觀(guān),對學(xué)生初步認識子集,理解子集的概念很有幫助;第二個(gè)例子是圖形集合且是無(wú)限集,需要通過(guò)探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個(gè)例子是無(wú)限數集,基于學(xué)生初中階段已經(jīng)學(xué)習了用數軸表示不等式的解集,啟發(fā)學(xué)生可以通過(guò)數形結合的方式來(lái)研究集合之間的關(guān)系,從而引出Venn圖。對第一個(gè)例子,借助多媒體演示動(dòng)畫(huà),幫助學(xué)生體會(huì )“任意”性。使學(xué)生在經(jīng)歷直觀(guān)感知、觀(guān)察發(fā)現的基礎上建構子集的概念,并且我在教學(xué)的過(guò)程中特別注重讓學(xué)生說(shuō),借此來(lái)學(xué)習運用集合語(yǔ)言進(jìn)行交流,對于學(xué)生的創(chuàng )新意識和創(chuàng )新結果我都給予積極的評價(jià)。
3、概念的剖析
。1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,
。2)符號的表示,Venn圖的引入及其用Venn圖表示集合的.方法。
這里引入了許多新的符號,對初學(xué)者來(lái)說(shuō)容易混淆,是一個(gè)易錯點(diǎn),因此我在這里設置了一個(gè)填空小練習:
0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1
并引導學(xué)生類(lèi)比數與數之間的“≤”“≥”符號來(lái)記憶“?”“?”符號。
4、概念的深化——集合的相等與真子集
問(wèn)題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個(gè)元素,它與集合A之間又可能是什么關(guān)系呢?
高中數學(xué)說(shuō)課稿 篇7
今天我說(shuō)課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對本課的教學(xué)設計進(jìn)行說(shuō)明。
一、說(shuō)教材
1、本節在教材中的地位和作用:
本節是棱柱的后續內容,又是學(xué)習球的必要基礎。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎知識,同時(shí)培養學(xué)生猜想、類(lèi)比、比較、轉化的能力。著(zhù)名的生物學(xué)家達爾文說(shuō):“最有價(jià)值的知識是關(guān)于方法和能力的知識”,因此,應該利用這節課培養學(xué)生學(xué)習方法、提高學(xué)習能力。
2. 教學(xué)目標確定:
(1)能力訓練要求
、偈箤W(xué)生了解棱錐及其底面、側面、側棱、頂點(diǎn)、高的概念。
、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標
、倥囵B學(xué)生善于通過(guò)觀(guān)察分析實(shí)物形狀到歸納其性質(zhì)的能力。
、谔岣邔W(xué)生對事物的感性認識到理性認識的能力。
、叟囵B學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀(guān)點(diǎn)。
3. 教學(xué)重點(diǎn)、難點(diǎn)確定:
重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點(diǎn):培養學(xué)生善于比較,從比較中發(fā)現事物與事物的區別。
二、說(shuō)教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標志,以啟迪學(xué)生思維,培養學(xué)生創(chuàng )新能力為核心”。
在教學(xué)中根據高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設置一些啟發(fā)性題目,采用啟發(fā)式誘導法,講練結合,發(fā)揮教師主導作用,體現學(xué)生主體地位。
2、教學(xué)手段:
根據《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節課概念性強,思維量大,整節課以啟發(fā)學(xué)生觀(guān)察思考、分析討論為主,采用“多媒體引導點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學(xué)生沿著(zhù)積極的思維方向,逐步達到即定的教學(xué)目標,發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識,掌握規律、主動(dòng)發(fā)現、積極探索。
三、說(shuō)學(xué)法:
這節課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發(fā)學(xué)生反復思考,不斷內化成為自己的認知結構。
四、 學(xué)程序:
[復習引入新課]
1.棱柱的性質(zhì):
。1)側棱都相等,側面是平行四邊形
。2)兩個(gè)底面與平行于底面的截面是全等的多邊形
。3)過(guò)不相鄰的兩條側棱的截面是平行四邊形
2.幾個(gè)重要的四棱柱:
平行六面體、直平行六面體、長(cháng)方體、正方體
思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì )是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
。1).棱錐及其底面、側面、側棱、頂點(diǎn)、高、對角面的概念
。2).棱錐的表示方法、分類(lèi)
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:
如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
、俑鱾壤庀嗟,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;
棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形
引申:
、僬忮F的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。
引申:
、儆^(guān)察圖中三棱錐S-OBM的側面三角形狀有何特點(diǎn)?
。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)
、谌舴謩e假設正棱錐的高SO= h,斜高SM= h’,底面邊長(cháng)的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過(guò)三角形得出以上各元素間的關(guān)系式。
。ㄕn后思考題)
[例題分析]
例1.若一個(gè)正棱錐每一個(gè)側面的頂角都是600,則這個(gè)棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
。ù鸢福篋)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過(guò)SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。
﹙解析及圖略﹚
例3.已知正四棱錐的棱長(cháng)和底面邊長(cháng)均為a,求:
。1)側面與底面所成角α的余弦(2)相鄰兩個(gè)側面所成角β的余弦
﹙解析及圖略﹚
[課堂練習]
1、 知一個(gè)正六棱錐的高為h,側棱為L(cháng),求它的底面邊長(cháng)和斜高。
﹙解析及圖略﹚
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結]
一:棱錐的基本概念及表示、分類(lèi)
二:棱錐的性質(zhì)
截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質(zhì)
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
。2)棱錐的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形
引申: ①正棱錐的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
、壅忮F中各元素間的關(guān)系
[課后作業(yè)]
1:課本P52 習題9.8 : 2、 4
2:課時(shí)訓練:訓練一
高中數學(xué)說(shuō)課稿 篇8
各位老師:
今天我說(shuō)課的題目是《輸入、輸出語(yǔ)句和賦值語(yǔ)句》,內容選自于新課程人教A版必修3第一章第二節,課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析等四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
我們用自然語(yǔ)言或程序框圖描述的算法,但是計算機是無(wú)法“看得懂,聽(tīng)得見(jiàn)”的。因此還需要將算法用計算機能夠理解的程序設計語(yǔ)言翻譯成計算機程序。程序設計語(yǔ)言有很多種。為了實(shí)現算法中的三種基本的邏輯結構:順序結構、條件結構和循環(huán)結構,各種程序設計語(yǔ)言中都包含下列基本的算法語(yǔ)句:輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句和循環(huán)語(yǔ)句.。而我們今天所要學(xué)習的是前三種算法語(yǔ)句,它們基本上是對應于算法中的順序結構的。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):正確理解輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的作用。
難點(diǎn):準確寫(xiě)出輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句。
二、教學(xué)目標分析
1.知識與技能目標:
。1)正確理解輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句的結構。
。2)會(huì )寫(xiě)一些簡(jiǎn)單的程序。
。3)掌握賦值語(yǔ)句中的“=”的作用。
2.過(guò)程與方法目標:
。1)讓學(xué)生充分地感知、體驗應用計算機解決數學(xué)問(wèn)題的方法;并能初步操作、模仿。
。2)通過(guò)模仿,操作,探索的過(guò)程,體會(huì )算法的基本思想和基本語(yǔ)句的用途,提高學(xué)生應用數學(xué)軟件的能力.
3.情感,態(tài)度和價(jià)值觀(guān)目標
(1) 通過(guò)對三種語(yǔ)句的了解和實(shí)現,發(fā)展有條理的思考,表達的能力,提高邏輯思維能力.
(2) 學(xué)習算法語(yǔ)句,幫助學(xué)生利用計算機軟件實(shí)現算法,活躍思維,提高學(xué)生的數學(xué)素養.
(3) 結合計算機軟件的應用, 增強應用數學(xué)的意識,在計算機上實(shí)現算法讓學(xué)生體會(huì )成功喜悅.
三、教學(xué)方法與手段分析
1.教學(xué)方法:引導與合作交流相結合,學(xué)生在體會(huì )三種語(yǔ)句結構格式的過(guò)程中,讓學(xué)生積極參與,討論交流,充分挖掘三種算法語(yǔ)句的格式特點(diǎn)及意義,在分析具體問(wèn)題的過(guò)程中總結三種算法語(yǔ)句的思想與特征.
2.教學(xué)手段:運用計算機、圖形計算器輔助教學(xué)
四、教學(xué)過(guò)程分析
1. 創(chuàng )設情境(約5分鐘)
在課的開(kāi)始,我要求學(xué)生們舉出一些在日常生活中所應用到的有關(guān)計算機的例子,如:聽(tīng)MP3,看電影,玩游戲,打字排版,畫(huà)卡通畫(huà),處理數據等等,并告訴他們在現代社會(huì )里,計算機已經(jīng)成為人們日常生活和工作不可缺少的工具,然后接著(zhù)問(wèn)他們知不知道計算機到底是怎樣工作的?通過(guò)這個(gè)問(wèn)題引出我們今天所要學(xué)習的內容。(板出課題)
在這個(gè)過(guò)程中,我讓學(xué)生們將課本學(xué)習的內容與現實(shí)生活聯(lián)系在了一起,這樣能夠激起他們對接下來(lái)的所要學(xué)習內容的興趣,為整節課的學(xué)習打下一個(gè)良好的基礎。
2.探究新知(約15分鐘)
這里我先給出一個(gè)題目:用描點(diǎn)法作出函數
的圖象,用描點(diǎn)法作函數的圖象時(shí),需要先求出自變量與函數的對應值。編寫(xiě)程序,分別計算當
時(shí)的函數值。(程序由我在課前準備好,教學(xué)中直接調用運行)
程序:INPUT“x=”;x 輸入語(yǔ)句
y=x^3+3*x^2-24*x+30 賦值語(yǔ)句
PRINT x 輸出語(yǔ)句
PRINT y 輸出語(yǔ)句
END
。▽W(xué)生們先看,再跟著(zhù)做,先不必深究該程序如何得來(lái),只要模仿編寫(xiě)程序,通過(guò)運行自己編寫(xiě)的程序發(fā)現問(wèn)題所在,進(jìn)一步提高學(xué)生的模仿能力)
之后,我向學(xué)生們提問(wèn):在這個(gè)程序中,他們覺(jué)得哪些是輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句?(同學(xué)們互相交流、議論、猜想、概括出結論。提示:“input”和“print”的中文意思,還要請學(xué)生們注意到在賦值語(yǔ)句中的賦值號“=”與數學(xué)中的等號意義不同。)
此過(guò)程由老師引導,學(xué)生們自己討論并總結出什么是輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句,這樣比老師直接地將知識傳授給他們,學(xué)習的效果更佳,同時(shí)也鍛煉了學(xué)生們思考問(wèn)題的能力和概括能力,激發(fā)學(xué)習興趣。
然后給出一個(gè)思考題:在1.1.2中程序框圖中的輸入框,輸出框的內容怎樣用輸入語(yǔ)句、輸出語(yǔ)句來(lái)表達?(學(xué)生討論、交流想法,然后請學(xué)生作答)這樣可以及時(shí)應用剛剛學(xué)習的內容,并可以將前后所學(xué)知識聯(lián)系起來(lái)。
3.例題精析(約12分鐘)
在本環(huán)節中我為學(xué)生們準備了三道例題,這三道例題均選自課本的例2、例3和例4,學(xué)生通過(guò)這幾道例題的講解,結合計算機程序上機運用,可以掌握在程序設計語(yǔ)言中的前三種算法語(yǔ)句,體會(huì )到他們在程序中的意義和作用。
4.課堂精練(約4分鐘)
P15 練習 1.
提問(wèn):如果要求輸入一個(gè)攝氏溫度,輸出其相應的華氏溫度,又該如何設計程序?(學(xué)生課后思考,討論完成)通過(guò)提問(wèn)啟發(fā)學(xué)生們思考,發(fā)散思維。
5.課堂小結(約5分鐘)
、泡斎胝Z(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句的結構特點(diǎn)及聯(lián)系
、茟幂斎胝Z(yǔ)句,輸出語(yǔ)句,賦值語(yǔ)句編寫(xiě)一些簡(jiǎn)單的程序解決數學(xué)問(wèn)題
、 賦值語(yǔ)句中“=”的作用及應用
、染幊桃话愕牟襟E:先寫(xiě)出算法,再進(jìn)行編程。
6.布置作業(yè)
P23 習題1.2 A組 1(2)、2
[設計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。
7.板書(shū)設計
高中數學(xué)說(shuō)課稿 篇9
一、教材分析
1、從在教材中的地位與作用來(lái)看
《等比數列的前n項和》是數列這一章中的一個(gè)重要內容,它不僅在現實(shí)生活中有著(zhù)廣泛的實(shí)際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習和工作中必備的數學(xué)素養。
2、從學(xué)生認知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節內容與等差數列前n項和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著(zhù)本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯。
3、學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。
4、重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導、公式的特點(diǎn)和公式的運用。
教學(xué)難點(diǎn):公式的推導方法和公式的靈活運用。
公式推導所使用的"錯位相減法"是高中數學(xué)數列求和方法中最常用的方法之一,它蘊含了重要的數學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
二、目標分析
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過(guò)程、公式的特點(diǎn),在此基礎上能初步應用公式解決與之有關(guān)的問(wèn)題。
過(guò)程與方法目標:
通過(guò)對公式推導方法的探索與發(fā)現,向學(xué)生滲透特殊到一般、類(lèi)比與轉
化、分類(lèi)討論等數學(xué)思想,培養學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價(jià)值觀(guān):
通過(guò)對公式推導方法的探索與發(fā)現,優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉化和理論聯(lián)系實(shí)際的辯證唯物主義觀(guān)點(diǎn)。
三、過(guò)程分析
學(xué)生是認知的主體,設計教學(xué)過(guò)程必須遵循學(xué)生的認知規律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程,結合本節課的特點(diǎn),我設計了如下的教學(xué)過(guò)程:
1、創(chuàng )設情境,提出問(wèn)題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當時(shí)的印度國王大為贊賞,對他說(shuō):我可以滿(mǎn)足你的任何要求。西薩說(shuō):請給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學(xué)家計算,結果出來(lái)后,國王大吃一驚。為什么呢?
設計意圖:設計這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調動(dòng)學(xué)習的積極性。故事內容緊扣本節課的主題與重點(diǎn)。
此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導學(xué)生寫(xiě)出麥?倲。帶著(zhù)這樣的問(wèn)題,學(xué)生會(huì )動(dòng)手算了起來(lái),他們想到用計算器依次算出各項的值,然后再求和。這時(shí)我對他們的這種思路給予肯定。
設計意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的"無(wú)用功",急急忙忙地拋出"錯位相減法",這樣做有悖學(xué)生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉過(guò)彎來(lái),因而在教學(xué)中應舍得花時(shí)間營(yíng)造知識形成過(guò)程的氛圍,突破學(xué)生學(xué)習的障礙。同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆、
2、師生互動(dòng),探究問(wèn)題
在肯定他們的思路后,我接著(zhù)問(wèn):1,2,22,.....,263是什么數列?有何特征?應歸結為什么數學(xué)問(wèn)題呢?
探討1:,記為(1)式,注意觀(guān)察每一項的特征,有何聯(lián)系?(學(xué)生會(huì )發(fā)現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現?
設計意圖:留出時(shí)間讓學(xué)生充分地比較,等比數列前n項和的公式推導關(guān)鍵是變"加"為"減",在教師看來(lái)這是"天經(jīng)地義"的,但在學(xué)生看來(lái)卻是"不可思議"的,因此教學(xué)中應著(zhù)力在這兒做文章,從而抓住培養學(xué)生的辯證思維能力的良好契機。
經(jīng)過(guò)比較、研究,學(xué)生發(fā)現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經(jīng)過(guò)繁難的計算之苦后,突然發(fā)現上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗,從而增強學(xué)習數學(xué)的興趣和學(xué)好數學(xué)的信心。
3、類(lèi)比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢引導學(xué)生將結論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個(gè)別學(xué)生進(jìn)行指導。
設計意圖:在教師的指導下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習的愉快和成就感。
對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時(shí)是什么數列?此時(shí)sn=?(這里引導學(xué)生對q進(jìn)行分類(lèi)討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎。)
再次追問(wèn):結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(lái)?(引導學(xué)生得出公式的另一形式)
設計意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對知識的認識,完善知識結構,另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷χR的主動(dòng)認識,從而進(jìn)一步提高分析、類(lèi)比和綜合的能力。這一環(huán)節非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話(huà),然而卻有畫(huà)龍點(diǎn)睛之妙用。
4、討論交流,延伸拓展
在此基礎上,我提出:探究等比數列前n項和公式,還有其它方法嗎?我們知道,
那么我們能否利用這個(gè)關(guān)系而求出sn呢?根據等比數列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?
設計意圖:以疑導思,激發(fā)學(xué)生的探索欲望,營(yíng)造一個(gè)讓學(xué)生主動(dòng)觀(guān)察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實(shí)就是關(guān)于的一個(gè)遞推式,遞推數列有非常重要的研究?jì)r(jià)值,是研究性學(xué)習和課外拓展的極佳資源,它源于課本,又高于課本,對學(xué)生的思維發(fā)展有促進(jìn)作用、
5、變式訓練,深化認識
首先,學(xué)生獨立思考,自主解題,再請學(xué)生上臺來(lái)幻燈演示他們的解答,其它同學(xué)進(jìn)行評價(jià),然后師生共同進(jìn)行總結。
設計意圖:采用變式教學(xué)設計題組,深化學(xué)生對公式的認識和理解,通過(guò)直接套用公式、變式運用公式、研究公式特點(diǎn)這三個(gè)層次的問(wèn)題解決,促進(jìn)學(xué)生新的數學(xué)認知結構的形成。通過(guò)以上形式,讓全體學(xué)生都參與教學(xué),以此培養學(xué)生的參與意識和競爭意識。
6、例題講解,形成技能
設計意圖:解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥,該題有意培養學(xué)生對含有參數的問(wèn)題進(jìn)行分類(lèi)討論的數學(xué)思想。
7、總結歸納,加深理解
以問(wèn)題的形式出現,引導學(xué)生回顧公式、推導方法,鼓勵學(xué)生積極回答,然后老師再從知識點(diǎn)及數學(xué)思想方法兩方面總結。
設計意圖:以此培養學(xué)生的口頭表達能力,歸納概括能力。
8、故事結束,首尾呼應
最后我們回到故事中的問(wèn)題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽(yáng)鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現不了他的承諾。
設計意圖:把引入課題時(shí)的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續積極思維。
9、課后作業(yè),分層練習
必做:P129練習1、2、3、4
選作:
。2)"遠望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問(wèn)尖頭幾盞燈?"這首中國古詩(shī)的答案是多少?
設計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。
四、教法分析
對公式的教學(xué),要使學(xué)生掌握與理解公式的來(lái)龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現公式之間的聯(lián)系。在教學(xué)中,我采用"問(wèn)題――探究"的教學(xué)模式,把整個(gè)課堂分為呈現問(wèn)題、探索規律、總結規律、應用規律四個(gè)階段。
利用多媒體輔助教學(xué),直觀(guān)地反映了教學(xué)內容,使學(xué)生思維活動(dòng)得以充分展開(kāi),從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率。
五、評價(jià)分析
本節課通過(guò)三種推導方法的研究,使學(xué)生從不同的思維角度掌握了等比數列前n項和公式。錯位相減:變加為減,等價(jià)轉化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實(shí)。學(xué)生從中深刻地領(lǐng)會(huì )到推導過(guò)程中所蘊含的數學(xué)思想,培養了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時(shí)通過(guò)精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎上,通過(guò)民主和諧的課堂氛圍,培養了學(xué)生自主學(xué)習、合作交流的學(xué)習習慣,也培養了學(xué)生勇于探索、不斷創(chuàng )新的思維品質(zhì)。
【精選高中數學(xué)說(shuō)課稿模板匯總9篇】相關(guān)文章:
精選高中數學(xué)說(shuō)課稿模板匯總5篇07-28
關(guān)于高中數學(xué)說(shuō)課稿模板匯總6篇07-26