高中數學(xué)說(shuō)課稿15篇
作為一位無(wú)私奉獻的人民教師,通常需要用到說(shuō)課稿來(lái)輔助教學(xué),借助說(shuō)課稿可以有效提升自己的教學(xué)能力。那么寫(xiě)說(shuō)課稿需要注意哪些問(wèn)題呢?下面是小編整理的高中數學(xué)說(shuō)課稿,僅供參考,希望能夠幫助到大家。
高中數學(xué)說(shuō)課稿1
各位評委老師,大家好!
我是本科數學(xué)**號選手,今天我要進(jìn)行說(shuō)課的課題是高中數學(xué)必修一第一章第三節第一課時(shí)《函數單調性與最大(。┲怠罚ǹ梢栽谶@時(shí)候板書(shū)課題,以緩解緊張)。我將從教材分析;教學(xué)目標分析;教法、學(xué)法;教學(xué)過(guò)程;教學(xué)評價(jià)五個(gè)方面來(lái)陳述我對本節課的設計方案。懇請在座的專(zhuān)家評委批評指正。
一、教材分析
1、 教材的地位和作用
。1)本節課主要對函數單調性的學(xué)習;
。2)它是在學(xué)習函數概念的基礎上進(jìn)行學(xué)習的,同時(shí)又為基本初等函數的學(xué)習奠定了基礎,所以他在教材中起著(zhù)承前啟后的重要作用;(可以看看這一課題的前后章節來(lái)寫(xiě))
。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題
。ǜ鶕唧w的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問(wèn)題就刪掉)
2、 教材重、難點(diǎn)
重點(diǎn):函數單調性的定義
難點(diǎn):函數單調性的證明
重難點(diǎn)突破:在學(xué)生已有知識的基礎上,通過(guò)認真觀(guān)察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現重難點(diǎn)突破。(這個(gè)必須要有)
3.學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節總是創(chuàng )設恰當的問(wèn)題情境,引導學(xué)生積極思考,培養他們的邏輯思維能力。從學(xué)生的認知結構來(lái)看,他們只能根據函數的圖象觀(guān)察出“隨著(zhù)自變量的增大函數值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數圖象的直觀(guān)性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統性、嚴謹性,在教學(xué)中注意加強.
二、教學(xué)目標
知識目標:
。1)函數單調性的定義
。2)函數單調性的證明
能力目標:
培養學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復雜,由特殊到一般的化歸思想
情感目標:
培養學(xué)生勇于探索的精神和善于合作的意識
。ㄟ@樣的教學(xué)目標設計更注重教學(xué)過(guò)程和情感體驗,立足教學(xué)目標多元化)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無(wú)定法”,只有方法得當才會(huì )有效。新課程標準之處教師是教學(xué)的組織者、引導者、合作者,在教學(xué)過(guò)程要充分調動(dòng)學(xué)生的積極性、主動(dòng)性。本著(zhù)這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價(jià)法
2、學(xué)法分析
“授人以魚(yú),不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀(guān)察發(fā)現法、合作交流法、歸納總結法。
。ㄇ叭糠钟脮r(shí)控制在三分鐘以?xún),可適當刪減)
四、教學(xué)過(guò)程
1、以舊引新,導入新知
通過(guò)課前小研究讓學(xué)生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀(guān)察函數圖象的特點(diǎn),總結歸納。通過(guò)課上小組討論歸納,引導學(xué)生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線(xiàn)上升的,而二次函數f(x)=x^2的圖像是一個(gè)曲線(xiàn),在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來(lái)更自然)
2、創(chuàng )設問(wèn)題,探索新知
緊接著(zhù)提出問(wèn)題,你能用二次函數f(x)=x^2表達式來(lái)描述函數在(-∞,0)的圖像?教師總結,并板書(shū),揭示函數單調性的定義,并注意強調可以利用作差法來(lái)判斷這個(gè)函數的單調性。
讓學(xué)生模仿剛才的表述法來(lái)描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規范學(xué)生的數學(xué)用語(yǔ)。
讓學(xué)生自主學(xué)習函數單調區間的定義,為接下來(lái)例題學(xué)習打好基礎。
3、 例題講解,學(xué)以致用
例1主要是對函數單調區間的鞏固運用,通過(guò)觀(guān)察函數定義在(—5,5)的圖像來(lái)找出函數的單調區間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評來(lái)糾正答案,檢查學(xué)生對函數單調區間的掌握。強調單調區間一般寫(xiě)成半開(kāi)半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習效果。
例2是將函數單調性運用到其他領(lǐng)域,通過(guò)函數單調性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對例題進(jìn)行證明,以規范總結證明步驟。一設二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過(guò)自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學(xué)習了函數單調性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養學(xué)生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學(xué)生學(xué)習不同的數學(xué),我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2
6、板書(shū)設計
我力求簡(jiǎn)潔明了地概括本節課的學(xué)習要點(diǎn),讓學(xué)生一目了然。
。ㄟ@部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說(shuō)明學(xué)生的活動(dòng))
五、教學(xué)評價(jià)
本節課是在學(xué)生已有知識的基礎上學(xué)習的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評、互評,讓內部動(dòng)機和外界刺激協(xié)調作用,促進(jìn)其數學(xué)素養不斷提高。
高中數學(xué)說(shuō)課稿2
一、教材分析
。ㄒ唬┑匚慌c作用
《冪函數》選自高一數學(xué)新教材必修1第2章第3節。是基本初等函數之一,它不僅有著(zhù)廣泛的實(shí)際應用,而且起著(zhù)承前啟后的作用。從教材的整體安排看,學(xué)習了解冪函數是為了讓學(xué)生進(jìn)一步獲得比較系統的函數知識和研究函數的方法,為今后學(xué)習三角函數等其他函數打下良好的基礎.在初中曾經(jīng)研究過(guò)y=x,y=x2,y=x—1三種冪函數。這節內容,是對初中有關(guān)內容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節內容之后, 將把指數函數,對數函數,冪函數科學(xué)的組織起來(lái),體現充滿(mǎn)在整個(gè)數學(xué)中的組織化,系統化的精神。讓學(xué)生了解系統研究一類(lèi)函數的方法.這節課要特別讓學(xué)生去體會(huì )研究的方法,以便能將該方法遷移到對其他函數的研究.
。ǘ⿲W(xué)情分析
。1)學(xué)生已經(jīng)接觸的函數,確立利用函數的定義域、值域、奇偶性、單調性研究一個(gè)函數的意識 ,已初步形成對數學(xué)問(wèn)題的合作探究能力。
。2)雖然前面學(xué)生已經(jīng)學(xué)會(huì )用描點(diǎn)畫(huà)圖的方法來(lái)繪制指數函數,對數函數圖像,但是對于冪函數的圖像畫(huà)法仍然缺乏感性認識。
。3)學(xué)生層次參差不齊,個(gè)體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個(gè)密切聯(lián)系的有機整體。
。ㄒ唬┙虒W(xué)目標
。1)知識與技能
、偈箤W(xué)生理解冪函數的概念,會(huì )畫(huà)冪函數的圖象。
、谧寣W(xué)生結合這幾個(gè)冪函數的圖象,理解冪函圖象的變化情況和性質(zhì)。
。2)過(guò)程與方法
、僮寣W(xué)生通過(guò)觀(guān)察、總結冪函數的性質(zhì),培養學(xué)生概括抽象和識圖能力。
、谑箤W(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
。3)情感態(tài)度與價(jià)值觀(guān)
、偻ㄟ^(guò)熟悉的例子讓學(xué)生消除對冪函數的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習興趣。
、诶枚嗝襟w,了解冪函數圖象的變化規律,使學(xué)生認識到現代技術(shù)在數學(xué)認知過(guò)程中的作用,從而激發(fā)學(xué)生的學(xué)習欲望。
、叟囵B學(xué)生從特殊歸納出一般的意識,培養學(xué)生利用圖像研究函數奇偶性的能力。并引導學(xué)生發(fā)現數學(xué)中的對稱(chēng)美,讓學(xué)生在畫(huà)圖與識圖中獲得學(xué)習的快樂(lè )。
。ǘ┲攸c(diǎn)難點(diǎn)
根據我對本節課的內容的理解,我將重難點(diǎn)定為:
重點(diǎn):從五個(gè)具體的冪函數中認識概念和性質(zhì)
難點(diǎn):從冪函數的圖象中概括其性質(zhì)。
三、教法、學(xué)法分析
。ㄒ唬┙谭
教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,教師要善于啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性,要有效地滲透數學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法。
1、引導發(fā)現比較法
因為有五個(gè)冪函數,所以可先通過(guò)學(xué)生動(dòng)手畫(huà)出函數的圖象,觀(guān)察它們的解析式和圖象并從式的角度和形的角度發(fā)現異同,并進(jìn)行比較,從而更深刻地領(lǐng)會(huì )冪函數概念以及五個(gè)冪函數的圖象與性質(zhì)。
2、借助信息技術(shù)輔助教學(xué)
由于多媒體信息技術(shù)能具有形象生動(dòng)易吸引學(xué)生注意的特點(diǎn),故此,可用多媒體制作引入情境,將學(xué)生引到這節課的學(xué)習中來(lái)。再利用《幾何畫(huà)板》畫(huà)出五個(gè)冪函數的圖象,為學(xué)生創(chuàng )設豐富的數形結合環(huán)境,幫助學(xué)生更深刻地理解冪函數概念以及在冪函數中指數的變化對函數圖象形狀和單調性的影響,并由此歸納冪函數的性質(zhì)。
3、練習鞏固討論學(xué)習法
這樣更能突出重點(diǎn),解決難點(diǎn),使學(xué)生既能夠進(jìn)行深入地獨立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來(lái)學(xué)生對這五個(gè)冪函數領(lǐng)會(huì )得會(huì )更加深刻,在這個(gè)過(guò)程中學(xué)生們分析問(wèn)題和解決問(wèn)題的能力得到進(jìn)一步的提高,班級整體學(xué)習氛氛圍也變得更加濃厚。
。ǘ⿲W(xué)法
本節課主要是通過(guò)對冪函數模型的特征進(jìn)行歸納,動(dòng)手探索冪函數的圖像,觀(guān)察發(fā)現其有關(guān)性質(zhì),再改變觀(guān)察角度發(fā)現奇偶函數的特征。重在動(dòng)手操作、觀(guān)察發(fā)現和歸納的過(guò)程。
由于冪函數在第一象限的特征是學(xué)生不容易發(fā)現的問(wèn)題,因此在教學(xué)過(guò)程中引導學(xué)生將抽象問(wèn)題具體化,借助多媒體進(jìn)行動(dòng)態(tài)演化,以形成較完整的知識結構。
四、教學(xué)過(guò)程分析
。ㄒ唬┙虒W(xué)過(guò)程設計
。1)創(chuàng )設情境,提出問(wèn)題。 新課標指出:“應該讓學(xué)生在具體生動(dòng)的情境中學(xué)習數學(xué)”。在本節課的教學(xué)中,從我們熟悉的生活情境中提出問(wèn)題,問(wèn)題的設計改變了傳統目的明確的設計方式,給學(xué)生最大的思考空間,充分體現學(xué)生主體地位。
問(wèn)題1:下列問(wèn)題中的函數各有什么共同特征?是否為指數函數?
由學(xué)生討論,總結,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1
這時(shí)學(xué)生觀(guān)察可能有些困難,老師提示可以用x表示自變量,用y表示函數值,上述函數式變成:
都是自變量的若干次冪的形式。都是形如
的函數。
揭示課題:今天這節課,我們就來(lái)研究:冪函數
。ㄒ唬┱n堂主要內容
。1)冪函數的概念
、賰绾瘮档亩x。
一般地,函數
叫做冪函數,其中x 是自變量,a是常數。
、趦绾瘮蹬c指數函數之間的區別。
冪函數——底數是自變量,指數是常數;
指數函數——指數是自變量,底數是常數。
。2)幾個(gè)常見(jiàn)冪函數的圖象和性質(zhì)
由同學(xué)們畫(huà)出下列常見(jiàn)的冪函數的圖象,并根據圖象將發(fā)現的性質(zhì)填入表格
根據上表的內容并結合圖象,總結函數的共同性質(zhì)。讓學(xué)生交流,老師結合學(xué)生的回答組織學(xué)生總結出性質(zhì)。
以上問(wèn)題的設計意圖:數形結合是一個(gè)重要的數學(xué)思想方法,它包含以數助形,和以形助數的思想。通過(guò)問(wèn)題設計讓學(xué)生著(zhù)手實(shí)際,借助行的生動(dòng)來(lái)闡明冪函數的性質(zhì)。
教師講評:冪函數的性質(zhì).
、偎械膬绾瘮翟冢0,+∞)上都有定義,并且圖像都過(guò)點(diǎn)(1,1).
、谌绻鸻>0,則冪函數的圖像通過(guò)原點(diǎn),并在區間〔0,+∞)上是增函數.
、廴绻鸻<0,則冪函數在(0,+∞)上是減函數,在第一象限內,當x從右邊趨向于原點(diǎn)時(shí),圖像在y軸右方無(wú)限地趨近y軸;當x趨向于+∞時(shí),圖像在x軸上方無(wú)限地趨近x軸.
、墚攁為奇數時(shí),冪函數為奇函數;當a為偶數時(shí),冪函數為偶函數。
以問(wèn)題設計為主,通過(guò)問(wèn)題,讓學(xué)生由已經(jīng)學(xué)過(guò)的指數函數,對數函數,描點(diǎn)作圖得到五個(gè)冪函數的圖像,但是我們應該知道繪制冪函數的圖像比繪制指數函數和對數函數的圖像更為復雜,因為冪函數隨著(zhù)冪指數的輕微變化會(huì )出現較大的變化,因此,在描點(diǎn)作圖之前,應引導學(xué)生對幾個(gè)特殊的冪函數的性質(zhì)先進(jìn)行初步的探究,如分析函數的定義域,奇偶性等,在根據研究結果和描點(diǎn)作圖畫(huà)出圖像,讓學(xué)生觀(guān)察所作圖像特征,并由圖象特征得到相應的函數性質(zhì),讓學(xué)生充分體會(huì )系統的研究方法。同時(shí)學(xué)生對于歸納性質(zhì)這一環(huán)節相對指數函數,對數函數的性質(zhì),學(xué)生會(huì )有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認識,而不必在一般冪函數上作過(guò)多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。
通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識識的再次深化。
。3)當堂訓練,鞏固深化
例題和練習題的選取應結合學(xué)生認知探究,鞏固本節課的重點(diǎn)知識,并能用知識加以運用。本節課選取主要選取了兩道例題。
例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數。這題先從“形”的角度判斷函數的單調區間和單調性,再用到定義從“數”的角度對函數的單調性進(jìn)行推理論證,培養學(xué)生的數形結合的數學(xué)思想和解決問(wèn)題的專(zhuān)業(yè)素養。
例2是補充例題,主要培養學(xué)生根據體例構造出函數,并利用函數的性質(zhì)來(lái)解決問(wèn)題的能力,從而加深學(xué)生對冪函數及其性質(zhì)的理解。注意:由于學(xué)生對冪函數還不是很熟悉,所以在講評中要刻意體現出冪函數y=x1。3是增函數與y=x—5/4的圖像的畫(huà)法,即再一次讓學(xué)生體會(huì )根據解析式來(lái)畫(huà)圖像解題這一基本思路
。4)小結歸納,回顧反思。 小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。我設計了三個(gè)問(wèn)題:
。1)通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識?
。2)通過(guò)本節課的學(xué)習,你最大的體驗是什么?
。3)通過(guò)本節課的學(xué)習,你掌握了哪些技能?
。ǘ┳鳂I(yè)設計 作業(yè)分為必做題和選做題,必做題對本節課學(xué)生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習氛圍的形成. 我設計了以下作業(yè):
。1)必做題
。2)選做題
。ㄈ┌鍟(shū)設計
板書(shū)要基本體現整堂課的內容與方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。
五、評價(jià)分析
學(xué)生學(xué)習的結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對冪函數是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。
謝謝!
高中數學(xué)說(shuō)課稿3
教材地位及作用
本節課是高中數學(xué)3(必修)第三章概率的第二節古典概型的第一課時(shí),是在隨機事件的概率之后,幾何概型之前,尚未學(xué)習排列組合的情況下教學(xué)的。古典概型是一種特殊的數學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。
學(xué)好古典概型可以為其它概率的學(xué)習奠定基礎,同時(shí)有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問(wèn)題。
教學(xué)重點(diǎn)
理解古典概型的概念及利用古典概型求解隨機事件的概率。
根據本節課的地位和作用以及新課程標準的具體要求,制訂教學(xué)重點(diǎn)。
教學(xué)難點(diǎn)
如何判斷一個(gè)試驗是否是古典概型,分清在一個(gè)古典概型中某隨機事件包含的基本事件的個(gè)數和試驗中基本事件的總數。
根據本節課的內容,即尚未學(xué)習排列組合,以及學(xué)生的心理特點(diǎn)和認知水平,制定了教學(xué)難點(diǎn)。
教學(xué)目標
1.知識與技能
。1)理解古典概型及其概率計算公式,
。2)會(huì )用列舉法計算一些隨機事件所含的基本事件數及事件發(fā)生的概率。
2.過(guò)程與方法
根據本節課的內容和學(xué)生的實(shí)際水平,通過(guò)模擬試驗讓學(xué)生理解古典概型的特征:試驗結果的有限性和每一個(gè)試驗結果出現的等可能性,觀(guān)察類(lèi)比各個(gè)試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學(xué)會(huì )運用數形結合、分類(lèi)討論的思想解決概率的計算問(wèn)題。
3.情感態(tài)度與價(jià)值觀(guān)
概率教學(xué)的核心問(wèn)題是讓學(xué)生了解隨機現象與概率的意義,加強與實(shí)際生活的聯(lián)系,以科學(xué)的態(tài)度評價(jià)身邊的一些隨機現象。適當地增加學(xué)生合作學(xué)習交流的機會(huì ),盡量地讓學(xué)生自己舉出生活和學(xué)習中與古典概型有關(guān)的實(shí)例。使得學(xué)生在體會(huì )概率意義的同時(shí),感受與他人合作的重要性以及初步形成實(shí)事求是地科學(xué)態(tài)度和鍥而不舍的求學(xué)精神。
根據新課程標準,并結合學(xué)生心理發(fā)展的需求,以及人格、情感、價(jià)值觀(guān)的具體要求制訂而成。這對激發(fā)學(xué)生學(xué)好數學(xué)概念,養成數學(xué)習慣,感受數學(xué)思想,提高數學(xué)能力起到了積極的作用。
教學(xué)過(guò)程分析
一,提出問(wèn)題引入新課
在課前,教師布置任務(wù),以數學(xué)小組為單位,完成下面兩個(gè)模擬試驗:
試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個(gè)數學(xué)小組至少完成20次(最好是整十數),最后由科代表匯總;
試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數,要求每個(gè)數學(xué)小組至少完成60次(最好是整十數),最后由科代表匯總。
在課上,學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受。
教師最后匯總方法、結果和感受,并提出問(wèn)題?
1.用模擬試驗的方法來(lái)求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進(jìn)行大量的試驗,并且求出來(lái)的結果是頻率,而不是概率。
2.根據以前的學(xué)習,上述兩個(gè)模擬試驗的每個(gè)結果之間都有什么特點(diǎn)?
學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結果和感受,并提出問(wèn)題。
通過(guò)課前的模擬實(shí)驗的展示,讓學(xué)生感受與他人合作的重要性,培養學(xué)生運用數學(xué)語(yǔ)言的能力。隨著(zhù)新問(wèn)題的提出,激發(fā)了學(xué)生的求知欲望,通過(guò)觀(guān)察對比,培養了學(xué)生發(fā)現問(wèn)題的能力。
二,思考交流形成概念
在試驗一中隨機事件只有兩個(gè),即"正面朝上"和"反面朝上",并且他們都是互斥的,由于硬幣質(zhì)地是均勻的,因此出現兩種隨機事件的可能性相等,即它們的概率都是;
在試驗二中隨機事件有六個(gè),即"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)",并且他們都是互斥的,由于骰子質(zhì)地是均勻的,因此出現六種隨機事件的可能性相等,即它們的概率都是。
我們把上述試驗中的隨機事件稱(chēng)為基本事件,它是試驗的每一個(gè)可能結果。
基本事件有如下的兩個(gè)特點(diǎn):
。1)任何兩個(gè)基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和。
特點(diǎn)(2)的理解:在試驗一中,必然事件由基本事件"正面朝上"和"反面朝上"組成;在試驗二中,隨機事件"出現偶數點(diǎn)"可以由基本事件"2點(diǎn)"、"4點(diǎn)"和"6點(diǎn)"共同組成。
學(xué)生觀(guān)察對比得出兩個(gè)模擬試驗的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說(shuō)明,加深新概念的理解。
讓學(xué)生從問(wèn)題的相同點(diǎn)和不同點(diǎn)中找出研究對象的對立統一面,這能培養學(xué)生分析問(wèn)題的能力,同時(shí)也教會(huì )學(xué)生運用對立統一的辯證唯物主義觀(guān)點(diǎn)來(lái)分析問(wèn)題的一種方法。
三,思考交流形成概念
例1從字母中任意取出兩個(gè)不同字母的試驗中,有哪些基本事件?
分析:為了解基本事件,我們可以按照字典排序的順序,把所有可能的結果都列出來(lái)。利用樹(shù)狀圖可以將它們之間的關(guān)系列出來(lái)。
我們一般用列舉法列出所有基本事件的結果,畫(huà)樹(shù)狀圖是列舉法的基本方法,一般分布完成的結果(兩步以上)可以用樹(shù)狀圖進(jìn)行列舉。
。(shù)狀圖)
解:所求的基本事件共有6個(gè):
,,,
,,
觀(guān)察對比,發(fā)現兩個(gè)模擬試驗和例1的共同特點(diǎn):
試驗一中所有可能出現的基本事件有"正面朝上"和"反面朝上"2個(gè),并且每個(gè)基本事件出現的可能性相等,都是;
試驗二中所有可能出現的基本事件有"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"6個(gè),并且每個(gè)基本事件出現的可能性相等,都是;
例1中所有可能出現的基本事件有"A"、"B"、"C"、"D"、"E"和"F"6個(gè),并且每個(gè)基本事件出現的可能性相等,都是;
經(jīng)概括總結后得到:
1,試驗中所有可能出現的基本事件只有有限個(gè);(有限性)
2,每個(gè)基本事件出現的可能性相等。(等可能性)
我們將具有這兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。
思考交流:
。1)向一個(gè)圓面內隨機地投射一個(gè)點(diǎn),如果該點(diǎn)落在圓內任意一點(diǎn)都是等可能的,你認為這是古典概型嗎?為什么?
答:不是古典概型,因為試驗的所有可能結果是圓面內所有的點(diǎn),試驗的所有可能結果數是無(wú)限的,雖然每一個(gè)試驗結果出現的"可能性相同",但這個(gè)試驗不滿(mǎn)足古典概型的第一個(gè)條件。
。2)如圖,某同學(xué)隨機地向一靶心進(jìn)行射擊,這一試驗的結果只有有限個(gè):命中10環(huán)、命中9環(huán)。。。。。。命中5環(huán)和不中環(huán)。你認為這是古典概型嗎?為什么?
答:不是古典概型,因為試驗的所有可能結果只有7個(gè),而命中10環(huán)、命中9環(huán)。。。。。。命中5環(huán)和不中環(huán)的出現不是等可能的,即不滿(mǎn)足古典概型的第二個(gè)條件。
先讓學(xué)生嘗試著(zhù)列出所有的基本事件,教師再講解用樹(shù)狀圖列舉問(wèn)題的優(yōu)點(diǎn)。讓學(xué)生先觀(guān)察對比,找出兩個(gè)模擬試驗和例1的共同特點(diǎn),再概括總結得到的結論,教師最后補充說(shuō)明。學(xué)生互相交流,回答補充,教師歸納。將數形結合和分類(lèi)討論的思想滲透到具體問(wèn)題中來(lái)。由于沒(méi)有學(xué)習排列組合,因此用列舉法列舉基本事件的個(gè)數,不僅能讓學(xué)生直觀(guān)的感受到對象的總數,而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數這一難點(diǎn)。培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀(guān)點(diǎn)分析問(wèn)題的能力,充分體現了數學(xué)的化歸思想。啟發(fā)誘導的同時(shí),訓練了學(xué)生觀(guān)察和概括歸納的能力。通過(guò)用表格列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。從而突出了古典概型這一重點(diǎn)。
兩個(gè)問(wèn)題的設計是為了讓學(xué)生更加準確的把握古典概型的兩個(gè)特點(diǎn)。突破了如何判斷一個(gè)試驗是否是古典概型這一教學(xué)難點(diǎn)。
四,觀(guān)察分析推導方程
問(wèn)題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
分析:
實(shí)驗一中,出現正面朝上的概率與反面朝上的概率相等,即
P("正面朝上")=P("反面朝上")
由概率的加法公式,得
P("正面朝上")+P("反面朝上")=P(必然事件)=1
因此P("正面朝上")=P("反面朝上")=
即試驗二中,出現各個(gè)點(diǎn)的概率相等,即
P("1點(diǎn)")=P("2點(diǎn)")=P("3點(diǎn)")
。絇("4點(diǎn)")=P("5點(diǎn)")=P("6點(diǎn)")
反復利用概率的加法公式,我們有
P("1點(diǎn)")+P("2點(diǎn)")+P("3點(diǎn)")+P("4點(diǎn)")+P("5點(diǎn)")+P("6點(diǎn)")=P(必然事件)=1
所以P("1點(diǎn)")=P("2點(diǎn)")=P("3點(diǎn)")
。絇("4點(diǎn)")=P("5點(diǎn)")=P("6點(diǎn)")=
進(jìn)一步地,利用加法公式還可以計算這個(gè)試驗中任何一個(gè)事件的概率,例如,
P("出現偶數點(diǎn)")=P("2點(diǎn)")+P("4點(diǎn)")+P("6點(diǎn)")=++==
即根據上述兩則模擬試驗,可以概括總結出,古典概型計算任何事件的概率計算公式為:
教師提出問(wèn)題,引導學(xué)生類(lèi)比分析兩個(gè)模擬試驗和例1的概率,先通過(guò)用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯(lián)系。
鼓勵學(xué)生運用觀(guān)察類(lèi)比和從具體到抽象、從特殊到一般的辯證唯物主義方法來(lái)分析問(wèn)題,同時(shí)讓學(xué)生感受數學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點(diǎn)。
提問(wèn):
。1)在例1的實(shí)驗中,出現字母"d"的概率是多少?
出現字母"d"的概率為:
提問(wèn):
。2)在使用古典概型的概率公式時(shí),應該注意什么?
歸納:
在使用古典概型的概率公式時(shí),應該注意:
。1)要判斷該概率模型是不是古典概型;
。2)要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。除了畫(huà)樹(shù)狀圖,還有什么方法求基本事件的個(gè)數呢?
教師提問(wèn),學(xué)生回答,加深對古典概型的概率計算公式的理解。
深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
四,例題分析推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,C,D四個(gè)選項中選擇一個(gè)正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會(huì )做,他隨機的選擇一個(gè)答案,問(wèn)他答對的概率是多少?
分析:
解決這個(gè)問(wèn)題的關(guān)鍵,即討論這個(gè)問(wèn)題什么情況下可以看成古典概型。如果考生掌握或者掌握了部分考察內容,這都不滿(mǎn)足古典概型的第2個(gè)條件——等可能性,因此,只有在假定考生不會(huì )做,隨機地選擇了一個(gè)答案的情況下,才可以化為古典概型。
解:
這是一個(gè)古典概型,因為試驗的可能結果只有4個(gè):選擇A、選擇B、選擇C、選擇D,即基本事件共有4個(gè),考生隨機地選擇一個(gè)答案是選擇A,B,C,D的可能性是相等的。從而由古典概型的概率計算公式得:
課后思考:
。1)在標準化考試中既有單選題又有多選題,多選題是從A,B,C,D四個(gè)選項中選出所有正確的答案,同學(xué)們可能有一種感覺(jué),如果不知道正確答案,多選題更難猜對,這是為什么?
。2)假設有20道單選題,如果有一個(gè)考生答對了17道題,他是隨機選擇的可能性大,還是他掌握了一定知識的可能性大?
學(xué)生先思考再回答,教師對學(xué)生沒(méi)有注意到的關(guān)鍵點(diǎn)加以說(shuō)明。
讓學(xué)生明確決概率的計算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。
鞏固學(xué)生對已學(xué)知識的掌握。
例3同時(shí)擲兩個(gè)骰子,計算:
。1)一共有多少種不同的結果?
。2)其中向上的點(diǎn)數之和是5的結果有多少種?
。3)向上的點(diǎn)數之和是5的概率是多少?
解:(1)擲一個(gè)骰子的結果有6種,我們把兩個(gè)骰子標上記號1,2以便區分,由于1號骰子的結果都可以與2號骰子的任意一個(gè)結果配對,我們用一個(gè)"有序實(shí)數對"來(lái)表示組成同時(shí)擲兩個(gè)骰子的一個(gè)結果(如表),其中第一個(gè)數表示1號骰子的結果,第二個(gè)數表示2號骰子的結果。(可由列表法得到)
由表中可知同時(shí)擲兩個(gè)骰子的結果共有36種。
。2)在上面的結果中,向上的點(diǎn)數之和為5的結果有4種,分別為:
。1,4),(2,3),(3,2),(4,1)
。3)由于所有36種結果是等可能的,其中向上點(diǎn)數之和為5的結果(記為事件A)有4種,因此,由古典概型的概率計算公式可得
先給出問(wèn)題,再讓學(xué)生完成,然后引導學(xué)生分析問(wèn)題,發(fā)現解答中存在的問(wèn)題。
引導學(xué)生用列表來(lái)列舉試驗中的基本事件的總數。
利用列表數形結合和分類(lèi)討論,既能形象直觀(guān)地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解,和用列舉法來(lái)計算一些隨機事件所含基本事件的個(gè)數及事件發(fā)生的概率。
培養學(xué)生運用數形結合的思想,提高發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強學(xué)生數學(xué)思維情趣,形成學(xué)習數學(xué)知識的積極態(tài)度。
五,探究思考鞏固深
化問(wèn)題思考:為什么要把兩個(gè)骰子標上記號?如果不標記號會(huì )出現什么情況?你能解釋其中的原因嗎?
如果不標上記號,類(lèi)似于(1,2)和(2,1)的結果將沒(méi)有區別。這時(shí),所有可能的結果將是:
。1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種,和是5的結果有2個(gè),它們是(1,4)(2,3),所求的概率為
這就需要我們考察兩種解法是否滿(mǎn)足古典概型的要求了。
可以通過(guò)展示兩個(gè)不同的骰子所拋擲出來(lái)的點(diǎn),感受第二種方法構造的基本事件不是等可能事件,另外還可以利用Excel展示第二種方法中構造的21個(gè)基本事件不是等可能事件。從而加深印象,鞏固知識。
要求學(xué)生觀(guān)察對比兩種結果,找出問(wèn)題產(chǎn)生的原因。
通過(guò)觀(guān)察對比,發(fā)現兩種結果不同的根本原因是——研究的問(wèn)題是否滿(mǎn)足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現了學(xué)生的主體地位,逐漸養成自主探究能力。
六,總結概括加深理解
1.我們將具有
。1)試驗中所有可能出現的基本事件只有有限個(gè);(有限性)
。2)每個(gè)基本事件出現的可能性相等。(等可能性)
這樣兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。
2.古典概型計算任何事件的概率計算公式
3.求某個(gè)隨機事件A包含的基本事件的個(gè)數和實(shí)驗中基本事件的總數的常用方法是列舉法(畫(huà)樹(shù)狀圖和列表),應做到不重不漏。
學(xué)生小結歸納,不足的地方老師補充說(shuō)明。
使學(xué)生對本節課的知識有一個(gè)系統全面的認識,并把學(xué)過(guò)的相關(guān)知識有機地串聯(lián)起來(lái),便于記憶和應用,也進(jìn)一步升華了這節課所要表達的本質(zhì)思想,讓學(xué)生的認知更上一層。
七,布置作業(yè)
P123練習1、2題
學(xué)生課后自主完成。
進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠學(xué)以致用,加深對本節課的理解。
八,板書(shū)設計教法與學(xué)法分析教法分析
根據本節課的特點(diǎn),采用引導發(fā)現和歸納概括相結合的教學(xué)方法,通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程,觀(guān)察對比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,來(lái)激發(fā)學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習活動(dòng)中來(lái)。
學(xué)法分析
學(xué)生在教師創(chuàng )設的問(wèn)題情景中,通過(guò)觀(guān)察、類(lèi)比、思考、探究、概括、歸納和動(dòng)手嘗試相結合,體現了學(xué)生的主體地位,培養了學(xué)生由具體到抽象,由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
評價(jià)分析評價(jià)設計
本節課的教學(xué)通過(guò)提出問(wèn)題,引導學(xué)生發(fā)現問(wèn)題,經(jīng)歷思考交流概括歸納后得出古典概型的概念,由兩個(gè)問(wèn)題的提出進(jìn)一步加深對古典概型的兩個(gè)特點(diǎn)的理解;再通過(guò)學(xué)生觀(guān)察類(lèi)比推導出古典概型的概率計算公式。這一過(guò)程能夠培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
在解決概率的計算上,教師鼓勵學(xué)生嘗試列表和畫(huà)出樹(shù)狀圖,讓學(xué)生感受求基本事件個(gè)數的一般方法,從而化解由于沒(méi)有學(xué)習排列組合而學(xué)習概率這一教學(xué)困惑。整個(gè)教學(xué)設計的順利實(shí)施,達到了教師的教學(xué)目標。
高中數學(xué)說(shuō)課稿4
大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。
一、教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生發(fā)現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學(xué)生會(huì )運用正弦定理解決兩類(lèi)基本的解三角形問(wèn)題。
能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習的興趣。
教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。
二、教法
根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
三、學(xué)法
指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
(一)創(chuàng )設情境(3分鐘)
“興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。
(二)猜想—推理—證明(15分鐘)
激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。 提問(wèn):那結論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
(三)總結--應用(3分鐘)
1.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
2.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中
一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(五)課堂練習(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。
(六)小結反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關(guān)系。
2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。
3.會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
五、教學(xué)反思
從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。
高中數學(xué)說(shuō)課稿5
一、背景分析
1、學(xué)習任務(wù)分析:充要條件是中學(xué)數學(xué)中最重要的數學(xué)概念之一,它主要討論了命題的條件與結論之間的邏輯關(guān)系,目的是為今后的數學(xué)學(xué)習特別是數學(xué)推理的學(xué)習打下基礎。
教學(xué)重點(diǎn):充分條件、必要條件和充要條件三個(gè)概念的定義。
2、學(xué)生情況分析:從學(xué)生學(xué)習的角度看,與舊教材相比,教學(xué)時(shí)間的前置,造成學(xué)生在學(xué)習充要條件這一概念時(shí)的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學(xué)帶來(lái)一定的困難.因此,新教材在第一章的小結與復習中,把學(xué)生的學(xué)習要求規定為“初步掌握充要條件”(注意:新教學(xué)大綱的教學(xué)目標是“掌握充要條件的意義”),這是比較切合教學(xué)實(shí)際的.由此可見(jiàn),教師在充要條件這一內容的新授教學(xué)時(shí),不可拔高要求追求一步到位,而要在今后的教學(xué)中滾動(dòng)式逐步深化,使之與學(xué)生的知識結構同步發(fā)展完善。
教學(xué)難點(diǎn):“充要條件”這一節介紹了充分條件,必要條件和充要條件三個(gè)概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們去解決具體問(wèn)題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數學(xué)的難點(diǎn)之一,而必要條件的定義又是本節內容的難點(diǎn).根據多年教學(xué)實(shí)踐,學(xué)生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“B=A”,稱(chēng)A是B的必要條件難于接受,A本是B推出的結論,怎么又變成條件了呢?對這學(xué)生難于理解。
教學(xué)關(guān)鍵:找出A、B,根據定義判斷A=B與B=A是否成立。教學(xué)中,要強調先找出A、B,否則,學(xué)生可能會(huì )對必要條件難以理解。
二、教學(xué)目標設計:
。ㄒ唬┲R目標:
1、正確理解充分條件、必要條件、充要條件三個(gè)概念。
2、能利用充分條件、必要條件、充要條件三個(gè)概念,熟練判斷四種命題間的關(guān)系。
。ǘ┠芰δ繕耍
1、培養學(xué)生的觀(guān)察與類(lèi)比能力:“會(huì )觀(guān)察”,通過(guò)大量的問(wèn)題,會(huì )觀(guān)察其共性及個(gè)性。
2、培養學(xué)生的歸納能力:“敢歸納”,敢于對一些事例,觀(guān)察后進(jìn)行歸納,總結出一般規律。
。ㄈ┣楦心繕耍
1、通過(guò)以學(xué)生為主體的教學(xué)方法,讓學(xué)生自己構造數學(xué)命題,發(fā)展體驗獲取知識的感受。
2、通過(guò)對命題的四種形式及充分條件,必要條件的相對性,培養同學(xué)們的辯證唯物主義觀(guān)點(diǎn)。
3、通過(guò)“會(huì )觀(guān)察”,“敢歸納”,“善建構”,培養學(xué)生自主學(xué)習,勇于創(chuàng )新,多方位審視問(wèn)題的創(chuàng )造技巧,敢于把錯誤的思維過(guò)程及弱點(diǎn)暴露出來(lái),并在問(wèn)題面前表現出濃厚的興趣和不畏困難、勇于進(jìn)取的精神。
三、教學(xué)結構設計:
數學(xué)知識來(lái)源于生活實(shí)際,生活本身又是一個(gè)巨大的數學(xué)課堂,我在教學(xué)過(guò)程中注重把教材內容與生活實(shí)踐結合起來(lái),加強數學(xué)教學(xué)的實(shí)踐性,給數學(xué)找到生活的原型。我對本節課的數學(xué)知識結構進(jìn)行創(chuàng )造性地“教學(xué)加工”,在教學(xué)方法上采用了“合作——探索”的開(kāi)放式教學(xué)模式,使課堂教學(xué)體現“參與式”、“生活化”、“探索性”,保證學(xué)生對數學(xué)知識的主動(dòng)獲取,促進(jìn)學(xué)生充分、和諧、自主、個(gè)性化的發(fā)展。
整體思路為:教師創(chuàng )設情境,激發(fā)興趣,引出課題 引導學(xué)生分析實(shí)例,給出定義 例題分析(采用開(kāi)放式教學(xué)) 知識小結 擴展例題 練習反饋
整個(gè)教學(xué)設計的主要特色:
。1)由生活事例引出課題;
。2)采用開(kāi)放式教學(xué)模式;
。3)擴展例題是分析生活中的名言名句,又將數學(xué)融入生活中。
努力做到:“教為不教,學(xué)為會(huì )學(xué)”;要“授之以魚(yú)”更要“授之以漁”。
四、教學(xué)媒體設計:
本節課是概念課,要避免單一的下定義作練習模式,應該努力使課堂元素更為豐富。這節課,我借助了多媒體課件,配合教學(xué),添加了一些與例題相匹配的圖片背景,以激發(fā)學(xué)生的學(xué)習興趣,另外將學(xué)生的自編題利用多媒體課件展示出來(lái)分析,提高了課堂教學(xué)的效率。
五、教學(xué)過(guò)程設計:
第一,創(chuàng )設情境,激發(fā)興趣,引出課題:
考慮到高一學(xué)生學(xué)習這一章的知識儲備不足,我利用日常生活中的具體事例來(lái)提出本課的問(wèn)題,并與學(xué)生共同利用原有的知識分析,事例中包括幾個(gè)問(wèn)題,為后面定義的分析埋下伏筆。
我用的第一個(gè)事例是:“做一件襯衫,需用布料,到布店去買(mǎi),問(wèn)營(yíng)業(yè)員應該買(mǎi)多少?他說(shuō)買(mǎi)3米足夠了!边@樣,就產(chǎn)生了“3米布料”與“做一件襯衫夠不夠”的關(guān)系。用這個(gè)事件目的是為了第二部分引導學(xué)生得出充分條件的定義。這里要強調該事件包括:A:有3米布料;B:做一件襯衫夠了。
第二個(gè)事例是:“一人病重,呼吸困難,急診住院接氧氣!本彤a(chǎn)生了“氧氣”與“活命與否”的關(guān)系。用這個(gè)事件的目的是為了第二部分引導學(xué)生得出必要條件的定義。這里要強調該事件包括:A:接氧氣;B:活了。
用以上兩個(gè)生活中的事例來(lái)說(shuō)明數學(xué)中應研究的概念、關(guān)系,會(huì )使學(xué)生感到親切自然,有助于提高興趣和深入領(lǐng)會(huì )概念的內容,特別是它的必要性。
第二,引導學(xué)生分析實(shí)例,給出定義。
在第一部分激發(fā)起學(xué)生的學(xué)習興趣后,緊接著(zhù)開(kāi)展第二部分,引導學(xué)生分析實(shí)例,讓學(xué)生從事例中抽象出數學(xué)概念,得出本節課所要學(xué)習的充分條件和必要條件的定義。在引導過(guò)程中盡量放慢語(yǔ)速,結合事例幫助學(xué)生分析。
得出定義之后,這里有必要再利用本課前面兩節的“邏輯聯(lián)結詞”和“四種命題”的知識來(lái)加強對必要條件定義的理解。(用前面的例子來(lái)說(shuō)即:“活了,則說(shuō)明在輸氧”)可記作: 。
還應指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,A是B的必要條件”是怎么回事。這樣處理,學(xué)生更容易接受“必要”二字。(因無(wú)A則無(wú)B,故欲有B,A是必要的)。
當兩個(gè)定義分別給出后,我又對它們之間的區別加以分析說(shuō)明,(充分條件可能會(huì )有多余,浪費,必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱(chēng)為充分必要條件,簡(jiǎn)稱(chēng)充要條件,記作: 。(不多不少,恰到好處)。使學(xué)生在此先對兩個(gè)充分條件和必要條件兩個(gè)概念的不同有了第一次的認識,第三部分再利用具體的數學(xué)事例來(lái)強化。
高中數學(xué)說(shuō)課稿6
1.教材分析
1-1教學(xué)內容及包含的知識點(diǎn)
(1)本課內容是高中數學(xué)第二冊第七章第三節《兩條直線(xiàn)的位置關(guān)系》的最后一個(gè)內容
(2)包含知識點(diǎn):點(diǎn)到直線(xiàn)的距離公式和兩平行線(xiàn)的距離公式
1-2教材所處地位、作用和前后聯(lián)系
本節課是兩條直線(xiàn)位置關(guān)系的最后一個(gè)內容,在此之前,有對兩線(xiàn)位置關(guān)系的定性刻畫(huà):平行、垂直,以及對相交兩線(xiàn)的定量刻畫(huà):夾角、交點(diǎn)。在此之后,有圓錐曲線(xiàn)方程,因而本節既是對前面兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)的復習,又是為后面計算點(diǎn)線(xiàn)距離(在直線(xiàn)和圓錐曲線(xiàn)構成的組合圖形中)提供一套工具。
可見(jiàn),本課有承前啟后的作用。
1-3教學(xué)大綱要求
掌握點(diǎn)到直線(xiàn)的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點(diǎn)到直線(xiàn)的距離公式。在近年的高考中,通常以直線(xiàn)和圓錐曲線(xiàn)構成的組合圖形為背景,判斷直線(xiàn)和圓錐曲線(xiàn)的位置或構成三角形求高,涉及絕對值,直線(xiàn)垂直,最小值等。
1-5教學(xué)目標及確定依據
教學(xué)目標
(1)掌握點(diǎn)到直線(xiàn)的距離的概念、公式及公式的推導過(guò)程,能用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。
(2)培養學(xué)生探究性思維方法和由特殊到一般的研究能力。
(3)認識事物之間相互聯(lián)系、互相轉化的辯證法思想,培養學(xué)生轉化知識的能力。
(4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。
確定依據:
中華人民共和國教育部制定的《全日制普通高級中學(xué)數學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說(shuō)明》(20xx年)
1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
。1)重點(diǎn):點(diǎn)到直線(xiàn)的距離公式
確定依據:由本節在教材中的地位確定
。2)難點(diǎn):點(diǎn)到直線(xiàn)的距離公式的推導
確定依據:根據定義進(jìn)行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現。
分析“嘗試性題組”解題思路可突破難點(diǎn)
。3)關(guān)鍵:實(shí)現兩個(gè)轉化。一是將點(diǎn)線(xiàn)距離轉化為定點(diǎn)到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點(diǎn)的距離。
2.教法
2-1發(fā)現法:本節課為了培養學(xué)生探究性思維目標,在教學(xué)過(guò)程中,使老師的主導性和學(xué)生的主體性有機結合,使學(xué)生能夠愉快地自覺(jué)學(xué)習,通過(guò)學(xué)生自己練習“嘗試性題組”,引導、啟發(fā)學(xué)生分析、發(fā)現、比較、論證等,從而形成完整的數學(xué)模型。
確定依據:
(1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習原則,最佳動(dòng)機原則,階段漸進(jìn)性原則。
(2)事物之間相互聯(lián)系,相互轉化的辯證法思想。
2-2教具:多媒體和黑板等傳統教具
3.學(xué)法
3-1發(fā)現法:豐富學(xué)生的數學(xué)活動(dòng),學(xué)生經(jīng)過(guò)練習、觀(guān)察、分析、探索等步驟,自己發(fā)現解決問(wèn)題的方法,比較論證后得到一般性結論,形成完整的數學(xué)模型,再運用所得理論和方法去解決問(wèn)題。
一句話(huà):還課堂以生命力,還學(xué)生以活力。
3-2學(xué)情:
。1)知識能力狀況,本節為兩線(xiàn)位置關(guān)系的最后一個(gè)內容,在這之前學(xué)生已經(jīng)系統的學(xué)習了直線(xiàn)方程的各種形式,有對兩線(xiàn)位置關(guān)系的定性認識和對兩線(xiàn)相交的定量認識,為本節推證公式涉及到直線(xiàn)方程、兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)作好了知識儲備。同時(shí)學(xué)生對解析幾何的實(shí)質(zhì)中,用坐標系溝通直線(xiàn)與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。
。2)心理特點(diǎn):又見(jiàn)“點(diǎn)到直線(xiàn)的距離”(初中已學(xué)習定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢(xún)動(dòng)機由此而生。
。3)生活經(jīng)驗:數學(xué)源于生活,生活中的點(diǎn)線(xiàn)距隨處可見(jiàn),怎樣將實(shí)際問(wèn)題數學(xué)化,是每個(gè)追求成長(cháng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數學(xué)活動(dòng)能夠讓他們真正參與,體驗過(guò)程,錘煉意志,培養能力。
3-3學(xué)具:直尺、三角板
3. 教學(xué)程序
時(shí),此時(shí)又怎樣求點(diǎn)A到直線(xiàn)
的距離呢?
生: 定性回答
點(diǎn)明課題,使學(xué)生明確學(xué)習目標。
創(chuàng )設“不憤不啟,不悱不發(fā)”的學(xué)習情景。
練習
比較
發(fā)現
歸納
討論
的距離為d
(1) A(2,4),
。簒 = 3, d=_____
(2) A(2,4),
。簓 = 3,d=_____
(3) A(2,4),
。簒 – y = 0,d=_____
嘗試性題組告訴學(xué)生下手不難,還負責特例檢驗,從而增強學(xué)生參與的信心。
請三個(gè)同學(xué)上黑板板演
師: 請這三位同學(xué)分別說(shuō)說(shuō)自己的解題思路。
生: 回答
教學(xué)機智:應沉淀為三種思路:一,根據定義轉化為定點(diǎn)到垂足的距離;二,利用等積法轉化為直角三角形中三個(gè)頂點(diǎn)之間的距離;三,利用直角三角形中的邊角關(guān)系。
視回答的情況,老師進(jìn)行肯定、修正或補充提問(wèn):“還有其他不同的思路嗎”。
說(shuō)解題思路,一是讓學(xué)生清晰有條理的表達自己的思考過(guò)程,二是其求解過(guò)程提示了證明的途徑(根據定義或畫(huà)坐標線(xiàn)時(shí)正好交出一個(gè)直角三角形)
師:很好,剛才我們解決了定點(diǎn)到特殊直線(xiàn)的距離問(wèn)題,那么,點(diǎn)P(x0,y0)到一般直線(xiàn)
。篈x+By+C=0(A,B≠0)的距離又怎樣求?
教學(xué)機智:如學(xué)生反應不大,則補充提問(wèn):上面三個(gè)題的解題思路對這個(gè)問(wèn)題有啟示嗎?
生:方案一:根據定義
方案二:根據等積法
方案三: ......
設置此問(wèn),一是使學(xué)生的認知由特殊向一般轉化,發(fā)現可能的方法,二是讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索和創(chuàng )造,感受數學(xué)的生機和樂(lè )趣。
師生一起進(jìn)行比較,鎖定方案二進(jìn)行推證。
“師生共作”體現新型師生觀(guān),且//時(shí),又怎樣求這兩線(xiàn)的距離?
生:計算得線(xiàn)線(xiàn)距離公式
師:板書(shū)點(diǎn)到直線(xiàn)的距離公式,兩平行線(xiàn)間距離公式
“沒(méi)有新知識,新知識均是舊知識的組合”,創(chuàng )設此問(wèn)可發(fā)揮學(xué)生的創(chuàng )造性,增加學(xué)生的成就感。
反思小結
經(jīng)驗共享
。 分 鐘)
師: 通過(guò)以上的學(xué)習,你有哪些收獲?(知識,能力,情感)。有哪些疑問(wèn)?誰(shuí)能答這些疑問(wèn)?
生: 討論,回答。
對本節課用到的技能,數學(xué)思維方法等進(jìn)行小結,使學(xué)生對本節知識有一個(gè)整體的認識。
共同進(jìn)步,各取所長(cháng)。
練習
。ㄎ 分 鐘)
P53 練習 1, 2,3
熟練的用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。
再度延伸
。ㄒ 分 鐘)
探索其他推導方法
“帶著(zhù)問(wèn)題進(jìn)課堂,帶著(zhù)更多的問(wèn)題出課堂”,讓學(xué)生真正學(xué)會(huì )學(xué)習。
4. 教學(xué)評價(jià)
學(xué)生完成反思性學(xué)習報告,書(shū)寫(xiě)要求:
(1) 整理知識結構
(2) 總結所學(xué)到的基本知識,技能和數學(xué)思想方法
(3) 總結在學(xué)習過(guò)程中的經(jīng)驗,發(fā)明發(fā)現,學(xué)習障礙等,說(shuō)明產(chǎn)生障礙的原因
(4) 談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。
作用:
(1) 通過(guò)反思使學(xué)生對所學(xué)知識系統化。反思的過(guò)程實(shí)際上是學(xué)生思維內化,知識深化和認知牢固化的一個(gè)心理活動(dòng)過(guò)程。
(2) 報告的寫(xiě)作本身就是一種創(chuàng )造性活動(dòng)。
(3) 及時(shí)了解學(xué)生學(xué)習過(guò)程中的知識缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿(mǎn)意度和效果,以便作出及時(shí)調整,及時(shí)進(jìn)行補償性教學(xué)。
5. 板書(shū)設計
(略)
6. 教學(xué)的反思總結
心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。
高中數學(xué)說(shuō)課稿7
尊敬的各位評委、各位老師大家好!我說(shuō)課的題目是《直線(xiàn)的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書(shū)數學(xué)必修2(A版),是第三章直線(xiàn)與方程中的第2節的第一課時(shí)3.2.1直線(xiàn)的點(diǎn)斜式方程的內容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。
一、教學(xué)背景的分析
1.教材分析
直線(xiàn)的方程是學(xué)生在初中學(xué)習了一次函數的概念和圖象及高中學(xué)習了直線(xiàn)的斜率后進(jìn)行研究的。直線(xiàn)的方程屬于解析幾何學(xué)的基礎知識,是研究解析幾何學(xué)的開(kāi)始,對后續研究?jì)蓷l直線(xiàn)的位置關(guān)系、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容,無(wú)論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內容之一!爸本(xiàn)的點(diǎn)斜式方程”可以說(shuō)是直線(xiàn)的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線(xiàn)作為常見(jiàn)的最簡(jiǎn)單的曲線(xiàn),在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。同時(shí)在這一節中利用坐標法來(lái)研究曲線(xiàn)的數形結合、幾何直觀(guān)等數學(xué)思想將貫穿于我們整個(gè)高中數學(xué)教學(xué)。
2.學(xué)情分析
我校的生源較差,學(xué)生的基礎和學(xué)習習慣都有待加強。又由于剛開(kāi)始學(xué)習解析幾何,第一次用坐標法來(lái)求曲線(xiàn)的方程,在學(xué)習過(guò)程中,會(huì )出現“數”與“形”相互轉化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面更有待加強。
根據上述教材分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3.教學(xué)目標
(1)了解直線(xiàn)的方程的概念和直線(xiàn)的點(diǎn)斜式方程的推導過(guò)程及方法;
(2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì )準確地使用直線(xiàn)的點(diǎn)斜式、斜截式方程 ;
(3)從實(shí)例入手,通過(guò)類(lèi)比、推廣、特殊化等,使學(xué)生體會(huì )從特殊到一般再到特殊的認知規律;
(4)提倡學(xué)生用舊知識解決新問(wèn)題,通過(guò)體會(huì )直線(xiàn)的斜截式方程與一次函數的關(guān)系等活動(dòng),培養學(xué)生主動(dòng)探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。
4. 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn): 直線(xiàn)點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應用。
(2)難點(diǎn):直線(xiàn)的方程的概念,點(diǎn)斜式方程的推導及點(diǎn)斜式、斜截式方程的應用。
二、教法學(xué)法分析
1.教法分析:根據學(xué)情,為了能調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“實(shí)例引導的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數化,用代數的語(yǔ)言描述直線(xiàn)的幾何要素及其關(guān)系,進(jìn)而將直線(xiàn)的問(wèn)題轉化為直線(xiàn)方程的問(wèn)題,通過(guò)對直線(xiàn)的方程的研究,最終解決有關(guān)直線(xiàn)的一些簡(jiǎn)單的問(wèn)題。另外可以恰當的利用多媒體課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習興趣。
2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結、質(zhì)疑、運用,體會(huì )學(xué)習數學(xué)的樂(lè )趣;通過(guò)推導直線(xiàn)的點(diǎn)斜式方程的學(xué)習,要了解用坐標法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線(xiàn),進(jìn)而可求出直線(xiàn)的點(diǎn)斜式方程,要能體會(huì )“形”與“數”的轉化思想。
下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
三、教學(xué)過(guò)程的設計及實(shí)施
整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節,學(xué)習或涉及四個(gè)概念:
溫故知新,澄清概念----直線(xiàn)的方程
深入探究,獲得新知--------點(diǎn)斜式
拓展知識,再獲新知--------斜截式
小結引申,思維延續--------兩點(diǎn)式
平面上的點(diǎn)可以用坐標表示,直線(xiàn)的傾斜程度可以用斜率表示,那么平面上的直線(xiàn)如何表示呢?這就是本節要學(xué)習的內容。
(一)溫故知新,澄清概念----直線(xiàn)的'方程
問(wèn)題一:畫(huà)出一次函數y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標有何關(guān)系?
[學(xué)生活動(dòng)] 通過(guò)動(dòng)手畫(huà)圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。
[教師活動(dòng)] 對于不同學(xué)生的表述進(jìn)行分析、歸納,用規范的語(yǔ)言對方程和直線(xiàn)的方程進(jìn)行描述。
[設計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線(xiàn)的方程的概念,試圖做到“用學(xué)生已有的數學(xué)知識去學(xué)數學(xué)”,從而突破難點(diǎn)。通過(guò)對這個(gè)問(wèn)題的研究,一方面認識到以方程的解為坐標的點(diǎn)在直線(xiàn)上,另一方面認識到直線(xiàn)上的點(diǎn)的坐標滿(mǎn)足方程;從而使同學(xué)意識到直線(xiàn)可以由直線(xiàn)上任意一點(diǎn)P(x,y)的坐標x和y之間的等量關(guān)系來(lái)表示。
問(wèn)題二:若直線(xiàn)經(jīng)過(guò)點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線(xiàn)l上。
(1) 若點(diǎn)P在直線(xiàn)l上從A點(diǎn)開(kāi)始運動(dòng),橫坐標增加1時(shí),點(diǎn)P的坐標是 ;
(2)畫(huà)出直線(xiàn)l,你能求出直線(xiàn)l的方程嗎?
(3)若點(diǎn)P在直線(xiàn)l上運動(dòng),設P點(diǎn)的坐標為(x,y),你會(huì )有什么方法找到x,y滿(mǎn)足的關(guān)系式?
[學(xué)生活動(dòng)]學(xué)生獨立思考5分鐘,必要的話(huà)可進(jìn)行分組討論、合作交流。
[教師活動(dòng)]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導學(xué)生觀(guān)察發(fā)現,得到當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線(xiàn)的斜率恒等于-2,體會(huì )“動(dòng)中有靜”的思維策略。
[設計意圖]復習斜率公式;待定系數法;初步體會(huì )坐標法。同時(shí)引導學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數學(xué)簡(jiǎn)潔的美感和嚴謹性。還要指出這樣的事實(shí):當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí),P的坐標(x,y)滿(mǎn)足方程2x+y-1=0.反過(guò)來(lái),以方程2x+y-1=0的解為坐標的點(diǎn)在直線(xiàn)l上。把學(xué)生的思維引到用坐標法研究直線(xiàn)的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
(二)深入探究,獲得新知----點(diǎn)斜式
問(wèn)題三: ① 若直線(xiàn)l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線(xiàn)l的方程。
、谥本(xiàn)的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線(xiàn)?
[學(xué)生活動(dòng)] ①學(xué)生敘述,老師板書(shū),強調斜率公式與點(diǎn)斜式的區別。 ②指導學(xué)生用筆轉一轉不難發(fā)現,當直線(xiàn)l的傾斜角α=90°時(shí),斜率k不存在,當然不存在點(diǎn)斜式方程;討論k=0的情況;觀(guān)察并總結點(diǎn)斜式方程的特征。
[設計意圖] 由特殊到一般的學(xué)習思路,突破難點(diǎn),培養學(xué)生的歸納概括能力。通過(guò)對這個(gè)問(wèn)題的探究使學(xué)生獲得直線(xiàn)點(diǎn)斜式方程;由②知:當直線(xiàn)斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線(xiàn),培養思維的嚴謹性,這時(shí)直線(xiàn)l與y軸平行,它上面的每一點(diǎn)的橫坐標都等于x0,直線(xiàn)l的方程是:x=x0;通過(guò)學(xué)生的觀(guān)察討論總結,明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎練習,突破重難點(diǎn)。
問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿(mǎn)足下列條件的直線(xiàn)的方程
(1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。
[練習]P95.1、2。
[學(xué)生活動(dòng)]學(xué)生獨立完成并展示或敘述,老師點(diǎn)評。
[設計意圖]充分用好教材的例題和習題,因為這些題都是專(zhuān)家精心編排的,充分體現必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節的教學(xué),指導下個(gè)環(huán)節的安排;突破重點(diǎn)內容后,進(jìn)入第三環(huán)節。
(三)拓展知識,再獲新知----斜截式
問(wèn)題五:(1)一條直線(xiàn)與y軸交于點(diǎn)(0,3),直線(xiàn)的斜率為2,求這條直線(xiàn)的方程。
(2)若直線(xiàn)l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線(xiàn)l的方程。
[學(xué)生活動(dòng)]學(xué)生獨立完成后口述,教師板書(shū)。
[設計意圖] 由一般到特殊再到一般,培養學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強調截距不是距離。類(lèi)比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數的關(guān)系。通過(guò)下面的基礎練習,突破重點(diǎn)。
[練習]P95.3。
[設計意圖]充分用好教材習題,及時(shí)反饋本環(huán)節的教學(xué)情況,指導下個(gè)環(huán)節的安排。
(四)小結引申,思維延續----兩點(diǎn)式
課堂小結 1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線(xiàn)方程的方法:公式法、等斜率法、待定系數法。)
2、哪些地方還沒(méi)有學(xué)好?
問(wèn)題六:(1)直線(xiàn)l過(guò)(1,0)點(diǎn),且與直線(xiàn)平行,求直線(xiàn)l的方程。
(2)直線(xiàn)l過(guò)點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線(xiàn)l的方程。
[學(xué)生活動(dòng)]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。
[教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話(huà),可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式;沒(méi)時(shí)間就布置分層作業(yè)。
[設計意圖](1)小題與上一節的平行綜合,學(xué)生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機會(huì ),以及課后學(xué)習的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節課研究直線(xiàn)的兩點(diǎn)式方程作了重要的準備。
分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.
選做題:P100.A組:1.(4)(5)(6).
[設計意圖]通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展。
四、教學(xué)特點(diǎn)分析
(一)實(shí)例引導。在字母運算、公式推導之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習知識的可能和興趣,關(guān)注學(xué)困生的成長(cháng)與發(fā)展。
(二)啟發(fā)式教學(xué)。教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內容,如:1.直角坐標系內的所有直線(xiàn)都有點(diǎn)斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會(huì )求直線(xiàn)在軸上的截距嗎?4.觀(guān)察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話(huà)與交流活動(dòng)。
(三)注重自主探究。設計問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區上,布設了由淺入深的學(xué)習環(huán)境突破重點(diǎn)、難點(diǎn),引導學(xué)生逐步發(fā)現知識的形成過(guò)程。設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng )造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。
高中數學(xué)說(shuō)課稿8
一.說(shuō)教材
1.1 教材結構與內容簡(jiǎn)析
本節課為《江蘇省中等職業(yè)學(xué)校試用教材數學(xué)(第二冊)》5.6函數圖象的定位作圖法的第一課時(shí),主要內容為基本函數 與一般函數 間的圖象平移變換規律。
函數圖象的平移,既是前階段函數性質(zhì)及具體函數研究的延續和深化,也是后階段定位作圖法以至解析幾何中移軸化簡(jiǎn)的基礎和滲透,在教材中起著(zhù)重要的承上啟下作用。更為重要的是,這段內容還蘊涵著(zhù)重要的數學(xué)思想方法,如化歸思想、映射與對應思想、換元方法等。
1.2 教學(xué)目標
1.2.1知識目標
、、給定平移前后函數解析式,能熟練敘述相應的平移變換,正確掌握平移方向與 、 符號的關(guān)系。
、、能較熟練地化簡(jiǎn)較復雜的函數解析式,找出對應的基本函數模型(如一次函數,反比例函數、指數函數等)。
、、初步學(xué)會(huì )應用平移變換規律研究較復雜的函數的具體性質(zhì)(如值域、單調性等)。
1.2.2能力目標
、、在數學(xué)實(shí)驗平臺上,能自主探究,改變相應參數和函數解析式,觀(guān)察相應圖象變化,經(jīng)歷命題探索發(fā)現的過(guò)程,提高觀(guān)察、歸納、概括能力。
、、結合學(xué)習中發(fā)現的問(wèn)題,學(xué)會(huì )借助于數學(xué)軟件等工具研究、探索和解決問(wèn)題,學(xué)會(huì )數學(xué)
地解決問(wèn)題。
、、滲透數學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習,發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺(jué)等)。
1.2.3情感目標
培養學(xué)生積極參與、合作交流的主體意識,在知識的探索和發(fā)現的過(guò)程中,使學(xué)生感受數學(xué)學(xué)習的意義,改善學(xué)生的數學(xué)學(xué)習信念(態(tài)度、興趣等)。
1.3 教材重點(diǎn)和難點(diǎn)處理思路
重點(diǎn):函數圖象的平移變換規律及應用
難點(diǎn):經(jīng)歷數學(xué)實(shí)驗方法探索平移對函數解析式的影響及如何利用平移變換規律化簡(jiǎn)函數解析式、研究復雜函數
教材在這段內容的處理上,注重直觀(guān)性背景,注重學(xué)生豐富感性知識的獲得,淡化形式化的邏輯推導和形式化的結果即平移公式。實(shí)際教學(xué)中,我們發(fā)現如果學(xué)生不經(jīng)受足夠的親身體驗而簡(jiǎn)單的記住結論的話(huà),往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說(shuō)明這段內容不能采取簡(jiǎn)單的“告訴”方式,須讓學(xué)生自主發(fā)現命題、發(fā)現規律,讓他們“知其然,更要知其所以然!
為了突出重點(diǎn)、突破難點(diǎn),在教學(xué)中采取了以下策略:
、、從學(xué)生已有知識出發(fā),精心設計一些適合學(xué)生學(xué)力的數學(xué)實(shí)驗平臺,分層次逐步引導學(xué)生觀(guān)察圖象的平移方向與函數解析式中 、 符號的關(guān)系,抽象、歸納出平移變換規律。 ⑵、創(chuàng )設情境,引發(fā)學(xué)生認知沖突,激發(fā)學(xué)生求知欲,能借助于數學(xué)軟件多角度積極探求錯誤原因,使學(xué)生認識到形如 的函數須提取 前的系數化為 的形式,從而真正認識解析式形式化的特點(diǎn)。
、、數學(xué)實(shí)驗采取小組合作研究共同完成簡(jiǎn)單實(shí)驗報告的形式,通過(guò)學(xué)生的自主探究、合作交流,從而實(shí)現對平移變換規律知識的建構。
二.說(shuō)教法
針對職高一年級學(xué)生的認知特點(diǎn)和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎上,本節課我主要采取以實(shí)驗發(fā)現法為主,以討論法、練習法為輔的教學(xué)方法,引導學(xué)生通過(guò)實(shí)驗手段,從直觀(guān)、想象到發(fā)現、猜想,親歷數學(xué)知識建構過(guò)程,體驗數學(xué)發(fā)現的喜悅。
本節課的設計一方面重視學(xué)生數學(xué)學(xué)習過(guò)程是活動(dòng)的過(guò)程,因此不是按照已形式化了的現成的數學(xué)規則去操作數學(xué),而是采取數學(xué)實(shí)驗的方式,使學(xué)生有機會(huì )經(jīng)受足夠的親身體驗,親歷知識的自主建構過(guò)程;使學(xué)生學(xué)會(huì )從具體情境中提取適當的概念,從觀(guān)察到的實(shí)例中進(jìn)行概括,進(jìn)行合理的數學(xué)猜想與數學(xué)驗證,并作更高層次的數學(xué)概括與抽象;從而學(xué)會(huì )數學(xué)地思考。
另一方面,注重創(chuàng )設機會(huì )使學(xué)生有機會(huì )看到數學(xué)的全貌,體會(huì )數學(xué)的全過(guò)程。整堂課的設計圍繞研究較復雜函數的性質(zhì)展開(kāi),以問(wèn)題“函數 的性質(zhì)如何”為主線(xiàn),既讓學(xué)生清楚研究函數圖象平移的必要性,明確學(xué)習目標,又讓學(xué)生初步學(xué)會(huì )如何應用規律解決問(wèn)題,體會(huì )知識的價(jià)值,增強求知欲。
總之,本節課采用數學(xué)實(shí)驗發(fā)現教學(xué),學(xué)生采取小組合作的形式自主探究;利用實(shí)物投影進(jìn)行集體交流,及時(shí)反饋相關(guān)信息。
三.說(shuō)學(xué)法
“學(xué)之道在于悟,教之道在于度!睂W(xué)生是學(xué)習的主體,教師在教學(xué)過(guò)程中須將學(xué)習的主動(dòng)權交給學(xué)生。
美國某大學(xué)有一句名言:“讓我聽(tīng)見(jiàn)的,我會(huì )忘記;讓我看見(jiàn)的,我就領(lǐng)會(huì )了;讓我做過(guò)的,我就理解了!蓖ㄟ^(guò)學(xué)生的自主實(shí)驗,在探索新知的經(jīng)歷和獲得新知的體驗的基礎之上,真正正確掌握平移方向。
教師的“教”不僅要讓學(xué)生“學(xué)會(huì )知識”,更主要的是要讓學(xué)生“會(huì )學(xué)知識”。正如荷蘭數學(xué)教育家弗賴(lài)登塔爾所指出,“數學(xué)知識既不是教出來(lái)的,也不是學(xué)出來(lái)的,而是研究出來(lái)的!北竟澱n的教學(xué)中創(chuàng )設利于學(xué)生發(fā)現數學(xué)的實(shí)驗情境,讓學(xué)生自主地“做數學(xué)”,將傳統意義下的“學(xué)習”數學(xué)改變?yōu)椤把芯俊睌祵W(xué)。從而,使傳授知識與培養能力融為一體,在轉變學(xué)習方式的同時(shí)學(xué)會(huì )數學(xué)地思考。
四.說(shuō)程序
4.1創(chuàng )設情境,引入課題
在簡(jiǎn)要回顧前面研究的具體函數(指數函數、冪函數、三角函數等)性質(zhì)后,提出問(wèn)題“如何研究 的性質(zhì)?”
引導學(xué)生討論后,總結出兩種思路,即:思路1、通過(guò)描點(diǎn)法作出函數的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問(wèn)題化歸為 的問(wèn)題,借助于基本函數 的性質(zhì)解決新問(wèn)題。
從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數 與 間的聯(lián)系。
4.2數學(xué)實(shí)驗,自主探索
這一環(huán)節主要分兩階段。
1、嘗試初探
引例、函數 與 圖象間的關(guān)系
這一階段主要由教師講解,學(xué)生觀(guān)察發(fā)現,意在突出兩函數圖象形狀相同、位置不同,后者可以由前者平移得到。
講解時(shí),利用幾何畫(huà)板的度量功能,給出兩個(gè)對應點(diǎn)的坐標,易于學(xué)生發(fā)現點(diǎn)的坐標關(guān)系,并給出相應的輔助線(xiàn),一方面便于學(xué)生發(fā)現規律,另一方面也是為后面定位作圖法的學(xué)習作好鋪墊。
2、實(shí)驗發(fā)現
本階段由學(xué)生以小組合作探索的形式完成,通過(guò)填寫(xiě)實(shí)驗報告的形式完成探索規律的任務(wù)。 實(shí)驗1、試改變實(shí)驗平臺1中的參數 、 ,觀(guān)察由 的圖象到 的變換現象,依照給出的樣例填寫(xiě)下表,并總結其中的平移變換規律。
函數 解析式平移變換規律12向左平移2個(gè)單位,向上平移1個(gè)單位 實(shí)驗結論
高中數學(xué)說(shuō)課稿9
一、教材地位與作用
本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識非常重要。
二、學(xué)情分析
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數,特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問(wèn)題,就比較困難。
教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。
根據我的教學(xué)內容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標
教學(xué)目標分析:
知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。
能力目標:探索正弦定理的證明過(guò)程,用歸納法得出結論。
情感目標:通過(guò)推導得出正弦定理,讓學(xué)生感受數學(xué)公式的整潔對稱(chēng)美和數學(xué)的實(shí)際應用價(jià)值。
三、教法學(xué)法分析
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
學(xué)法:指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,動(dòng)手嘗試相結合,增強學(xué)生由特殊到一般的數學(xué)思維能力,鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
(一)創(chuàng )設情境,布疑激趣
“興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。
2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。
3.讓學(xué)生總結實(shí)驗結果,得出猜想:
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明。
(四)歸納總結,簡(jiǎn)單應用
1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。
2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
3.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。
(七)小結反思,提高認識
通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會(huì )?
1.用向量證明了正弦定
理,體現了數形結合的數學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。
(從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現正弦定理不適用了,那么自然過(guò)渡到下一節內容,余弦定理。布置作業(yè),預習下一節內容。
高中數學(xué)說(shuō)課稿10
一、教材分析
集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。
本節課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。
二、教學(xué)目標
1、學(xué)習目標
。1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合之間的關(guān)系以及理解“屬
于”關(guān)系;
。2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;
2、能力目標
。1)能夠把一句話(huà)一個(gè)事件用集合的方式表示出來(lái)。
。2)準確理解集合與及集合內的元素之間的關(guān)系。
3、情感目標
通過(guò)本節的把實(shí)際事件用集合的方式表示出來(lái),從而培養數學(xué)敏感性,了 解到數學(xué)于生活中。
三、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn) 集合的基本概念與表示方法;
難點(diǎn) 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;
四、教學(xué)方法
。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養,后進(jìn)生也有所收獲的效果;
。2)學(xué)生在老師的引導下,通過(guò)閱讀教材,自主學(xué)習、思考、交流、討論和概括,從而完成本節課的教學(xué)目標。
五、學(xué)習方法
。1)主動(dòng)學(xué)習法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認識的同時(shí),
教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識,培養學(xué)生思維想象 的綜合能力。
。2)反饋補救法:在練習中,注意觀(guān)察學(xué)生對學(xué)習的反饋情況,以實(shí)現“培
優(yōu)扶差,滿(mǎn)足不同!
六、教學(xué)思路
具體的思路如下
復習的引入:講一些集合的相關(guān)數學(xué)及相關(guān)數學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數學(xué)史從何使學(xué)生對數學(xué)更加感興趣,有助于上課的效率!因為時(shí)間關(guān)系這里我就不說(shuō)相關(guān)數學(xué)史咯。
一、 引入課題
軍訓前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓動(dòng)員;試問(wèn)這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習一個(gè)新的概念——集合,即是一些研究對象的總體。
二、 正體部分
學(xué)生閱讀教材,并思考下列問(wèn)題:
。1)集合有那些概念?
。2)集合有那些符號?
。3)集合中元素的特性是什么?
。4)如何給集合分類(lèi)?
(一)集合的有關(guān)概念
。1)對象:我們可以感覺(jué)到的客觀(guān)存在以及我們思想中的事物或抽象符號,
都可以稱(chēng)作對象.
。2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說(shuō)這個(gè)整體是由
這些對象的全體構成的集合.
。3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素.
集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、??元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、??
1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,
對學(xué)生的例子予以討論、點(diǎn)評,進(jìn)而講解下面的問(wèn)題。
2、元素與集合的關(guān)系
。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A
。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作a?A
要注意“∈”的方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě). (舉例)
集合A={3,4,6,9}a=2 因此我們知道a?A
3、集合中元素的特性
。1)確定性:給定一個(gè)集合,任何對象是不是這個(gè)集合的元素是確定的了.
。2)互異性:集合中的元素一定是不同的.
。3)無(wú)序性:集合中的元素沒(méi)有固定的順序.
4、集合分類(lèi)
根據集合所含元素個(gè)屬不同,可把集合分為如下幾類(lèi):
。1)把不含任何元素的集合叫做空集Ф
。2)含有有限個(gè)元素的集合叫做有限集
。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集
注:應區分?,{?},{0},0等符號的含義
5、常用數集及其表示方法
。1)非負整數集(自然數集):全體非負整數的集合.記作N
。2)正整數集:非負整數集內排除0的集.記作N*或N+
。3)整數集:全體整數的集合.記作Z
。4)有理數集:全體有理數的集合.記作Q
。5)實(shí)數集:全體實(shí)數的集合.記作R
注:(1)自然數集包括數0.
。2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排
除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*
(二)集合的表示方法
我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。
。1) 列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
例1.(課本例1)
思考2,引入描述法
說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。
。2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號{}內。 具體方法:在大括號內先寫(xiě)上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫(huà)一條豎線(xiàn),在豎線(xiàn)后寫(xiě)出這個(gè)集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2.(課本例2)
說(shuō)明:(課本P5最后一段)
思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數}。下列寫(xiě)法{實(shí)數集},{R}也是錯誤的。
說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應該根據具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。
(三)課堂練習(課本P6練習)
三、 歸納小結與作業(yè)
本節課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結合實(shí)例對集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書(shū)面作業(yè):習題1.1,第1- 4題
高中數學(xué)說(shuō)課稿11
一.內容和內容分析
“函數的奇偶性”是人教版數學(xué)必修教材必修一第一章第三節的內容,本節的主要內容是研究函數的一個(gè)性質(zhì)—函數的奇偶性,學(xué)習奇函數和偶函數的概念.奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的兩個(gè)特殊函數入手,從特殊到一般,從具體到抽象,從感性到理性比較系統地介紹了函數的奇偶性.從知識結構看,它既是函數概念的拓展和深化,又為后續研究指數函數、對數函數、冪函數、三角函數的基礎,因此,本節課起著(zhù)承上啟下的重要作用。 本節課的教學(xué)重點(diǎn):函數奇偶性的概念及判定。
二.目標和目標分析
。1)知識目標:從形和數兩個(gè)方面進(jìn)行引導,使學(xué)生理解奇偶性的概念,學(xué)會(huì )利用定義判斷
簡(jiǎn)單函數的奇偶性。
。2)能力目標:通過(guò)設置問(wèn)題情境培養學(xué)生判斷、推理的能力,同時(shí)滲透數形結合和由特殊
到一般的數學(xué)思想方法.
。3)情感目標:在學(xué)生感受數學(xué)美的同時(shí),激發(fā)學(xué)習的興趣,培養學(xué)生樂(lè )于求索的精神。
三.教學(xué)問(wèn)題診斷分析
導入有點(diǎn)慢,講的有點(diǎn)細,導致時(shí)間上沒(méi)有完成教學(xué)任務(wù),感覺(jué)還是自己講的太多,不能充分調動(dòng)學(xué)生的積極性。
四.教學(xué)支持條件分析
用了多媒體,使用ppt,使得奇偶性函數概念的探究過(guò)程更形象更直觀(guān),是學(xué)生理解更深刻。
五.教學(xué)過(guò)程設計
為了達到預期的教學(xué)目標,我對整個(gè)教學(xué)過(guò)程進(jìn)行了系統地規劃,設計了四個(gè)主要的教學(xué)程序是:
1.設疑導入、觀(guān)圖激趣:
使用幻燈片展示圖片蝴蝶、雪花等讓學(xué)生感受生活中的美,從而引入對稱(chēng)在函數中的體現。
2.指導觀(guān)察、形成概念:
作出函數y=x的圖象,并觀(guān)察這兩個(gè)函數圖象的對稱(chēng)性如何?
借助課件演示,讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì )得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內是否對所有的x,都有類(lèi)似的情況?借助課件演示,學(xué)生會(huì )得出結論,f(-x)=f(x),從而引導學(xué)生先把它們具體化,再用數學(xué)符號表示。根據以上特點(diǎn),請學(xué)生用完整的語(yǔ)言敘述定義,同時(shí)給出板書(shū):
函數f(x)的定義域為A,且關(guān)于原點(diǎn)對稱(chēng),如果有f(-x)=f(x),則稱(chēng)f(x)為偶函數,類(lèi)比探究2
偶函數的過(guò)程,得到奇函數的概念,又通過(guò)具體的例子說(shuō)明了定義域關(guān)于原點(diǎn)對稱(chēng)是研究奇偶性的前提。
3.學(xué)生探索、發(fā)展思維。
接著(zhù)通過(guò)學(xué)案上的例一,總結函數奇偶性的判斷方法及步驟:
(1)求出函數的定義域,并判斷是否關(guān)于原點(diǎn)對稱(chēng)
(2)驗證f(-x)=f(x)或f(-x)=-f(x)
(3)得出結論
由學(xué)生小結判斷奇偶性的步驟之后,提出新的問(wèn)題:函數按奇偶性如何分類(lèi)?既奇又偶的函數是不是只有一個(gè)?試舉例說(shuō)明。
4.布置作業(yè):
六.目標檢測設計
學(xué)案上的題型主要包括奇偶性函數的判斷及應用
七.教學(xué)反思:(從兩方面)
1.思成功
一:是通過(guò)設計富有挑戰性的問(wèn)題來(lái)呈現背景,通過(guò)問(wèn)題的探究和自主學(xué)習來(lái)獲取相關(guān)概念,實(shí)現了 “教學(xué)邏輯”與“學(xué)習邏輯”的連通、“知識邏輯”與“認知邏輯”的連通;二:是在老師創(chuàng )設的情境中,每個(gè)學(xué)生都積極投入探究過(guò)程,學(xué)生在疑惑中探索,在探索中思考,在思考中發(fā)現,大部分學(xué)生積極性高漲,通過(guò)看別人怎樣觀(guān)察,
聽(tīng)別人怎樣介紹,也學(xué)到了知識.
2.思不足
學(xué)生練習:在教學(xué)過(guò)程中應多注意學(xué)生的活動(dòng),由單一的問(wèn)答式轉化為多方位的考察,以采用
學(xué)生板演或者把學(xué)生練習投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
語(yǔ)言組織:
在講授過(guò)程中還要注意到說(shuō)話(huà)語(yǔ)速,語(yǔ)言組織等講授技巧,應該用平緩的語(yǔ)氣講授,語(yǔ)言描述要簡(jiǎn)練易懂,不能拖泥帶水。
教學(xué)環(huán)節(的完整):
在授課過(guò)程中要注意到教學(xué)環(huán)節設計,我們的教學(xué)過(guò)程有復習引入、講授新課、例題講解、學(xué)生練習、課時(shí)小結、布置作業(yè)等幾個(gè)重要的環(huán)節,由于時(shí)間的關(guān)系沒(méi)有來(lái)得及小結造成教學(xué)設計不完善。在以后的教學(xué)過(guò)程中要注意這些環(huán)節。
以上是我對這節課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯誤,以便更好的適應教學(xué),努力使自己的教學(xué)更上一層樓。
高中數學(xué)說(shuō)課稿12
一、教材分析(說(shuō)教材):
1. 教材所處的地位和作用:
本節內容在全書(shū)和章節中的作用是:《 》是 中數學(xué)教材第 冊第 章第 節內容。在此之前學(xué)生已學(xué)習了 基礎,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學(xué)科和今后的學(xué)習打下基礎。
2. 教育教學(xué)目標:
根據上述教材分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:
(1)知識目標:
(2)能力目標:通過(guò)教學(xué)初步培養學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團結協(xié)作,語(yǔ)言表達能力以及通過(guò)師生雙邊活動(dòng),初步培養學(xué)生運用知識的能力,培養學(xué)生加強理論聯(lián)系實(shí)際的能力,(3)情感目標:通過(guò) 的教學(xué)引導學(xué)生從現實(shí)的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習興趣。
3. 重點(diǎn),難點(diǎn)以及確定依據:
下面,為了講清重難上點(diǎn),使學(xué)生能達到本節課設定的目標,再從教法和學(xué)法上談?wù)劊?/p>
二、教學(xué)策略(說(shuō)教法)
1. 教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現教學(xué)目標。在教學(xué)過(guò)程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟澱n的特點(diǎn): 應著(zhù)重采用 的教學(xué)方法。
2. 教學(xué)方法及其理論依據:堅持“以學(xué)生為主體,以教師為主導”的原則,根據學(xué)生的心理發(fā)展規律,采用學(xué)生參與程度高的學(xué)導式討論教學(xué)法。在學(xué)生看書(shū),討論的基礎上,在老師啟發(fā)引導下,運用問(wèn)題解決式教法,師生交談法,圖像信號法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎差的學(xué)生也能有表現機會(huì ),培養其自信心,激發(fā)其學(xué)習熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎上得到發(fā)展。同時(shí)通過(guò)課堂練習和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識回到社會(huì )實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數學(xué)知識,學(xué)習基礎性的知識和技能,在教學(xué)中積極培養學(xué)生學(xué)習興趣和動(dòng)機,明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。
3. 學(xué)情分析:(說(shuō)學(xué)法)
(1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習方式,定能激發(fā)學(xué)生興趣,有效地培養學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散
(2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現知識遺忘,所以應全面系統的去講述;學(xué)生學(xué)習本節課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應予以簡(jiǎn)單明白,深入淺出的分析。
(3)動(dòng)機和興趣上:明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力
最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:
4. 教學(xué)程序及設想:
(1)由 引入:把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當肖學(xué)習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
(2)由實(shí)例得出本課新的知識點(diǎn)
(3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于學(xué)生的思維能力。
(4)能力訓練。課后練習使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
(5)總結結論,強化認識。知識性的內容小結,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐步培養學(xué)生良好的個(gè)性品質(zhì)目標。
(6)變式延伸,進(jìn)行重構,重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。
(7)板書(shū)
(8)布置作業(yè)。
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,
教學(xué)程序:
(一)課堂結構:復習提問(wèn),導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分
高中數學(xué)集合教學(xué)反思
集合這章內容,教學(xué)參考書(shū)上安排的課時(shí)為五課時(shí),我們的導學(xué)案也是安排五課時(shí),實(shí)際教學(xué)時(shí),由于對學(xué)生的實(shí)際情況估計不足,第一課時(shí)的導學(xué)案用了兩課時(shí)才完成。集合這一章的特點(diǎn)是概念不多,但這章所涉及到的內容很廣,學(xué)生學(xué)習本章內容時(shí),不僅要理解本章的概念,還要理解與本章內容相關(guān)聯(lián)的其他內容,這些內容有初中學(xué)習過(guò)的內容、有生活中的方方面面的相關(guān)知識,再加上高中學(xué)習方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺(jué)學(xué)起來(lái)比較困難。針對這種情況,我在實(shí)際教學(xué)時(shí),首先要求學(xué)生準確理解概念,如:集合的元素具有三個(gè)性質(zhì):確定性、互異性、無(wú)序性。集合的關(guān)系、運算等都是從元素的角度定義的,所以解集合問(wèn)題時(shí),教會(huì )學(xué)生對元素的性質(zhì)進(jìn)行分析,反復訓練,讓學(xué)生通過(guò)實(shí)例體會(huì )這三個(gè)性質(zhì)。
第二,掌握相關(guān)的符號語(yǔ)言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時(shí),集合中的元素是什么,這是一個(gè)教學(xué)難點(diǎn)。第二個(gè)難點(diǎn)是集合的運算—交集和并集。突破難點(diǎn)充分運用數形結合思想,集合間的關(guān)系和運算,以數形結合思想為指導,借助圖形思考,可以使各集合間的關(guān)系直觀(guān)明了,使抽象的集合運算建立在直觀(guān)的基礎上,使解題思路清晰明朗,直觀(guān)簡(jiǎn)捷,有利于問(wèn)題的解決。
第三,指導學(xué)生理解并掌握自然語(yǔ)言、符號語(yǔ)言、圖形語(yǔ)言這三種語(yǔ)言,靈活準確地進(jìn)行語(yǔ)言轉換,可以幫助學(xué)生提高分析問(wèn)題,解決問(wèn)題的能力。
第四,集合問(wèn)題涉及到的其他內容,遇到了講透,不拓展。
高中數學(xué)說(shuō)課稿13
一、教學(xué)背景分析
。ㄒ唬┙滩牡匚环治觯骸稒E圓及其標準方程》是繼學(xué)習圓以后運用“曲線(xiàn)與方程”思想解決二次曲線(xiàn)問(wèn)題的又一實(shí)例,從知識上說(shuō),本節課是對坐標法研究幾何問(wèn)題的又一次實(shí)際運用,同時(shí)也是進(jìn)一步研究橢圓幾何性質(zhì)的基礎;從方法上說(shuō),它為進(jìn)一步研究雙曲線(xiàn)、拋物線(xiàn)提供了基本模式和理論基礎,因此本節課起到了承上啟下的重要作用.
。ǘ┲攸c(diǎn)、難點(diǎn)分析:本節課的重點(diǎn)是橢圓的定義及其標準方程,標準方程的推導是本節課的難點(diǎn),要突破這一難點(diǎn),關(guān)鍵是引導學(xué)生正確選擇去根式的策略.
。ㄈ⿲W(xué)情分析:在學(xué)習本節課前,學(xué)生已經(jīng)學(xué)習了直線(xiàn)與圓的方程,對曲線(xiàn)和方程的思想方法有了一些了解和運用的經(jīng)驗,對坐標法研究幾何問(wèn)題也有了初步的認識,因此,學(xué)生已經(jīng)具備探究有關(guān)點(diǎn)的軌跡問(wèn)題的知識基礎和學(xué)習能力,但由于學(xué)生學(xué)習解析幾何時(shí)間還不長(cháng)、學(xué)習程度也較淺,并且還受到高二這一年齡段學(xué)習心理和認知結構的影響,在學(xué)習過(guò)程中難免會(huì )有些困難.如:由于學(xué)生對運用坐標法解決幾何問(wèn)題掌握還不夠,因此從研究圓到橢圓,學(xué)生思維上會(huì )存在障礙.
二、教學(xué)目標設計
。ㄒ唬┲R目標:掌握橢圓的定義及其標準方程;會(huì )根據條件寫(xiě)出橢圓的標準方程;通過(guò)對橢圓標準方程的探求,再次熟悉求曲線(xiàn)方程的一般方法.
。ǘ┠芰δ繕耍簩W(xué)生通過(guò)動(dòng)手畫(huà)橢圓、分組討論探究橢圓定義、推導橢圓標準方程等過(guò)程,提高動(dòng)手能力、合作學(xué)習能力和運用知識解決實(shí)際問(wèn)題的能力.
。ㄈ┣楦心繕耍涸谛纬芍R、提高能力的過(guò)程中,激發(fā)學(xué)生學(xué)習數學(xué)的興趣,提高學(xué)生的審美情趣,培養學(xué)生勇于探索、敢于創(chuàng )新的精神.
三、教法學(xué)法設計
。ㄒ唬┙虒W(xué)方法設計:為了更好地培養學(xué)生自主學(xué)習能力,提高學(xué)生的綜合素質(zhì),我主要采用探究式教學(xué)方法.一方面我通過(guò)設置情境、問(wèn)題誘導充分發(fā)揮主導作用;另一方面學(xué)生通過(guò)對我提供的素材進(jìn)行直觀(guān)觀(guān)察→動(dòng)手操作→討論探究→歸納抽象→總結規律的過(guò)程充分體現主體地位.
使用多媒體輔助教學(xué)與自制教具相結合的設計方案,實(shí)現多媒體快捷、形象、大容量的優(yōu)勢與自制教具直觀(guān)、實(shí)用的優(yōu)勢的結合,既突出了知識的產(chǎn)生過(guò)程,又增加了課堂的趣味性.
1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過(guò)程;
2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;
3.通過(guò)對橢圓概念的引入教學(xué),培養學(xué)生的觀(guān)察能力和探索能力;
4.通過(guò)橢圓的標準方程的推導,使學(xué)生進(jìn)一步掌握求曲線(xiàn)方程的一般方法,并滲透數形結合和等價(jià)轉化的思想方法,提高運用坐標法解決幾何問(wèn)題的能力;
5.通過(guò)讓學(xué)生大膽探索橢圓的定義和標準方程,激發(fā)學(xué)生學(xué)習數學(xué)的積極性,培養學(xué)生的學(xué)習興趣和創(chuàng )新意識.
四、教學(xué)建議
教材分析
1.知識結構
2.重點(diǎn)難點(diǎn)分析
重點(diǎn)是橢圓的定義及橢圓標準方程的兩種形式.難點(diǎn)是橢圓標準方程的建立和推導.關(guān)鍵是掌握建立坐標系與根式化簡(jiǎn)的方法.
橢圓及其標準方程這一節教材整體來(lái)看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線(xiàn)這一章所要研究的三種圓錐曲線(xiàn)中首先遇到的,所以教材把對橢圓的研究放在了重點(diǎn),在雙曲線(xiàn)和拋物線(xiàn)的教學(xué)中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學(xué)好橢圓對于學(xué)生學(xué)好圓錐曲線(xiàn)是非常重要的.
。1)對于橢圓的定義的理解,要抓住橢圓上的點(diǎn)所要滿(mǎn)足的條件,即橢圓上點(diǎn)的幾何性質(zhì),可以對比圓的定義來(lái)理解.
另外要注意到定義中對“常數”的限定即常數要大于.這樣規定是為了避免出現兩種特殊情況,即:“當常數等于時(shí)軌跡是一條線(xiàn)段;當常數小于時(shí)無(wú)軌跡”.這樣有利于集中精力進(jìn)一步研究橢圓的標準方程和幾何性質(zhì).但講解橢圓的定義時(shí)注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性.
。2)根據橢圓的定義求標準方程,應注意下面幾點(diǎn):
、偾(xiàn)的方程依賴(lài)于坐標系,建立適當的坐標系,是求曲線(xiàn)方程首先應該注意的地方.應讓學(xué)生觀(guān)察橢圓的圖形或根據橢圓的定義進(jìn)行推理,發(fā)現橢圓有兩條互相垂直的對稱(chēng)軸,以這兩條對稱(chēng)軸作為坐標系的兩軸,不但可以使方程的推導過(guò)程變得簡(jiǎn)單,而且也可以使最終得出的方程形式整齊和簡(jiǎn)潔.
、谠O橢圓的焦距為,橢圓上任一點(diǎn)到兩個(gè)焦點(diǎn)的距離為,令,這些措施,都是為了簡(jiǎn)化推導過(guò)程和最后得到的方程形式整齊、簡(jiǎn)潔,要讓學(xué)生認真領(lǐng)會(huì ).
、墼诜匠痰耐茖н^(guò)程中遇到了無(wú)理方程的化簡(jiǎn),這既是我們今后在求軌跡方程時(shí)經(jīng)常遇到的問(wèn)題,又是學(xué)生的難點(diǎn).要注意說(shuō)明這類(lèi)方程的化簡(jiǎn)方法:①方程中只有一個(gè)根式時(shí),需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個(gè)根式時(shí),需將它們分別放在方程的兩側,并使其中一側只有一項.
、芙炭茣(shū)上對橢圓標準方程的推導,實(shí)際上只給出了“橢圓上點(diǎn)的坐標都適合方程“而沒(méi)有證明,”方程的解為坐標的點(diǎn)都在橢圓上”.這實(shí)際上是方程的同解變形問(wèn)題,難度較大,對同學(xué)們不作要求.
。3)兩種標準方程的橢圓異同點(diǎn)
中心在原點(diǎn)、焦點(diǎn)分別在軸上,軸上的橢圓標準方程分別為:,.它們的相同點(diǎn)是:形狀相同、大小相同,都有,.不同點(diǎn)是:兩種橢圓相對于坐標系的位置不同,它們的焦點(diǎn)坐標也不同.
橢圓的焦點(diǎn)在軸上標準方程中項的分母較大;
橢圓的焦點(diǎn)在軸上標準方程中項的分母較大.
另外,形如中,只要,,同號,就是橢圓方程,它可以化為.
。4)教科書(shū)上通過(guò)例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個(gè)作用:第一是教給學(xué)生利用中間變量求點(diǎn)的軌跡的方法;第二是向學(xué)生說(shuō)明,如果求得的點(diǎn)的軌跡的方程形式與橢圓的標準方程相同,那么這個(gè)軌跡是橢圓;第三是使學(xué)生知道,一個(gè)圓按某一個(gè)方向作伸縮變換可以得到橢圓.
高中數學(xué)說(shuō)課稿14
開(kāi)始:各位專(zhuān)家領(lǐng)導, 好!
今天我將要為大家講的課題是
首先,我對本節教材進(jìn)行一些分析
一、教材結構與內容簡(jiǎn)析
本節內容在全書(shū)及章節的地位:《 》是高中數學(xué)新教材第 冊( )第 章第 節。在此之前,學(xué)生已學(xué)習了
,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是 部分,因此,在 中,占據 的地位。
數學(xué)思想方法分析:作為一名數學(xué)老師,不僅要傳授給學(xué)生數學(xué)知識,更重要的是傳授給學(xué)生數學(xué)思想、數學(xué)意識,因此本節課在教學(xué)中力圖向學(xué)生:
二、 教學(xué)目標
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:
1 基礎知識目標:
2 能力訓練目標:
3 創(chuàng )新素質(zhì)目標:
4 個(gè)性品質(zhì)目標:
三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
本著(zhù)課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn): 通過(guò) 突出重點(diǎn)
難點(diǎn): 通過(guò) 突破難點(diǎn)
關(guān)鍵:
下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊?/p>
四、 教法
數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生
“知其然”而且要使學(xué)生“知其所以然”,
我們在以師生既為主體,又為客體的原則下,展現獲取知識和方法的思維過(guò)程;诒竟澱n的特點(diǎn):
,應著(zhù)重采用 的教學(xué)方法。即:
五、 學(xué)法
我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。
1、理論:
2、實(shí)踐:
3、能力:
最后我來(lái)具體談一談這一堂課的教學(xué)過(guò)程:
六、 教學(xué)程序及設想
1、由 引入:
把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。
在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
對于本題:
2、由實(shí)例得出本課新的知識點(diǎn)是:
3、講解例題。
我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓練。
課后練習
使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
5、總結結論,強化認識。
知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。
6、變式延伸,進(jìn)行重構。
重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
7、板書(shū)。
8、布置作業(yè)。
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。
結束:說(shuō)課是教師面對同行和其它聽(tīng)眾口頭講述具體課題的教學(xué)設想及其根據的新的教學(xué)研究形式。以上,我僅從說(shuō)教材,說(shuō)學(xué)情,說(shuō)教法,說(shuō)學(xué)法,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說(shuō)課對我們大家仍是新事物,今后我也將進(jìn)一步說(shuō)好課,并希望各位專(zhuān)家領(lǐng)導對本堂說(shuō)課提出寶貴意見(jiàn)。
注意時(shí)間掌握
六、注意靈活導入新知識點(diǎn)。
電腦課件
使用投影
根據時(shí)間進(jìn)行增刪
高中數學(xué)說(shuō)課稿15
一、教材分析
1、教材地位和作用
二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時(shí)它也是空間中線(xiàn)線(xiàn)、線(xiàn)面、面面垂直關(guān)系的一個(gè)匯集點(diǎn)。搞好本節課的學(xué)習,對學(xué)生系統地掌握直線(xiàn)和平面的知識乃至于創(chuàng )新能力的培養都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運用。
2、教學(xué)目標
根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標:
認知目標:
。1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運用它們解決實(shí)際問(wèn)題。
。2)進(jìn)一步培養學(xué)生把空間問(wèn)題轉化為平面問(wèn)題的化歸思想。
能力目標:以培養學(xué)生的創(chuàng )新能力和動(dòng)手能力為重點(diǎn)。
(1)突出對類(lèi)比、直覺(jué)、發(fā)散等探索性思維的培養,從而提高學(xué)生的創(chuàng )新能力。
。2)通過(guò)對圖形的觀(guān)察、分析、比較和操作來(lái)強化學(xué)生的動(dòng)手操作能力。
教育目標:
(1)使學(xué)生認識到數學(xué)知識來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,從而增強學(xué)生應用數學(xué)的意識。
(2)通過(guò)揭示線(xiàn)線(xiàn)、線(xiàn)面、面面之間的內在聯(lián)系,進(jìn)一步培養學(xué)生聯(lián)系的辯證唯物主義觀(guān)點(diǎn)。
3、本節課教學(xué)的重、難點(diǎn)是兩個(gè)過(guò)程的教學(xué):
。1)二面角的平面角概念的形成過(guò)程。
。2)尋找二面角的平面角的方法的發(fā)現過(guò)程。
其理由如下:
。1)現行教材省略了概念的形成過(guò)程和方法的發(fā)現過(guò)程,沒(méi)有反映出科學(xué)認識產(chǎn)生的辯證過(guò)程,與學(xué)生的認知規律相悖,給學(xué)生的學(xué)習造成了很大的困難,非常不利于學(xué)生創(chuàng )新能力、獨立思考能力以及動(dòng)手能力的培養。
。2)現代認知學(xué)認為,揭示知識的形成過(guò)程,對學(xué)生學(xué)習新知識是十分必要的。同時(shí)通過(guò)展現知識的發(fā)生、發(fā)展過(guò)程,給學(xué)生思考、探索、發(fā)現和創(chuàng )新提供了最大的空間,可以使學(xué)生在整個(gè)教學(xué)過(guò)程中始終處于積極的思維狀態(tài),進(jìn)而培養他們獨立思考和大膽求索的精神,這樣才能全面落實(shí)本節課的教學(xué)目標。
二、指導思想和教學(xué)方法
在設計本教學(xué)時(shí),主要貫徹了以下兩個(gè)思想:
1、樹(shù)立以學(xué)生發(fā)展為本的思想。通過(guò)構建以學(xué)習者為中心、有利于學(xué)生主體精神、創(chuàng )新能力健康發(fā)展的寬松的教學(xué)環(huán)境,提供學(xué)生自主探索和動(dòng)手操作的機會(huì ),鼓勵他們創(chuàng )新思考,親身參與概念和方法的形成過(guò)程。2、堅持協(xié)同創(chuàng )新原則。把教材創(chuàng )新、教法創(chuàng )新以及學(xué)法創(chuàng )新有機地統一起來(lái),因為只有教師創(chuàng )新地教,學(xué)生創(chuàng )新地學(xué),才能營(yíng)建一個(gè)有利于創(chuàng )新能力培養的良好環(huán)境。
首先是教材創(chuàng )新。
。1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類(lèi)比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開(kāi)放的、探索性的發(fā)現過(guò)程。
。2)在引入定義之后,例題講解之前,引導學(xué)生發(fā)現尋找二面角的平面角的方法,為例題做好鋪墊。
。3)重新編排例題。
其次是教法創(chuàng )新。采用多種創(chuàng )新的教學(xué)方法,包括問(wèn)題解決法、類(lèi)比發(fā)現法、研究發(fā)現法等教學(xué)方法。
這組教學(xué)方法的特點(diǎn)是教師通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生逐步發(fā)現知識的形成過(guò)程,使教學(xué)活動(dòng)真正建立在學(xué)生自主活動(dòng)和探索的基礎上,著(zhù)力培養學(xué)生的創(chuàng )新能力。
這組教學(xué)方法使得學(xué)生在解決問(wèn)題的過(guò)程中學(xué)數學(xué),用數學(xué),不僅強調動(dòng)腦思考,而且強調動(dòng)手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過(guò)學(xué)生全面、多樣的主體實(shí)踐活動(dòng),促進(jìn)他們獨立思考能力、動(dòng)手能力等多方面素質(zhì)的整體發(fā)展。
教學(xué)手段的現代化有利于提高課堂效益,有利于創(chuàng )新人才的培養,根據本節課的教學(xué)需要,確定利用《幾何畫(huà)板》制作課件來(lái)輔助教學(xué);此外,為加強直觀(guān)教學(xué),教師可預先做好一些模型。
最后是學(xué)法創(chuàng )新。意在指導學(xué)生會(huì )創(chuàng )新地學(xué)。
1、樂(lè )學(xué):在整個(gè)學(xué)習過(guò)程中學(xué)生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng )新意識,全身心地投入到學(xué)習中去,成為學(xué)習的主人。
2、學(xué)會(huì ):在掌握基礎知識的同時(shí),學(xué)生要注意領(lǐng)會(huì )化歸、類(lèi)比聯(lián)想等數學(xué)思想方法的運用,學(xué)會(huì )建立完善的認知結構。
3、會(huì )學(xué):通過(guò)自已親身參與,學(xué)生要領(lǐng)會(huì )復習類(lèi)比和深入研究這兩種知識創(chuàng )新的方法,從而既學(xué)到知識,又學(xué)會(huì )創(chuàng )新。
三、程序安排
。ㄒ唬、二面角
1、揭示概念產(chǎn)生背景。
心理學(xué)研究表明,當學(xué)生明確數學(xué)概念的學(xué)習目的和意義時(shí),就會(huì )對概念的學(xué)習產(chǎn)生濃厚的興趣。創(chuàng )設問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng )新意識,營(yíng)造了創(chuàng )新思維的氛圍。
問(wèn)題情境1、我們是如何定量研究?jì)善叫衅矫娴南鄬ξ恢玫模?/p>
問(wèn)題情境2、立幾中常用距離和角來(lái)定量描述兩個(gè)元素之間的相對位置,為什么不引入兩平行平面所成的角?
問(wèn)題情境3、我們應如何定量研究?jì)蓚(gè)相交平面之間的相對位置呢?
通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認知結構,為知識的創(chuàng )新做好了準備;同時(shí)也讓學(xué)生領(lǐng)會(huì )到,二面角這一概念的產(chǎn)生是因為研究?jì)上嘟黄矫娴南鄬ξ恢玫男枰,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動(dòng)的展開(kāi)。
2、展現概念形成過(guò)程。
【高中數學(xué)說(shuō)課稿】相關(guān)文章:
高中數學(xué)的說(shuō)課稿11-04
高中數學(xué)說(shuō)課稿05-01
高中數學(xué)面試說(shuō)課稿11-18
高中數學(xué)實(shí)驗說(shuō)課稿11-26
高中數學(xué)必修說(shuō)課稿11-25
高中數學(xué)集合說(shuō)課稿11-12