高中數學(xué)說(shuō)課稿(通用15篇)
作為一名老師,常常要寫(xiě)一份優(yōu)秀的說(shuō)課稿,借助說(shuō)課稿可以有效提升自己的教學(xué)能力。優(yōu)秀的說(shuō)課稿都具備一些什么特點(diǎn)呢?以下是小編收集整理的高中數學(xué)說(shuō)課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數學(xué)說(shuō)課稿1
一、教材分析
1、教材地位和作用
二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時(shí)它也是空間中線(xiàn)線(xiàn)、線(xiàn)面、面面垂直關(guān)系的一個(gè)匯集點(diǎn)。搞好本節課的學(xué)習,對學(xué)生系統地掌握直線(xiàn)和平面的知識乃至于創(chuàng )新能力的培養都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運用。
2、教學(xué)目標
根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標:
認知目標:
。1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運用它們解決實(shí)際問(wèn)題。
。2)進(jìn)一步培養學(xué)生把空間問(wèn)題轉化為平面問(wèn)題的化歸思想。
能力目標:以培養學(xué)生的創(chuàng )新能力和動(dòng)手能力為重點(diǎn)。
(1)突出對類(lèi)比、直覺(jué)、發(fā)散等探索性思維的培養,從而提高學(xué)生的創(chuàng )新能力。
。2)通過(guò)對圖形的觀(guān)察、分析、比較和操作來(lái)強化學(xué)生的動(dòng)手操作能力。
教育目標:
(1)使學(xué)生認識到數學(xué)知識來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,從而增強學(xué)生應用數學(xué)的意識。
(2)通過(guò)揭示線(xiàn)線(xiàn)、線(xiàn)面、面面之間的內在聯(lián)系,進(jìn)一步培養學(xué)生聯(lián)系的辯證唯物主義觀(guān)點(diǎn)。
3、本節課教學(xué)的重、難點(diǎn)是兩個(gè)過(guò)程的教學(xué):
。1)二面角的平面角概念的形成過(guò)程。
。2)尋找二面角的平面角的方法的發(fā)現過(guò)程。
其理由如下:
。1)現行教材省略了概念的形成過(guò)程和方法的發(fā)現過(guò)程,沒(méi)有反映出科學(xué)認識產(chǎn)生的辯證過(guò)程,與學(xué)生的認知規律相悖,給學(xué)生的學(xué)習造成了很大的困難,非常不利于學(xué)生創(chuàng )新能力、獨立思考能力以及動(dòng)手能力的培養。
。2)現代認知學(xué)認為,揭示知識的形成過(guò)程,對學(xué)生學(xué)習新知識是十分必要的。同時(shí)通過(guò)展現知識的發(fā)生、發(fā)展過(guò)程,給學(xué)生思考、探索、發(fā)現和創(chuàng )新提供了最大的空間,可以使學(xué)生在整個(gè)教學(xué)過(guò)程中始終處于積極的思維狀態(tài),進(jìn)而培養他們獨立思考和大膽求索的精神,這樣才能全面落實(shí)本節課的教學(xué)目標。
二、指導思想和教學(xué)方法
在設計本教學(xué)時(shí),主要貫徹了以下兩個(gè)思想:
1、樹(shù)立以學(xué)生發(fā)展為本的思想。通過(guò)構建以學(xué)習者為中心、有利于學(xué)生主體精神、創(chuàng )新能力健康發(fā)展的寬松的教學(xué)環(huán)境,提供學(xué)生自主探索和動(dòng)手操作的機會(huì ),鼓勵他們創(chuàng )新思考,親身參與概念和方法的形成過(guò)程。2、堅持協(xié)同創(chuàng )新原則。把教材創(chuàng )新、教法創(chuàng )新以及學(xué)法創(chuàng )新有機地統一起來(lái),因為只有教師創(chuàng )新地教,學(xué)生創(chuàng )新地學(xué),才能營(yíng)建一個(gè)有利于創(chuàng )新能力培養的良好環(huán)境。
首先是教材創(chuàng )新。
。1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類(lèi)比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開(kāi)放的、探索性的發(fā)現過(guò)程。
。2)在引入定義之后,例題講解之前,引導學(xué)生發(fā)現尋找二面角的平面角的方法,為例題做好鋪墊。
。3)重新編排例題。
其次是教法創(chuàng )新。采用多種創(chuàng )新的教學(xué)方法,包括問(wèn)題解決法、類(lèi)比發(fā)現法、研究發(fā)現法等教學(xué)方法。
這組教學(xué)方法的特點(diǎn)是教師通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生逐步發(fā)現知識的形成過(guò)程,使教學(xué)活動(dòng)真正建立在學(xué)生自主活動(dòng)和探索的基礎上,著(zhù)力培養學(xué)生的創(chuàng )新能力。
這組教學(xué)方法使得學(xué)生在解決問(wèn)題的過(guò)程中學(xué)數學(xué),用數學(xué),不僅強調動(dòng)腦思考,而且強調動(dòng)手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過(guò)學(xué)生全面、多樣的主體實(shí)踐活動(dòng),促進(jìn)他們獨立思考能力、動(dòng)手能力等多方面素質(zhì)的整體發(fā)展。
教學(xué)手段的現代化有利于提高課堂效益,有利于創(chuàng )新人才的培養,根據本節課的教學(xué)需要,確定利用《幾何畫(huà)板》制作課件來(lái)輔助教學(xué);此外,為加強直觀(guān)教學(xué),教師可預先做好一些模型。
最后是學(xué)法創(chuàng )新。意在指導學(xué)生會(huì )創(chuàng )新地學(xué)。
1、樂(lè )學(xué):在整個(gè)學(xué)習過(guò)程中學(xué)生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng )新意識,全身心地投入到學(xué)習中去,成為學(xué)習的主人。
2、學(xué)會(huì ):在掌握基礎知識的同時(shí),學(xué)生要注意領(lǐng)會(huì )化歸、類(lèi)比聯(lián)想等數學(xué)思想方法的運用,學(xué)會(huì )建立完善的認知結構。
3、會(huì )學(xué):通過(guò)自已親身參與,學(xué)生要領(lǐng)會(huì )復習類(lèi)比和深入研究這兩種知識創(chuàng )新的方法,從而既學(xué)到知識,又學(xué)會(huì )創(chuàng )新。
三、程序安排
。ㄒ唬、二面角
1、揭示概念產(chǎn)生背景。
心理學(xué)研究表明,當學(xué)生明確數學(xué)概念的學(xué)習目的和意義時(shí),就會(huì )對概念的學(xué)習產(chǎn)生濃厚的興趣。創(chuàng )設問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng )新意識,營(yíng)造了創(chuàng )新思維的氛圍。
問(wèn)題情境1、我們是如何定量研究?jì)善叫衅矫娴南鄬ξ恢玫模?/p>
問(wèn)題情境2、立幾中常用距離和角來(lái)定量描述兩個(gè)元素之間的相對位置,為什么不引入兩平行平面所成的角?
問(wèn)題情境3、我們應如何定量研究?jì)蓚(gè)相交平面之間的相對位置呢?
通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認知結構,為知識的創(chuàng )新做好了準備;同時(shí)也讓學(xué)生領(lǐng)會(huì )到,二面角這一概念的產(chǎn)生是因為研究?jì)上嘟黄矫娴南鄬ξ恢玫男枰,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動(dòng)的展開(kāi)。
2、展現概念形成過(guò)程。
高中數學(xué)說(shuō)課稿2
尊敬的各位評委、各位老師大家好!我說(shuō)課的題目是《直線(xiàn)的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書(shū)數學(xué)必修2(A版),是第三章直線(xiàn)與方程中的第2節的第一課時(shí)3.2.1直線(xiàn)的點(diǎn)斜式方程的內容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。
一、教學(xué)背景的分析
1.教材分析
直線(xiàn)的方程是學(xué)生在初中學(xué)習了一次函數的概念和圖象及高中學(xué)習了直線(xiàn)的斜率后進(jìn)行研究的。直線(xiàn)的方程屬于解析幾何學(xué)的基礎知識,是研究解析幾何學(xué)的開(kāi)始,對后續研究?jì)蓷l直線(xiàn)的位置關(guān)系、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容,無(wú)論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內容之一!爸本(xiàn)的點(diǎn)斜式方程”可以說(shuō)是直線(xiàn)的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線(xiàn)作為常見(jiàn)的最簡(jiǎn)單的曲線(xiàn),在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。同時(shí)在這一節中利用坐標法來(lái)研究曲線(xiàn)的數形結合、幾何直觀(guān)等數學(xué)思想將貫穿于我們整個(gè)高中數學(xué)教學(xué)。
2.學(xué)情分析
我校的生源較差,學(xué)生的基礎和學(xué)習習慣都有待加強。又由于剛開(kāi)始學(xué)習解析幾何,第一次用坐標法來(lái)求曲線(xiàn)的方程,在學(xué)習過(guò)程中,會(huì )出現“數”與“形”相互轉化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面更有待加強。
根據上述教材分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3.教學(xué)目標
(1)了解直線(xiàn)的方程的概念和直線(xiàn)的點(diǎn)斜式方程的推導過(guò)程及方法;
(2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì )準確地使用直線(xiàn)的點(diǎn)斜式、斜截式方程 ;
(3)從實(shí)例入手,通過(guò)類(lèi)比、推廣、特殊化等,使學(xué)生體會(huì )從特殊到一般再到特殊的認知規律;
(4)提倡學(xué)生用舊知識解決新問(wèn)題,通過(guò)體會(huì )直線(xiàn)的斜截式方程與一次函數的關(guān)系等活動(dòng),培養學(xué)生主動(dòng)探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。
4. 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn): 直線(xiàn)點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應用。
(2)難點(diǎn):直線(xiàn)的方程的概念,點(diǎn)斜式方程的推導及點(diǎn)斜式、斜截式方程的應用。
二、教法學(xué)法分析
1.教法分析:根據學(xué)情,為了能調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“實(shí)例引導的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數化,用代數的語(yǔ)言描述直線(xiàn)的幾何要素及其關(guān)系,進(jìn)而將直線(xiàn)的問(wèn)題轉化為直線(xiàn)方程的問(wèn)題,通過(guò)對直線(xiàn)的方程的研究,最終解決有關(guān)直線(xiàn)的一些簡(jiǎn)單的問(wèn)題。另外可以恰當的利用多媒體課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習興趣。
2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結、質(zhì)疑、運用,體會(huì )學(xué)習數學(xué)的樂(lè )趣;通過(guò)推導直線(xiàn)的點(diǎn)斜式方程的學(xué)習,要了解用坐標法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線(xiàn),進(jìn)而可求出直線(xiàn)的點(diǎn)斜式方程,要能體會(huì )“形”與“數”的轉化思想。
下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
三、教學(xué)過(guò)程的設計及實(shí)施
整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節,學(xué)習或涉及四個(gè)概念:
溫故知新,澄清概念----直線(xiàn)的方程
深入探究,獲得新知--------點(diǎn)斜式
拓展知識,再獲新知--------斜截式
小結引申,思維延續--------兩點(diǎn)式
平面上的點(diǎn)可以用坐標表示,直線(xiàn)的傾斜程度可以用斜率表示,那么平面上的直線(xiàn)如何表示呢?這就是本節要學(xué)習的內容。
(一)溫故知新,澄清概念----直線(xiàn)的方程
問(wèn)題一:畫(huà)出一次函數y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標有何關(guān)系?
[學(xué)生活動(dòng)] 通過(guò)動(dòng)手畫(huà)圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。
[教師活動(dòng)] 對于不同學(xué)生的表述進(jìn)行分析、歸納,用規范的語(yǔ)言對方程和直線(xiàn)的方程進(jìn)行描述。
[設計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線(xiàn)的方程的概念,試圖做到“用學(xué)生已有的數學(xué)知識去學(xué)數學(xué)”,從而突破難點(diǎn)。通過(guò)對這個(gè)問(wèn)題的研究,一方面認識到以方程的解為坐標的點(diǎn)在直線(xiàn)上,另一方面認識到直線(xiàn)上的點(diǎn)的坐標滿(mǎn)足方程;從而使同學(xué)意識到直線(xiàn)可以由直線(xiàn)上任意一點(diǎn)P(x,y)的坐標x和y之間的等量關(guān)系來(lái)表示。
問(wèn)題二:若直線(xiàn)經(jīng)過(guò)點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線(xiàn)l上。
(1) 若點(diǎn)P在直線(xiàn)l上從A點(diǎn)開(kāi)始運動(dòng),橫坐標增加1時(shí),點(diǎn)P的坐標是 ;
(2)畫(huà)出直線(xiàn)l,你能求出直線(xiàn)l的方程嗎?
(3)若點(diǎn)P在直線(xiàn)l上運動(dòng),設P點(diǎn)的坐標為(x,y),你會(huì )有什么方法找到x,y滿(mǎn)足的關(guān)系式?
[學(xué)生活動(dòng)]學(xué)生獨立思考5分鐘,必要的話(huà)可進(jìn)行分組討論、合作交流。
[教師活動(dòng)]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導學(xué)生觀(guān)察發(fā)現,得到當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線(xiàn)的斜率恒等于-2,體會(huì )“動(dòng)中有靜”的思維策略。
[設計意圖]復習斜率公式;待定系數法;初步體會(huì )坐標法。同時(shí)引導學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數學(xué)簡(jiǎn)潔的美感和嚴謹性。還要指出這樣的事實(shí):當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí),P的坐標(x,y)滿(mǎn)足方程2x+y-1=0.反過(guò)來(lái),以方程2x+y-1=0的解為坐標的點(diǎn)在直線(xiàn)l上。把學(xué)生的思維引到用坐標法研究直線(xiàn)的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
(二)深入探究,獲得新知----點(diǎn)斜式
問(wèn)題三: ① 若直線(xiàn)l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線(xiàn)l的方程。
、谥本(xiàn)的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線(xiàn)?
[學(xué)生活動(dòng)] ①學(xué)生敘述,老師板書(shū),強調斜率公式與點(diǎn)斜式的區別。 ②指導學(xué)生用筆轉一轉不難發(fā)現,當直線(xiàn)l的傾斜角α=90°時(shí),斜率k不存在,當然不存在點(diǎn)斜式方程;討論k=0的情況;觀(guān)察并總結點(diǎn)斜式方程的特征。
[設計意圖] 由特殊到一般的學(xué)習思路,突破難點(diǎn),培養學(xué)生的歸納概括能力。通過(guò)對這個(gè)問(wèn)題的探究使學(xué)生獲得直線(xiàn)點(diǎn)斜式方程;由②知:當直線(xiàn)斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線(xiàn),培養思維的嚴謹性,這時(shí)直線(xiàn)l與y軸平行,它上面的每一點(diǎn)的橫坐標都等于x0,直線(xiàn)l的方程是:x=x0;通過(guò)學(xué)生的觀(guān)察討論總結,明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎練習,突破重難點(diǎn)。
問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿(mǎn)足下列條件的直線(xiàn)的方程
(1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。
[練習]P95.1、2。
[學(xué)生活動(dòng)]學(xué)生獨立完成并展示或敘述,老師點(diǎn)評。
[設計意圖]充分用好教材的例題和習題,因為這些題都是專(zhuān)家精心編排的,充分體現必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節的教學(xué),指導下個(gè)環(huán)節的安排;突破重點(diǎn)內容后,進(jìn)入第三環(huán)節。
(三)拓展知識,再獲新知----斜截式
問(wèn)題五:(1)一條直線(xiàn)與y軸交于點(diǎn)(0,3),直線(xiàn)的斜率為2,求這條直線(xiàn)的方程。
(2)若直線(xiàn)l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線(xiàn)l的方程。
[學(xué)生活動(dòng)]學(xué)生獨立完成后口述,教師板書(shū)。
[設計意圖] 由一般到特殊再到一般,培養學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強調截距不是距離。類(lèi)比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數的關(guān)系。通過(guò)下面的基礎練習,突破重點(diǎn)。
[練習]P95.3。
[設計意圖]充分用好教材習題,及時(shí)反饋本環(huán)節的教學(xué)情況,指導下個(gè)環(huán)節的安排。
(四)小結引申,思維延續----兩點(diǎn)式
課堂小結 1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線(xiàn)方程的方法:公式法、等斜率法、待定系數法。)
2、哪些地方還沒(méi)有學(xué)好?
問(wèn)題六:(1)直線(xiàn)l過(guò)(1,0)點(diǎn),且與直線(xiàn)平行,求直線(xiàn)l的方程。
(2)直線(xiàn)l過(guò)點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線(xiàn)l的方程。
[學(xué)生活動(dòng)]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。
[教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話(huà),可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式;沒(méi)時(shí)間就布置分層作業(yè)。
[設計意圖](1)小題與上一節的平行綜合,學(xué)生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機會(huì ),以及課后學(xué)習的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節課研究直線(xiàn)的兩點(diǎn)式方程作了重要的準備。
分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.
選做題:P100.A組:1.(4)(5)(6).
[設計意圖]通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展。
四、教學(xué)特點(diǎn)分析
(一)實(shí)例引導。在字母運算、公式推導之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習知識的可能和興趣,關(guān)注學(xué)困生的成長(cháng)與發(fā)展。
(二)啟發(fā)式教學(xué)。教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內容,如:1.直角坐標系內的所有直線(xiàn)都有點(diǎn)斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會(huì )求直線(xiàn)在軸上的截距嗎?4.觀(guān)察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話(huà)與交流活動(dòng)。
(三)注重自主探究。設計問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區上,布設了由淺入深的學(xué)習環(huán)境突破重點(diǎn)、難點(diǎn),引導學(xué)生逐步發(fā)現知識的形成過(guò)程。設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng )造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。
高中數學(xué)說(shuō)課稿3
各位評委老師好:今天我說(shuō)課的題目是
是必修章第節的內容,我將以新課程標準的理念指導本節課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過(guò)程,教學(xué)評價(jià)四個(gè)方面加以說(shuō)明。
一、 教材分析
是在學(xué)習了基礎上進(jìn)一步研究 并為后面學(xué)習 做準備,在整個(gè)
高中數學(xué)中起著(zhù)承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標
1、 知識能力目標:使學(xué)生理解掌握
2、 過(guò)程方法目標:通過(guò)觀(guān)察歸納抽象概括使學(xué)生構建領(lǐng)悟 數學(xué)思想,培養 能力
3、 情感態(tài)度價(jià)值觀(guān)目標:通過(guò)學(xué)習體驗數學(xué)的科學(xué)價(jià)值和應用價(jià)值,培養善于
觀(guān)察勇于思考的學(xué)習習慣和嚴謹 的科學(xué)態(tài)度
根據教學(xué)目標、本節特點(diǎn)和學(xué)生實(shí)際情況本節重點(diǎn)是 ,由于學(xué)生對 缺少感性認識,所以本節課的重點(diǎn)是
二、教法學(xué)法
根據教師主導地位和學(xué)生主體地位相統一的規律,我采用引導發(fā)現法為本節課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來(lái)尋求解決問(wèn)題的方法。
三、 教學(xué)過(guò)程
四、 教學(xué)程序及設想
1、由……引入:
把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。 在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
對于本題:……
2、由實(shí)例得出本課新的知識點(diǎn)是:……
3、講解例題。
我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓練。
課后練習……
使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
5、總結結論,強化認識。
知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。
6、變式延伸,進(jìn)行重構。
重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
五、教學(xué)評價(jià)
學(xué)生學(xué)習的學(xué)習結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià),教師應
當高度重視學(xué)生學(xué)習過(guò)程中的參與度、自信心、團隊精神合作意識數學(xué)能力的發(fā)現,以及學(xué)習的興趣和成就感。
高中數學(xué)說(shuō)課稿4
課題《數列的概念與簡(jiǎn)單表示方法(一)》選自普通高中課程標準試驗教科書(shū)人教版A版數學(xué)必修5第二章第一節的第一課時(shí)。我將從教材分析、學(xué)情分析、教學(xué)目標分析、教法分析、教學(xué)過(guò)程這五個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。
一、教材分析
1、教材的地位和作用
數列是高中數學(xué)的重要內容之一,它的地位作用可以從三個(gè)方面來(lái)看:
。1)數列有著(zhù)廣泛的實(shí)際應用。如堆放的物品的總數計算要用到數列的前n項和,又如分期儲蓄、付款公式的有關(guān)計算也要用到數列的一些知識。
。2)數列起著(zhù)承前啟后的作用。一方面,初中數學(xué)的許多內容在解決數列的某些問(wèn)題中得到了充分運用,數列是前面函數知識的延伸及應用,可以使學(xué)生加深對函數概念的理解;另一方面,學(xué)習數列又為進(jìn)一步學(xué)習數列的極限,等差數列、等比數列的前n項和以及通項公式打好了鋪墊。因此就有必要講好、學(xué)好數列。
。3)數列是培養學(xué)生數學(xué)能力的良好題材。是進(jìn)行計算,推理等基本訓練,綜合訓練的重要教材。學(xué)習數列,要經(jīng)常觀(guān)察、分析、歸納、猜想,還要綜合運用前面的知識解決數列中的一些問(wèn)題,這些都有助于學(xué)生數學(xué)能力的提高。
二、學(xué)情分析
從學(xué)生知識層面看:學(xué)生對數列已有初步的認識,對方程、函數、數學(xué)公式的運用已有一定的基礎,對方程、函數思想的體會(huì )也逐漸深刻。
從學(xué)生素質(zhì)層面看:從高一新生入學(xué)開(kāi)始,我就很注意學(xué)生自主探究習慣的養成,F階段我的學(xué)生思維活躍,課堂參與意識較強,而且已經(jīng)具有一定的分析、推理能力。
三、教學(xué)目標分析
根據上面的教材分析以及學(xué)情分析,確定了本節課的教學(xué)目標:
。1)知識目標:認識數列的特點(diǎn),掌握數列的概念及表示方法,并明白數列與集合的不同點(diǎn)。了解數列通項公式的意義及數列分類(lèi)。能由數列的通項公式求出數列的各項,反之,又能由數列的前幾項寫(xiě)出數列的一個(gè)通項公式。
。2)能力目標:通過(guò)對數列概念以及通項公式的探究、推導、應用等過(guò)程,鍛煉了學(xué)生的觀(guān)察、歸納、類(lèi)比等分析問(wèn)題的能力。同時(shí)更深層次的理解了數學(xué)知識之間的相互滲透性思想。
。3)情感目標:在教學(xué)中使學(xué)生體會(huì )教學(xué)知識與現實(shí)世界的聯(lián)系,并且利用各種有趣的,貼近學(xué)生生活的素材激發(fā)學(xué)生的學(xué)習興趣,培養熱愛(ài)生活的情感。
四、教學(xué)重點(diǎn)與難點(diǎn)
根據教學(xué)目標以及學(xué)生的理解能力與認知水平,我確定了如下的教學(xué)重難點(diǎn)。
重點(diǎn):理解數列的概念,能由函數的觀(guān)點(diǎn)去認識數列,以及對通項公式的理解。
難點(diǎn):根據數列的前幾項的特點(diǎn),通過(guò)多角度、多層次的觀(guān)察分析歸納出數列的一個(gè)通項公式。
五、教法分析
根據本節課的內容和學(xué)生的實(shí)際情況,結合波利亞的先猜后證理論,本節課主要以講解法為主,引導發(fā)現為輔,由老師帶領(lǐng)同學(xué)們發(fā)現問(wèn)題,分析問(wèn)題,并解決問(wèn)題.考慮到學(xué)生的認知過(guò)程,本節課會(huì )采用由易到難的教學(xué)進(jìn)程以及實(shí)例給出與練習設置,讓學(xué)生們充分體會(huì )到事物的發(fā)展規律。同時(shí)為了增大課堂容量,提高教學(xué)效率,更吸引同學(xué)們的眼光,提高學(xué)習熱情,本節課還會(huì )采用常規手段與現代手段相結合的辦法,充分利用多媒體,將引例、例題具體呈現.
高中數學(xué)說(shuō)課稿5
一.內容和內容分析
“函數的奇偶性”是人教版數學(xué)必修教材必修一第一章第三節的內容,本節的主要內容是研究函數的一個(gè)性質(zhì)—函數的奇偶性,學(xué)習奇函數和偶函數的概念.奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的兩個(gè)特殊函數入手,從特殊到一般,從具體到抽象,從感性到理性比較系統地介紹了函數的奇偶性.從知識結構看,它既是函數概念的拓展和深化,又為后續研究指數函數、對數函數、冪函數、三角函數的基礎,因此,本節課起著(zhù)承上啟下的重要作用。 本節課的教學(xué)重點(diǎn):函數奇偶性的概念及判定。
二.目標和目標分析
。1)知識目標:從形和數兩個(gè)方面進(jìn)行引導,使學(xué)生理解奇偶性的概念,學(xué)會(huì )利用定義判斷
簡(jiǎn)單函數的奇偶性。
。2)能力目標:通過(guò)設置問(wèn)題情境培養學(xué)生判斷、推理的能力,同時(shí)滲透數形結合和由特殊
到一般的數學(xué)思想方法.
。3)情感目標:在學(xué)生感受數學(xué)美的同時(shí),激發(fā)學(xué)習的興趣,培養學(xué)生樂(lè )于求索的精神。
三.教學(xué)問(wèn)題診斷分析
導入有點(diǎn)慢,講的有點(diǎn)細,導致時(shí)間上沒(méi)有完成教學(xué)任務(wù),感覺(jué)還是自己講的太多,不能充分調動(dòng)學(xué)生的積極性。
四.教學(xué)支持條件分析
用了多媒體,使用ppt,使得奇偶性函數概念的探究過(guò)程更形象更直觀(guān),是學(xué)生理解更深刻。
五.教學(xué)過(guò)程設計
為了達到預期的教學(xué)目標,我對整個(gè)教學(xué)過(guò)程進(jìn)行了系統地規劃,設計了四個(gè)主要的教學(xué)程序是:
1.設疑導入、觀(guān)圖激趣:
使用幻燈片展示圖片蝴蝶、雪花等讓學(xué)生感受生活中的美,從而引入對稱(chēng)在函數中的體現。
2.指導觀(guān)察、形成概念:
作出函數y=x的圖象,并觀(guān)察這兩個(gè)函數圖象的對稱(chēng)性如何?
借助課件演示,讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì )得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內是否對所有的x,都有類(lèi)似的情況?借助課件演示,學(xué)生會(huì )得出結論,f(-x)=f(x),從而引導學(xué)生先把它們具體化,再用數學(xué)符號表示。根據以上特點(diǎn),請學(xué)生用完整的語(yǔ)言敘述定義,同時(shí)給出板書(shū):
函數f(x)的定義域為A,且關(guān)于原點(diǎn)對稱(chēng),如果有f(-x)=f(x),則稱(chēng)f(x)為偶函數,類(lèi)比探究2
偶函數的過(guò)程,得到奇函數的概念,又通過(guò)具體的例子說(shuō)明了定義域關(guān)于原點(diǎn)對稱(chēng)是研究奇偶性的前提。
3.學(xué)生探索、發(fā)展思維。
接著(zhù)通過(guò)學(xué)案上的例一,總結函數奇偶性的判斷方法及步驟:
(1)求出函數的定義域,并判斷是否關(guān)于原點(diǎn)對稱(chēng)
(2)驗證f(-x)=f(x)或f(-x)=-f(x)
(3)得出結論
由學(xué)生小結判斷奇偶性的步驟之后,提出新的問(wèn)題:函數按奇偶性如何分類(lèi)?既奇又偶的函數是不是只有一個(gè)?試舉例說(shuō)明。
4.布置作業(yè):
六.目標檢測設計
學(xué)案上的題型主要包括奇偶性函數的判斷及應用
七.教學(xué)反思:(從兩方面)
1.思成功
一:是通過(guò)設計富有挑戰性的問(wèn)題來(lái)呈現背景,通過(guò)問(wèn)題的探究和自主學(xué)習來(lái)獲取相關(guān)概念,實(shí)現了 “教學(xué)邏輯”與“學(xué)習邏輯”的連通、“知識邏輯”與“認知邏輯”的連通;二:是在老師創(chuàng )設的情境中,每個(gè)學(xué)生都積極投入探究過(guò)程,學(xué)生在疑惑中探索,在探索中思考,在思考中發(fā)現,大部分學(xué)生積極性高漲,通過(guò)看別人怎樣觀(guān)察,
聽(tīng)別人怎樣介紹,也學(xué)到了知識.
2.思不足
學(xué)生練習:在教學(xué)過(guò)程中應多注意學(xué)生的.活動(dòng),由單一的問(wèn)答式轉化為多方位的考察,以采用
學(xué)生板演或者把學(xué)生練習投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
語(yǔ)言組織:
在講授過(guò)程中還要注意到說(shuō)話(huà)語(yǔ)速,語(yǔ)言組織等講授技巧,應該用平緩的語(yǔ)氣講授,語(yǔ)言描述要簡(jiǎn)練易懂,不能拖泥帶水。
教學(xué)環(huán)節(的完整):
在授課過(guò)程中要注意到教學(xué)環(huán)節設計,我們的教學(xué)過(guò)程有復習引入、講授新課、例題講解、學(xué)生練習、課時(shí)小結、布置作業(yè)等幾個(gè)重要的環(huán)節,由于時(shí)間的關(guān)系沒(méi)有來(lái)得及小結造成教學(xué)設計不完善。在以后的教學(xué)過(guò)程中要注意這些環(huán)節。
以上是我對這節課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯誤,以便更好的適應教學(xué),努力使自己的教學(xué)更上一層樓。
高中數學(xué)說(shuō)課稿6
1、教學(xué)目標:
一、借助單位圓理解任意角的三角函數的定義。
二、根據三角函數的定義,能夠判斷三角函數值的符號。
三、通過(guò)學(xué)生積極參與知識的"發(fā)現"與"形成"的過(guò)程,培養合情猜測的能力,從中感悟數學(xué)概念的嚴謹性與科學(xué)性。
四、讓學(xué)生在任意角三角函數概念的形成過(guò)程中,體會(huì )函數思想,體會(huì )數形結合思想。
2、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):任意角的正弦、余弦、正切的定義;三角函數值的符號。
難點(diǎn):任意角的三角函數概念的建構過(guò)程。
授課過(guò)程:
一、引入
在我們的現實(shí)世界中的許多運動(dòng)變化都有循環(huán)往復、周而復始的現象,這種變化規律稱(chēng)為周期性。如何用數學(xué)的方法來(lái)刻畫(huà)這種變化?從這節課開(kāi)始,我們要來(lái)學(xué)習刻畫(huà)這種規律的數學(xué)模型之一――三角函數。
二、創(chuàng )設情境
三角函數是與角有關(guān)的函數,在學(xué)習任意角概念時(shí),我們知道在直角坐標系中研究角,可以給學(xué)習帶來(lái)許多方便,比如我們可以根據角終邊的位置把它們進(jìn)行歸類(lèi),現在大家考慮:若在直角坐標系中來(lái)研究銳角,則銳角三角函數又可怎樣定義呢?
學(xué)生情況估計:學(xué)生可能會(huì )提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點(diǎn)P的坐標。
問(wèn)題:
1、銳角三角函數能否表示成第二種比值方式?
2、點(diǎn)P能否取在終邊上的其它位置?為什么?
3、點(diǎn)P在哪個(gè)位置,比值會(huì )更簡(jiǎn)潔?(引出單位圓的定義)。指出sina=mP的函數依舊表示一個(gè)比值,不過(guò)其分母為1而已。
練習:計算的各三角函數值。
三、任意角的三角函數的定義
角的概念已經(jīng)推廣道了任意角,那么三角函數的定義在任意角的范圍里改怎么定義呢?
嘗試:根據銳角三角函數的定義,你能?chē)L試著(zhù)給出任意角三角函數的定義嗎?
評價(jià)學(xué)生給出的定義。給出任意角三角函數的定義。
四、解析任意角三角函數的定義
三角函數首先是函數。你能從函數觀(guān)點(diǎn)解析三角函數嗎?(定義域)
對于確定的角a,上面三個(gè)函數值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點(diǎn)的坐標或坐標的比值為函數值的函數,我們將它們統稱(chēng)為三角函數。由于角的集合和實(shí)數集之間可以建立一一對應的關(guān)系,三角函數可以看成是自變量為實(shí)數的函數。
五、三角函數的應用。
1、已知角,求a的三角函數值。
2、已知角a終邊上的一點(diǎn)P(-3,-4),求各三角函數值。
以上兩道書(shū)上的例題,讓學(xué)生自習看書(shū),學(xué)生看書(shū)的同時(shí),老師提出問(wèn)題:
1、已知角如何求三角函數值?
2、利用角a的終邊上任意一點(diǎn)的坐標也可以定義三角函數,你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點(diǎn)?)
3、變式:已知角a終邊上點(diǎn)P(-3b,-4b),(b0),求角a的各三角函數值。
4、探究:三角函數的值在各象限的符號。
六、小結及作業(yè)
教案設計說(shuō)明:
新教材的教學(xué)理念之一是讓學(xué)生去體驗新知識的發(fā)生過(guò)程,這節《任意角三角函數》的教案,主要圍繞這一點(diǎn)來(lái)設計。
首先,角的概念推廣了,那么銳角三角函數的定義是否也該推廣到任意角的三角函數的定義呢?通過(guò)這個(gè)問(wèn)題,讓學(xué)生體會(huì )到新知識的發(fā)生是可能的,自然的。
其次,到底應該怎樣去合理定義任意角的三角函數呢?讓學(xué)生提出自己的想法,同時(shí)讓學(xué)生去辨證這個(gè)想法是否是科學(xué)的?因為一個(gè)概念是嚴謹的,科學(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數的定義有所沖突。在這個(gè)立-破的過(guò)程中,讓學(xué)生去體驗一個(gè)新的數學(xué)概念可能是如何形成,在形成的過(guò)程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數概念的理解。
再次,讓學(xué)生充分體會(huì )在任意角三角函數定義的推廣中,是如何將直角三角形這個(gè)"形"的問(wèn)題,轉換到直角坐標系下點(diǎn)的坐標這個(gè)"數"的過(guò)程的。培養數形結合的思想。
高中數學(xué)說(shuō)課稿7
【一】教學(xué)背景分析
1.教材結構分析
《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節.圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用.圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用.
2.學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的.但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難.另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強.
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3.教學(xué)目標
(1) 知識目標:①掌握圓的標準方程;
、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;
、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題.
(2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W(xué)生用數學(xué)的意識.
(3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;
、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣.
根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4. 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標準方程的求法及其應用.
(2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題.
為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1.教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上.另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程.
2.學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓.通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程. 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
【三】教學(xué)過(guò)程與設計
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:
創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖.
首先:縱向敘述教學(xué)過(guò)程
(一)創(chuàng )設情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?
通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節.
(二)深入探究——獲得新知
問(wèn)題二 1.根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2.如果圓心在,半徑為時(shí)又如何呢?
好學(xué)教育:
這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程.然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究.我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法.
得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節.
(三)應用舉例——鞏固提高
I.直接應用 內化新知
問(wèn)題三 1.寫(xiě)出下列各圓的標準方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn).
2.寫(xiě)出圓的圓心坐標和半徑.
我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備.
II.靈活應用 提升能力
問(wèn)題四 1.求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程.
2.求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程.
3.已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程.
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?
我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程.第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓.第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間.最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮.
III.實(shí)際應用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0.01m).
好學(xué)教育:
我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識.
(四)反饋訓練——形成方法
問(wèn)題六 1.求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程.
2.求圓過(guò)點(diǎn)的切線(xiàn)方程.
3.求圓過(guò)點(diǎn)的切線(xiàn)方程.
接下來(lái)是第四環(huán)節——反饋訓練.這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心.另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果.
(五)小結反思——拓展引申
1.課堂小結
把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:.
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:.
2.分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程.
3.激發(fā)新疑
問(wèn)題七 1.把圓的標準方程展開(kāi)后是什么形式?
2.方程表示什么圖形?
在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
好學(xué)教育:
求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn).
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五.這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破.
(二)學(xué)生主體 教師主導 探究主線(xiàn)
本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終.從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的.另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù).
(三)培養思維 提升能力 激勵創(chuàng )新
為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力.在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.
以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變.最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”.
高中數學(xué)說(shuō)課稿8
一、教材分析:
1、教材的地位與作用。
本節內容是在學(xué)生學(xué)習了“事件的可能性的基礎上來(lái)學(xué)習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小!庇酶怕暑A測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著(zhù)廣泛的應用,學(xué)習本單元知識,無(wú)論是今后繼續深造(高中學(xué)習概率的乘法定理)還是參加社會(huì )實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。
在教材的處理上,采取小單元教學(xué),本節課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統地理解概率的意義及求概率的方法,為下面學(xué)習求比較復雜的情況的概率打下基礎。
2、重點(diǎn)與難點(diǎn)。
重點(diǎn):對概率意義的理解,通過(guò)多次重復實(shí)驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點(diǎn):對概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導學(xué)生觀(guān)察試驗和統計的結果,進(jìn)而進(jìn)行分析、歸納、總結,了解并感受概率的定義的過(guò)程,引導學(xué)生從數學(xué)的視角觀(guān)察客觀(guān)世界,用數學(xué)的思維思考客觀(guān)世界,以數學(xué)的語(yǔ)言描述客觀(guān)世界。
情感態(tài)度價(jià)值觀(guān):學(xué)生經(jīng)歷觀(guān)察、分析、歸納、確認等數學(xué)活動(dòng),感受數學(xué)活動(dòng)充滿(mǎn)了探索性與創(chuàng )造性,感受量變與質(zhì)變的對立統一規律,同時(shí)為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習數學(xué)的熱情,增強對數學(xué)價(jià)值觀(guān)的認識。
三、教法、學(xué)法分析:
引導學(xué)生自主探究、合作交流、觀(guān)察分析、歸納總結,讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數學(xué)活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能應用數學(xué)解決現實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習的組織者、合作者和指導者,精心設計教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿(mǎn)生機活力,體現“教” 為“學(xué)”服務(wù)這一宗旨。
四、教學(xué)過(guò)程分析:
1、引導學(xué)生探究
精心設計問(wèn)題一,學(xué)生通過(guò)對問(wèn)題一的探究,一方面復習前面學(xué)過(guò)的“確定事件和不確定事件”的知識,為學(xué)好本節內容理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習概率(如何預測隨機事件可能性發(fā)生大小)。引導學(xué)生對問(wèn)題二的探究與觀(guān)察實(shí)驗數據,使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機事件的發(fā)生中存在著(zhù)統計規律性,感受數學(xué)規律的真實(shí)的發(fā)現過(guò)程。
2、歸納概括
學(xué)生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學(xué)生明確概率定義的由來(lái)。
引導學(xué)生重新對問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學(xué)生進(jìn)行理性思維,邏輯分析,既培養學(xué)生的分析問(wèn)題能力,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。
P(A)= = = (m
3、舉例應用
、乓龑W(xué)生對教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。
、埔龑W(xué)生對練習中的問(wèn)題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
深化發(fā)展
、旁O置3個(gè)小題目,引導學(xué)生歸納、分析、總結,加深對知識與方法的理解,并學(xué)會(huì )靈活運用。
、谱寣W(xué)生設計活動(dòng)內容,對知識進(jìn)行升華和拓展,引導學(xué)生創(chuàng )造性地運用知識思考問(wèn)題和解決問(wèn)題,從而培養學(xué)生的創(chuàng )新意識和創(chuàng )新能力。
高中數學(xué)說(shuō)課稿9
開(kāi)始:各位專(zhuān)家領(lǐng)導, 好!
今天我將要為大家講的課題是
首先,我對本節教材進(jìn)行一些分析
一、教材結構與內容簡(jiǎn)析
本節內容在全書(shū)及章節的地位:《 》是高中數學(xué)新教材第 冊( )第 章第 節。在此之前,學(xué)生已學(xué)習了
,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是 部分,因此,在 中,占據 的地位。
數學(xué)思想方法分析:作為一名數學(xué)老師,不僅要傳授給學(xué)生數學(xué)知識,更重要的是傳授給學(xué)生數學(xué)思想、數學(xué)意識,因此本節課在教學(xué)中力圖向學(xué)生:
二、 教學(xué)目標
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:
1 基礎知識目標:
2 能力訓練目標:
3 創(chuàng )新素質(zhì)目標:
4 個(gè)性品質(zhì)目標:
三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
本著(zhù)課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn): 通過(guò) 突出重點(diǎn)
難點(diǎn): 通過(guò) 突破難點(diǎn)
關(guān)鍵:
下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊?/p>
四、 教法
數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生
“知其然”而且要使學(xué)生“知其所以然”,
我們在以師生既為主體,又為客體的原則下,展現獲取知識和方法的思維過(guò)程;诒竟澱n的特點(diǎn):
,應著(zhù)重采用 的教學(xué)方法。即:
五、 學(xué)法
我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。
1、理論:
2、實(shí)踐:
3、能力:
最后我來(lái)具體談一談這一堂課的教學(xué)過(guò)程:
六、 教學(xué)程序及設想
1、由 引入:
把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。
在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
對于本題:
2、由實(shí)例得出本課新的知識點(diǎn)是:
3、講解例題。
我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓練。
課后練習
使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
5、總結結論,強化認識。
知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。
6、變式延伸,進(jìn)行重構。
重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
7、板書(shū)。
8、布置作業(yè)。
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。
結束:說(shuō)課是教師面對同行和其它聽(tīng)眾口頭講述具體課題的教學(xué)設想及其根據的新的教學(xué)研究形式。以上,我僅從說(shuō)教材,說(shuō)學(xué)情,說(shuō)教法,說(shuō)學(xué)法,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說(shuō)課對我們大家仍是新事物,今后我也將進(jìn)一步說(shuō)好課,并希望各位專(zhuān)家領(lǐng)導對本堂說(shuō)課提出寶貴意見(jiàn)。
注意時(shí)間掌握
六、注意靈活導入新知識點(diǎn)。
電腦課件
使用投影
根據時(shí)間進(jìn)行增刪
高中數學(xué)說(shuō)課稿10
今天我說(shuō)課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過(guò)程五方面逐一加以分析和說(shuō)明。
一、說(shuō)教材
1、教材的地位和作用
本節內容選自北師大版高中數學(xué)必修1,第二章第3節。函數是高中數學(xué)的課程,它是描述事物運動(dòng)變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學(xué)習奠定重要基礎。
2、學(xué)情分析
本節課的學(xué)生是高一學(xué)生,他們在初中階段,通過(guò)一次函數、二次函數、反比例函數的學(xué)習已經(jīng)對函數的增減性有了初步的感性認識。在高中階段,用符號語(yǔ)言刻畫(huà)圖形語(yǔ)言,用定量分析解釋定性結果,有利于培養學(xué)生的理性思維,為后續函數的學(xué)習作準備,也為利用倒數研究單調性的相關(guān)知識奠定了基礎。
教學(xué)目標分析
基于以上對教材和學(xué)情的分析以及新課標教學(xué)理念,我將教學(xué)目標分為以下三個(gè)部分:
1、知識與技能(1)理解函數的單調性和單調函數的意義;
。2)會(huì )判斷和證明簡(jiǎn)單函數的單調性。
2、過(guò)程與方法
。1)培養從概念出發(fā),進(jìn)一步研究性質(zhì)的意識及能力;
。2)體會(huì )數形結合、分類(lèi)討論的數學(xué)思想。
3、情感態(tài)度與價(jià)值觀(guān)
由合適的例子引發(fā)學(xué)生探求數學(xué)知識的欲望,突出學(xué)生的主觀(guān)能動(dòng)性,激發(fā)學(xué)生學(xué)習數學(xué)的興趣。
三、教學(xué)重難點(diǎn)分析
通過(guò)以上對教材和學(xué)生的分析以及教學(xué)目標,我將本節課的重難點(diǎn)
重點(diǎn):
函數單調性的概念,判斷和證明簡(jiǎn)單函數的單調性。
難點(diǎn):
1、函數單調性概念的認知
。1)自然語(yǔ)言到符號語(yǔ)言的轉化;
。2)常量到變量的轉化。
2、應用定義證明單調性的代數推理論證。
四、教法與學(xué)法分析
1、教法分析
基于以上對教材、學(xué)情的分析以及新課標的教學(xué)理念,本節課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數學(xué)在生活中的應用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養學(xué)生善于思考的能力。
2、學(xué)法分析
新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會(huì )怎樣學(xué)習,為終生學(xué)習奠定扎實(shí)的基礎。所以本節課我將引導學(xué)生通過(guò)合作交流、自主探索的方法理解函數的單調性及特征。
五、教學(xué)過(guò)程
為了更好的實(shí)現本課的三維目標,并突破重難點(diǎn),我設計以下五個(gè)環(huán)節來(lái)進(jìn)行我的教學(xué)。
。ㄒ唬┲R導入
溫故而知新,我將先從之前學(xué)習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數的圖像,然后讓學(xué)生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過(guò)程中不僅可以檢查學(xué)生掌握基本初等函數圖像的情況,而且符合學(xué)生的認知結構,通過(guò)學(xué)生自主探究,從知識產(chǎn)生、發(fā)展的過(guò)程中構建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習的積極主動(dòng)性。
。ǘ┲v授新課
1.問(wèn)題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個(gè)區間是上升的,在哪個(gè)區間是下降的?
通過(guò)學(xué)生熟悉的圖像,及時(shí)引導學(xué)生觀(guān)察,函數圖像上A點(diǎn)的運動(dòng)情況,引導學(xué)生能用自然語(yǔ)言描述出,隨著(zhù)x增大時(shí)圖像變化規律。讓學(xué)生大膽的去說(shuō),老師逐步修正、完善學(xué)生的說(shuō)法,最后給出正確答案。
2、觀(guān)察函數y=x2隨自變量x變化的情況,設置啟發(fā)式問(wèn)題:
。1)在y軸的右側部分圖象具有什么特點(diǎn)?
。2)如果在y軸右側部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當x1< p="">
。3)如何用數學(xué)符號語(yǔ)言來(lái)描述這個(gè)規律?
教師補充:這時(shí)我們就說(shuō)函數y=x2在(0,+∞)上是增函數。
。4)反過(guò)來(lái),如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?
類(lèi)似地分析圖象在y軸的左側部分。
通過(guò)對以上問(wèn)題的分析,從正、反兩方面領(lǐng)會(huì )函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關(guān)鍵詞,如:區間內,任意,當x1< p="">
仿照單調增函數定義,由學(xué)生說(shuō)出單調減函數的定義。
教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個(gè)區間上的局部性質(zhì),也就是說(shuō),一個(gè)函數在不同的區間上可以有不同的單調性。
。ㄎ覍⒔o出函數y=x2,并畫(huà)出這個(gè)函數的圖像,讓學(xué)生觀(guān)察函數圖像的特點(diǎn),讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個(gè)過(guò)程中,學(xué)生把對圖像的感性認識轉化為了數學(xué)關(guān)系,這種從特殊到一般的學(xué)習過(guò)程有利于學(xué)生對概念的理解)
。ㄈ╈柟叹毩
1練習1:說(shuō)出函數f(x)=的單調區間,并指明在該區間上的單調性。x
練習2:練習2:判斷下列說(shuō)法是否正確
、俣x在R上的函數f(x)滿(mǎn)足f(2)>f(1),則函數是R上的增函數。
、诙x在R上的函數f(x)滿(mǎn)足f(2)>f(1),則函數是R上不是減函數。
1③已知函數y=,因為f(-1)< p="">
1我將給出一些具體的函數,如y=,f(x)=3x+2讓學(xué)生說(shuō)出函數的單調區間,并指明在該區間x
上的單調性。通過(guò)這種練習的方式,幫助學(xué)生鞏固對知識的掌握。
。ㄋ模w納總結
我先讓學(xué)生進(jìn)行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進(jìn)行補充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習情況有一定的了解,為下一節課的教學(xué)過(guò)程做好準備。
。ㄎ澹┎贾米鳂I(yè)
必做題:習題2-3A組第2,4,5題。
選做題:習題2-3B組第2題。
新課程理念告訴我們,不同的人在數學(xué)上可以獲得不同的發(fā)展,因此要設計不同程度要求的習題。
高中數學(xué)說(shuō)課稿11
一、說(shuō)課分析
1.《指數函數》在教材中的地位、作用和特點(diǎn)
《指數函數》是人教版高中數學(xué)(必修)第一冊第二章“函數”的第六節內容,是在學(xué)習了《指數》一節內容之后編排的。通過(guò)本節課的學(xué)習,既可以對指數和函數的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習對數、對數函數尤其是利用互為反函數的圖象間的關(guān)系來(lái)研究對數函數的性質(zhì)打下堅實(shí)的概念和圖象基礎,又因為《指數函數》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學(xué)習基礎,所以《指數函數》不僅是本章《函數》的重點(diǎn)內容,也是高中學(xué)段的主要研究?jì)热葜,有?zhù)不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著(zhù)緊密的聯(lián)系,尤其體現在細胞、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習這部分知識還有著(zhù)廣泛的現實(shí)意義。本節內容的特點(diǎn)之一是概念性強,特點(diǎn)之二是凸顯了數學(xué)圖形在研究函數性質(zhì)時(shí)的重要作用。
2.教學(xué)目標、重點(diǎn)和難點(diǎn)
通過(guò)初中學(xué)段的學(xué)習和高中對集合、函數等知識的系統學(xué)習,學(xué)生對函數和圖象的關(guān)系已經(jīng)構建了一定的認知結構,主要體現在三個(gè)方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡(jiǎn)單的函數概念和性質(zhì)已有了初步認識,能夠從初中運動(dòng)變化的角度認識函數初步轉化到從集合與對應的觀(guān)點(diǎn)來(lái)認識函數。
技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質(zhì)做好準備。
素質(zhì)維度:由觀(guān)察到抽象的數學(xué)活動(dòng)過(guò)程已有一定的體會(huì ),已初步了解了數形結合的思想。
鑒于對學(xué)生已有的知識基礎和認知能力的分析,根據《教學(xué)大綱》的要求,我確定本節課的教學(xué)目標、教學(xué)重點(diǎn)和難點(diǎn)如下:
(1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質(zhì);③能初步利用指數函數的概念解決實(shí)際問(wèn)題;
(2)技能目標:①滲透數形結合的基本數學(xué)思想方法②培養學(xué)生觀(guān)察、聯(lián)想、類(lèi)比、猜測、歸納的能力;
(3)情感目標:①體驗從特殊到一般的學(xué)習規律,認識事物之間的普遍聯(lián)系與相互轉化,培養學(xué)生用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題②通過(guò)教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會(huì )數學(xué)科學(xué)的應用價(jià)值。
(4)教學(xué)重點(diǎn):指數函數的圖象和性質(zhì)。
(5)教學(xué)難點(diǎn):指數函數的圖象性質(zhì)與底數a的關(guān)系。
突破難點(diǎn)的關(guān)鍵:尋找新知生長(cháng)點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數形結合來(lái)掃清障礙。
二、說(shuō)課設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過(guò)這一節課的教學(xué)達到不僅使學(xué)生初步理解并能簡(jiǎn)單應用指數函數的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數圖象性質(zhì)的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學(xué)生學(xué)習能力的目的,我根據自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結合起來(lái),主要突出了幾個(gè)方面:
1.創(chuàng )設問(wèn)題情景.按照指數函數的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調動(dòng)學(xué)生的學(xué)習興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2.強化“指數函數”概念.引導學(xué)生結合指數的有關(guān)概念來(lái)歸納出指數函數的定義,并向學(xué)生指出指數函數的形式特點(diǎn),請學(xué)生思考對于底數a是否需要限制,如不限制會(huì )有什么問(wèn)題出現,這樣避免了學(xué)生對于底數a范圍分類(lèi)的不清楚,也為研究指數函數的圖象做了“分類(lèi)討論”的鋪墊。
3.突出圖象的作用.在數學(xué)學(xué)習過(guò)程中,圖形始終使我們需要借助的重要輔助手段。一位數學(xué)家曾經(jīng)說(shuō)過(guò)“數離形時(shí)少直觀(guān),形離數時(shí)難入微”,而在研究指數函數的性質(zhì)時(shí),更是直接由圖象觀(guān)察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4.注意數學(xué)與生活和實(shí)踐的聯(lián)系.數學(xué)的本質(zhì)是來(lái)源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關(guān)的生活問(wèn)題,力圖使學(xué)生了解到數學(xué)的基礎學(xué)科作用,培養學(xué)生的數學(xué)應用意識。
三、學(xué)法指導
本節課是在學(xué)習完“指數”的概念和運算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個(gè)方面做了嘗試:
1.再現原有認知結構。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數的概念,幫助學(xué)生再現原有認知結構,為理解指數函數的概念做好準備。
2.領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法。在借助圖象研究指數函數的性質(zhì)時(shí)會(huì )遇到分類(lèi)討論、數形結合等基本數學(xué)思想方法,這些方法將會(huì )貫穿整個(gè)高中的數學(xué)學(xué)習。
3.在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導入、指數函數的性質(zhì)研究、例題與訓練、課內小節等教學(xué)環(huán)節中都安排了學(xué)生的討論、分組、交流等活動(dòng),讓學(xué)生變被動(dòng)的接受和記憶知識為在合作學(xué)習的樂(lè )趣中主動(dòng)地建構新知識的框架和體系,從而完成知識的內化過(guò)程。
4.注意學(xué)習過(guò)程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應用、拓展的過(guò)程中按照先易后難的順序層層遞進(jìn),讓學(xué)生感到有挑戰、有收獲,跳一跳,夠得著(zhù),不同難度的題目設計將盡可能照顧到課堂學(xué)生的個(gè)體差異。
四、程序設計
在設計本節課的教學(xué)過(guò)程中,本著(zhù)遵循學(xué)生的認知規律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程的原則,我設計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現和認識指數函數的圖象和性質(zhì)。
1.創(chuàng )設情景、導入新課
教師活動(dòng):①用電腦展示兩個(gè)實(shí)例,第一個(gè)是計算機價(jià)格下降問(wèn)題,第二個(gè)是生物中細胞的例子,②將學(xué)生按奇數列、偶數列分組。
學(xué)生活動(dòng):①分別寫(xiě)出計算機價(jià)格y與經(jīng)過(guò)月份x的關(guān)系式和細胞個(gè)數y與次數x的關(guān)系式,并互相交流;②回憶指數的概念;③歸納指數函數的概念;④分析出對指數函數底數討論的必要性以及分類(lèi)的方法。
設計意圖:通過(guò)生活實(shí)例激發(fā)學(xué)生的學(xué)習動(dòng)機,,掃清由概念不清而造成的知識障礙,培養學(xué)生思維的主動(dòng)性,為突破難點(diǎn)做好準備;
2.啟發(fā)誘導、探求新知
教師活動(dòng):①給出兩個(gè)簡(jiǎn)單的指數函數并要求學(xué)生畫(huà)它們的圖象②在準備好的小黑板上規范地畫(huà)出這兩個(gè)指數函數的圖象③板書(shū)指數函數的性質(zhì)。
學(xué)生活動(dòng):①畫(huà)出兩個(gè)簡(jiǎn)單的指數函數圖象②交流、討論③歸納出研究函數性質(zhì)涉及的方面④總結出指數函數的性質(zhì)。
設計意圖:讓學(xué)生動(dòng)手作簡(jiǎn)單的指數函數的圖象對深刻理解本節課的內容有著(zhù)一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進(jìn)一步規范學(xué)生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學(xué)生就會(huì )很自然的通過(guò)觀(guān)察圖象總結出指數函數的性質(zhì),同時(shí)對于底數的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動(dòng):①板書(shū)例1②板書(shū)例2第一問(wèn)③介紹有關(guān)考古的拓展知識。
高中數學(xué)說(shuō)課稿12
各位教師:
今天我說(shuō)課的題目是《必修》4第二章第二單元中“平面向量的線(xiàn)性運算”的第一節課《向量的加法》,我從以下幾個(gè)方面闡述本課的教學(xué)設計。
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線(xiàn)性運算”的第一節課。本節內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時(shí)。向量的加法是向量的線(xiàn)性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
二、學(xué)情分析:
學(xué)生在上節課中學(xué)習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動(dòng),這是學(xué)習本節內容的基礎。學(xué)生對數的運算了如指掌,并且在物理中學(xué)過(guò)力的合成、位移的合成等矢量的加法,所以向量的加法可通過(guò)類(lèi)比數的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準確把握兩個(gè)加法法則的特點(diǎn)。
三、教學(xué)目的:
1、通過(guò)對向量加法的探究,使學(xué)生掌握向量加法的概念,結合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì )向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個(gè)已知向量的和向量。
2、在應用活動(dòng)中,理解向量加法滿(mǎn)足交換律和結合律以及表述兩個(gè)運算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線(xiàn)向量,共起點(diǎn)向量、共終點(diǎn)向量等。
3、通過(guò)本節的學(xué)習,培養學(xué)生類(lèi)比、遷移、分類(lèi)、歸納等數學(xué)方面的能力。
四、教學(xué)重、難點(diǎn)
重點(diǎn):向量的加法法則。探究向量的加法法則并正確應用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡(jiǎn)便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點(diǎn):對三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認識到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線(xiàn)段之間必須構成三角形。
五、教學(xué)方法
本節采用以下教學(xué)方法:1、類(lèi)比:由數的加法運算類(lèi)比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀(guān)察圖形得出三角形法則,探求共線(xiàn)向量的加法,發(fā)現三角形法則適用于任意向量相加;通過(guò)圖形,觀(guān)察得出向量加法滿(mǎn)足交換律、結合律等,這些都體現探究式教學(xué)法的運用。3、講解與練習:對兩個(gè)法則特點(diǎn)的分析,例題都采取了引導與講解的方法,學(xué)生課堂完成教材中的練習。4、多媒體技術(shù)的運用,能直觀(guān)地表現向量的平移,相等向量的意義,更能說(shuō)清兩個(gè)法則的幾何意義及運算律。
六、數學(xué)思想的體現:
1、分類(lèi)的思想:總的來(lái)說(shuō)本課中向量的加法分為不共線(xiàn)向量及共線(xiàn)向量?jì)煞N形式,共線(xiàn)向量又分為方向相同與方向相反兩種情形,然后專(zhuān)門(mén)對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線(xiàn)索清楚。
2、類(lèi)比思想:使之與數的加法進(jìn)行類(lèi)比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺(jué),又能從對比中看出兩者的不同,效果較好。
3、歸納思想:主要體現在以下三個(gè)環(huán)節①學(xué)完平行四邊形法則和三角形法則后,歸納總結,對不共線(xiàn)向量相加,兩個(gè)法則都可以選用。②由共線(xiàn)向量的加法總結出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線(xiàn)向量相加。③對向量加法的結合律和探討中,又使學(xué)生發(fā)現了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節中的運用,使得學(xué)生對兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。
七、教學(xué)過(guò)程:
1、回顧舊知:本節要進(jìn)行向量的平移,且對向量加法分共線(xiàn)與不共線(xiàn)兩種情況,所以要復習向量、相等向量、共線(xiàn)向量等概念,這些都是新課學(xué)習中必要的知識鋪墊。
2、引入新課:
。1)平行四邊形法則的引入。
學(xué)生在物理學(xué)中雖然接觸過(guò)位移的合成,但是并沒(méi)有形成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過(guò),很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,但是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒(méi)有深刻的認識,易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線(xiàn)段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要通過(guò)講解例1,使學(xué)生認識到可以通過(guò)平移向量,使表示兩個(gè)向量的有向線(xiàn)段有共同的起點(diǎn)。這一點(diǎn)對理解及運用法則求兩向量的和很重要。
設計意圖:本著(zhù)從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點(diǎn),用學(xué)生熟知的方法來(lái)解決新的問(wèn)題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的“起點(diǎn)相同”這一特點(diǎn)的認識,例1的講解使學(xué)生認識到當表示向量的有向線(xiàn)段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。
。2)三角形法則的引入。三角形法則沒(méi)有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。
所以這種把兩個(gè)向量相加的方法稱(chēng)為三角形法則。接下來(lái)用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過(guò)程對學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來(lái)做。
這時(shí),總結出兩個(gè)不共線(xiàn)向量求和時(shí),平行四邊形法則與三角形法則都可以用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認識到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),而且銜接自然,能夠使學(xué)生對比地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對兩個(gè)法則的特點(diǎn)有較深刻的印象。
。3)共線(xiàn)向量的加法
方向相同的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)較易完成,“將它們接在一起,取它們的方向及長(cháng)度之和,作為和向量的方向與長(cháng)度!币龑W(xué)生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。
方向相反的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過(guò)有理數加法中的異號兩數相加:“異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號!鳖(lèi)比異號兩數相加,他們會(huì )用較長(cháng)的模減去較短的模,方向取模較長(cháng)的向量的方向。具體做法由老師引導學(xué)生嘗試運用三角形法則去做,發(fā)現結論正確。
反思過(guò)程,學(xué)生自然會(huì )想到方向相同的兩個(gè)向量相加,類(lèi)似于同號兩數相加。這說(shuō)明兩個(gè)共線(xiàn)向量相加依然可用三角形法則。對有如下規定:
+
=
+
=
通過(guò)以上幾個(gè)環(huán)節的討論,可以作個(gè)簡(jiǎn)單的小結:兩個(gè)不共線(xiàn)向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線(xiàn)向量相加在本課所學(xué)方法中只能用三角形法則,說(shuō)明三角形法則適用于任意兩個(gè)向量相加。
設計意圖:通過(guò)對共線(xiàn)向量加法的探討,拓寬了學(xué)生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類(lèi)比的方法,使學(xué)生對共線(xiàn)向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,可以化解難點(diǎn)。
。4)向量加法的運算律
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角形法則得出,理解起來(lái)沒(méi)什么困難,再一次強化了學(xué)生對兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認識。
、诮Y合律:結合律是通過(guò)三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結果相同。
接下來(lái)是對應的兩個(gè)練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來(lái)方便,從后面的練習中學(xué)生能夠體會(huì )到這點(diǎn)。由結合律還使學(xué)生發(fā)現,多個(gè)向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。
3、小結
先由學(xué)生小結,檢查學(xué)生對本課重要知識的認識,也給學(xué)生一個(gè)概括本節知識的機會(huì ),然后用課件展示小結內容,使學(xué)生印象更深。
。1)平行四邊形法則:起點(diǎn)相同,適用于不共線(xiàn)向量的求和。
。2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。
。3)運算律
交換律:
+
=
+
結合律:(
+
。+
=
+(
+
。
4、作業(yè):P91,A組1、2、3。
《向量的加法》評課稿
本節所授內容基本與原先設想一致,評略得當,重點(diǎn)突出,難點(diǎn)化解。在兩個(gè)加法則的引入、講解及運用的處理方法、時(shí)間安排都把握得比較好,能夠引導學(xué)生積極主動(dòng)地探索平行四邊形法則和三角形法則,使學(xué)生對兩個(gè)加法法則形成了正確的認識,留下了深刻的印象,通過(guò)反饋練習,可以看出學(xué)生對兩個(gè)法則的運用掌握的比較好,比較完整地實(shí)現了教學(xué)目標。
本節課的教學(xué)方法運用比較合理:采取了類(lèi)比、探究、講練結合及多媒體技術(shù)等多種方法。對數學(xué)課來(lái)說(shuō),本節課最顯著(zhù)的特點(diǎn)是將全部板書(shū)都移到了課件上,對我來(lái)說(shuō),是一次嘗試,因為以前,我認為數學(xué)課沒(méi)必要用課件,對全部利用課件上課更是不能接受。但是這次講課改變了我的看法。從學(xué)生的反饋情況來(lái)看,這樣處理對教學(xué)效果沒(méi)有什么不良影響,反而使學(xué)生能更直觀(guān)地理解兩個(gè)加法法則和運算律,通過(guò)課件中的向量的平移,加深了學(xué)生對上節課所學(xué)的“相等向量”的概念的理解,也加大了課堂容量,還沒(méi)有擁擠之感。從學(xué)生對內容小結的敘述看,沒(méi)有板書(shū),并沒(méi)有妨礙本節內容在學(xué)生腦海中留下的印象。原先的設計中,板書(shū)設計也有,打在教案的后面。
通過(guò)這節課的講授,我收獲很多:首先,從課程的構思上,沒(méi)有按照教參建議及網(wǎng)上普遍的編排方法先講三角形法則,而是先由學(xué)生學(xué)過(guò)的力的合成引入了平行四邊形法則,由此又引入三角形法則,效果也不錯?梢(jiàn),對教材的處理確實(shí)要根據學(xué)生情況,靈活裁剪,不能生搬硬套。
其次,通過(guò)這節課我感到,對有些與圖形聯(lián)系較多的課程,使用課件講解簡(jiǎn)便易行,關(guān)鍵是要根據教學(xué)設計制作合適的課件,并且合理使用。
本節缺憾也很多。首先,學(xué)生活動(dòng)還是偏少,沒(méi)有充分、全面地調動(dòng)學(xué)生熱情。其次,語(yǔ)言不夠精煉,有時(shí)比較啰嗦,也耽誤了時(shí)間,第三,學(xué)生發(fā)言時(shí),好打斷學(xué)生,總覺(jué)得學(xué)生說(shuō)得不清楚,搶學(xué)生話(huà)頭,打擊了學(xué)生課堂參與的積極性,很不好。
以上是我對這節課的反思,不到之處,請大家指點(diǎn)。
高中數學(xué)說(shuō)課稿13
一、教材地位與作用
本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識非常重要。
二、學(xué)情分析
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數,特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問(wèn)題,就比較困難。
教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。
根據我的教學(xué)內容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標
教學(xué)目標分析:
知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。
能力目標:探索正弦定理的證明過(guò)程,用歸納法得出結論。
情感目標:通過(guò)推導得出正弦定理,讓學(xué)生感受數學(xué)公式的整潔對稱(chēng)美和數學(xué)的實(shí)際應用價(jià)值。
三、教法學(xué)法分析
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
學(xué)法:指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,動(dòng)手嘗試相結合,增強學(xué)生由特殊到一般的數學(xué)思維能力,鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
(一)創(chuàng )設情境,布疑激趣
“興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。
2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。
3.讓學(xué)生總結實(shí)驗結果,得出猜想:
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明。
(四)歸納總結,簡(jiǎn)單應用
1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。
2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
3.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。
(七)小結反思,提高認識
通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會(huì )?
1.用向量證明了正弦定
理,體現了數形結合的數學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。
(從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現正弦定理不適用了,那么自然過(guò)渡到下一節內容,余弦定理。布置作業(yè),預習下一節內容。
高中數學(xué)說(shuō)課稿14
一、說(shuō)教材
1.從在教材中的地位與作用來(lái)看
《等比數列的前n項和》是數列這一章中的一個(gè)重要內容,它不僅在現實(shí)生活中有著(zhù)廣泛的實(shí)際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習和工作中必備的數學(xué)素養.
2.從學(xué)生認知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節內容與等差數列前n項和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著(zhù)本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯.
3.學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.
4.重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導、公式的特點(diǎn)和公式的運用.
教學(xué)難點(diǎn):公式的推導方法和公式的靈活運用.
公式推導所使用的“錯位相減法”是高中數學(xué)數列求和方法中最常用的方法之一,它蘊含了重要的數學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).
二、說(shuō)目標
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過(guò)程、公式的特點(diǎn),在此基礎上能初步應用公式解決與之有關(guān)的問(wèn)題.
過(guò)程與方法目標:
通過(guò)對公式推導方法的探索與發(fā)現,向學(xué)生滲透特殊到一般、類(lèi)比與轉化、分類(lèi)討論等數學(xué)思想,培養學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態(tài)度價(jià)值觀(guān):
通過(guò)對公式推導方法的探索與發(fā)現,優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉化和理論聯(lián)系實(shí)際的辯證唯物主義觀(guān)點(diǎn).
三、說(shuō)過(guò)程
學(xué)生是認知的主體,設計教學(xué)過(guò)程必須遵循學(xué)生的認知規律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程,結合本節課的特點(diǎn),我設計了如下的教學(xué)過(guò)程:
1.創(chuàng )設情境,提出問(wèn)題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當時(shí)的印度國王大為贊賞,對他說(shuō):我可以滿(mǎn)足你的任何要求.西薩說(shuō):請給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數學(xué)家計算,結果出來(lái)后,國王大吃一驚.為什么呢?
設計意圖:設計這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調動(dòng)學(xué)習的積極性.故事內容緊扣本節課的主題與重點(diǎn).
此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導學(xué)生寫(xiě)出麥?倲.帶著(zhù)這樣的問(wèn)題,學(xué)生會(huì )動(dòng)手算了起來(lái),他們想到用計算器依次算出各項的值,然后再求和.這時(shí)我對他們的這種思路給予肯定.
設計意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉過(guò)彎來(lái),因而在教學(xué)中應舍得花時(shí)間營(yíng)造知識形成過(guò)程的氛圍,突破學(xué)生學(xué)習的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆.
2.師生互動(dòng),探究問(wèn)題
在肯定他們的思路后,我接著(zhù)問(wèn):1,2,22,…,263是什么數列?有何特征?應歸結為什么數學(xué)問(wèn)題呢?
探討1:,記為(1)式,注意觀(guān)察每一項的特征,有何聯(lián)系?(學(xué)生會(huì )發(fā)現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現?
設計意圖:留出時(shí)間讓學(xué)生充分地比較,等比數列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應著(zhù)力在這兒做文章,從而抓住培養學(xué)生的辯證思維能力的良好契機.
經(jīng)過(guò)比較、研究,學(xué)生發(fā)現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經(jīng)過(guò)繁難的計算之苦后,突然發(fā)現上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗,從而增強學(xué)習數學(xué)的興趣和學(xué)好數學(xué)的信心.
3.類(lèi)比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢引導學(xué)生將結論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個(gè)別學(xué)生進(jìn)行指導.
設計意圖:在教師的指導下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習的愉快和成就感.
對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時(shí)是什么數列?此時(shí)sn=?(這里引導學(xué)生對q進(jìn)行分類(lèi)討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎.)
再次追問(wèn):結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導學(xué)生得出公式的另一形式)
設計意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對知識的認識,完善知識結構,另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷χR的主動(dòng)認識,從而進(jìn)一步提高分析、類(lèi)比和綜合的能力.這一環(huán)節非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話(huà),然而卻有畫(huà)龍點(diǎn)睛之妙用.
4.討論交流,延伸拓展
高中數學(xué)說(shuō)課稿15
一、教材分析
集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。
本節課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。
二、教學(xué)目標
1、學(xué)習目標
。1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合之間的關(guān)系以及理解“屬
于”關(guān)系;
。2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;
2、能力目標
。1)能夠把一句話(huà)一個(gè)事件用集合的方式表示出來(lái)。
。2)準確理解集合與及集合內的元素之間的關(guān)系。
3、情感目標
通過(guò)本節的把實(shí)際事件用集合的方式表示出來(lái),從而培養數學(xué)敏感性,了 解到數學(xué)于生活中。
三、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn) 集合的基本概念與表示方法;
難點(diǎn) 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;
四、教學(xué)方法
。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養,后進(jìn)生也有所收獲的效果;
。2)學(xué)生在老師的引導下,通過(guò)閱讀教材,自主學(xué)習、思考、交流、討論和概括,從而完成本節課的教學(xué)目標。
五、學(xué)習方法
。1)主動(dòng)學(xué)習法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認識的同時(shí),
教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識,培養學(xué)生思維想象 的綜合能力。
。2)反饋補救法:在練習中,注意觀(guān)察學(xué)生對學(xué)習的反饋情況,以實(shí)現“培
優(yōu)扶差,滿(mǎn)足不同!
六、教學(xué)思路
具體的思路如下
復習的引入:講一些集合的相關(guān)數學(xué)及相關(guān)數學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數學(xué)史從何使學(xué)生對數學(xué)更加感興趣,有助于上課的效率!因為時(shí)間關(guān)系這里我就不說(shuō)相關(guān)數學(xué)史咯。
一、 引入課題
軍訓前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓動(dòng)員;試問(wèn)這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習一個(gè)新的概念——集合,即是一些研究對象的總體。
二、 正體部分
學(xué)生閱讀教材,并思考下列問(wèn)題:
。1)集合有那些概念?
。2)集合有那些符號?
。3)集合中元素的特性是什么?
。4)如何給集合分類(lèi)?
(一)集合的有關(guān)概念
。1)對象:我們可以感覺(jué)到的客觀(guān)存在以及我們思想中的事物或抽象符號,
都可以稱(chēng)作對象.
。2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說(shuō)這個(gè)整體是由
這些對象的全體構成的集合.
。3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素.
集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、??元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、??
1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,
對學(xué)生的例子予以討論、點(diǎn)評,進(jìn)而講解下面的問(wèn)題。
2、元素與集合的關(guān)系
。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A
。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作a?A
要注意“∈”的方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě). (舉例)
集合A={3,4,6,9}a=2 因此我們知道a?A
3、集合中元素的特性
。1)確定性:給定一個(gè)集合,任何對象是不是這個(gè)集合的元素是確定的了.
。2)互異性:集合中的元素一定是不同的.
。3)無(wú)序性:集合中的元素沒(méi)有固定的順序.
4、集合分類(lèi)
根據集合所含元素個(gè)屬不同,可把集合分為如下幾類(lèi):
。1)把不含任何元素的集合叫做空集Ф
。2)含有有限個(gè)元素的集合叫做有限集
。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集
注:應區分?,{?},{0},0等符號的含義
5、常用數集及其表示方法
。1)非負整數集(自然數集):全體非負整數的集合.記作N
。2)正整數集:非負整數集內排除0的集.記作N*或N+
。3)整數集:全體整數的集合.記作Z
。4)有理數集:全體有理數的集合.記作Q
。5)實(shí)數集:全體實(shí)數的集合.記作R
注:(1)自然數集包括數0.
。2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排
除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*
(二)集合的表示方法
我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。
。1) 列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
例1.(課本例1)
思考2,引入描述法
說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。
。2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號{}內。 具體方法:在大括號內先寫(xiě)上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫(huà)一條豎線(xiàn),在豎線(xiàn)后寫(xiě)出這個(gè)集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2.(課本例2)
說(shuō)明:(課本P5最后一段)
思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數}。下列寫(xiě)法{實(shí)數集},{R}也是錯誤的。
說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應該根據具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。
(三)課堂練習(課本P6練習)
三、 歸納小結與作業(yè)
本節課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結合實(shí)例對集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書(shū)面作業(yè):習題1.1,第1- 4題
【高中數學(xué)說(shuō)課稿】相關(guān)文章:
高中數學(xué)的說(shuō)課稿11-04
高中數學(xué)集合說(shuō)課稿11-12
高中數學(xué)實(shí)驗說(shuō)課稿11-26
高中數學(xué)必修說(shuō)課稿11-25
高中數學(xué)面試說(shuō)課稿11-18
高中數學(xué)的優(yōu)秀說(shuō)課稿12-04
高中數學(xué)全套說(shuō)課稿12-05