激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频

《探索勾股定理》初中數學(xué)說(shuō)課稿

時(shí)間:2022-11-11 14:20:17 初中說(shuō)課稿 我要投稿

《探索勾股定理》初中數學(xué)說(shuō)課稿

  作為一名無(wú)私奉獻的老師,可能需要進(jìn)行說(shuō)課稿編寫(xiě)工作,說(shuō)課稿有助于學(xué)生理解并掌握系統的知識。那么什么樣的說(shuō)課稿才是好的呢?下面是小編整理的《探索勾股定理》初中數學(xué)說(shuō)課稿,僅供參考,大家一起來(lái)看看吧。

《探索勾股定理》初中數學(xué)說(shuō)課稿

《探索勾股定理》初中數學(xué)說(shuō)課稿1

  一、 教材分析

 。ㄒ唬┙滩乃幍牡匚

  這節課是九年制義務(wù)教育課程標準實(shí)驗教科書(shū)八年級第一章第一節探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數量關(guān)系。它在數學(xué)的發(fā)展中起過(guò)重要的作用,在現時(shí)世界中也有著(zhù)廣泛的作用。學(xué)生通過(guò)對勾股定理的學(xué)習,可以在原有的基礎上對直角三角形有進(jìn)一步的認識和理解。

 。ǘ└鶕n程標準,本課的教學(xué)目標是:

  1、 能說(shuō)出勾股定理的內容。

  2、 會(huì )初步運用勾股定理進(jìn)行簡(jiǎn)單的計算和實(shí)際運用。

  3、 在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀(guān)察—猜想—歸納—驗證”的數學(xué)思想,并體會(huì )數形結合和特殊到一般的思想方法。

  4、 通過(guò)介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛(ài)祖國,熱愛(ài)祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習。

 。ㄈ┍菊n的教學(xué)重點(diǎn):探索勾股定理

  本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計算。

  二、教法與學(xué)法分析:

  教法分析:針對初二年級學(xué)生的知識結構和心理特征,本節課可選擇引導探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題—實(shí)驗操作—歸納驗證—問(wèn)題解決—課堂小結—布置作業(yè)六部分。

  學(xué)法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學(xué)習方式,讓學(xué)生思考問(wèn)題,獲取知識,掌握方法,借此培養學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習的主體。

  三、 教學(xué)過(guò)程設計

 。ㄒ唬┨岢鰡(wèn)題:

  首先創(chuàng )設這樣一個(gè)問(wèn)題情境:某樓房三樓失火,消防隊員趕來(lái)救火,了解到每層樓高3米,消防隊員取來(lái)6.5米長(cháng)的云梯,如果梯子的底部離墻基的距離是2.5米,請問(wèn)消防隊員能否進(jìn)入三樓滅火?問(wèn)題設計具有一定的挑戰性,目的是激發(fā)學(xué)生的探究欲望,教師引導學(xué)生將實(shí)際問(wèn)題轉化成數學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問(wèn)題。學(xué)生會(huì )感到困難,從而教師指出學(xué)習了今天這一課后就有辦法解決了。這種以實(shí)際問(wèn)題為切入點(diǎn)引入新課,不僅自然,而且反映了數學(xué)來(lái)源于實(shí)際生活,數學(xué)是從人的需要中產(chǎn)生這一認識的基本觀(guān)點(diǎn),同時(shí)也體現了知識的發(fā)生過(guò)程,而且解決問(wèn)題的過(guò)程也是一個(gè)“數學(xué)化”的過(guò)程。

 。ǘ⿲(shí)驗操作:

  1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問(wèn)題,讓學(xué)生計算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過(guò)直接數小方格的個(gè)數,還是將C劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都應予于肯定,并鼓勵學(xué)生用語(yǔ)言進(jìn)行表達,引導學(xué)生發(fā)現正方形A,B,C的面積之間的數量關(guān)系,從而學(xué)生通過(guò)正方形面積之間的關(guān)系容易發(fā)現對于等腰直角三角形而言滿(mǎn)足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數學(xué)學(xué)習的過(guò)程,也有利于培養學(xué)生的語(yǔ)言表達能力,體會(huì )數形結合的思想。

  2、接著(zhù)讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預先準備的方格紙上畫(huà)出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現對于一般的`以整數為邊長(cháng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點(diǎn),而且為歸納結論打下了基礎,讓學(xué)生體會(huì )到觀(guān)察、猜想、歸納的思想,也讓學(xué)生的分析問(wèn)題和解決問(wèn)題的能力在無(wú)形中得到了提高,這對后面的學(xué)習及有幫助。

  3、給出一個(gè)邊長(cháng)為0.5,1.2,1.3,這種含小數的直角三角形,讓學(xué)生計算是否也滿(mǎn)足這個(gè)結論,設計的目的是讓學(xué)生體會(huì )到結論更具有一般性。

 。ㄈw納驗證:

  1、歸納 通過(guò)對邊長(cháng)為整數的等腰直角三角形到一般直角三角形再到邊長(cháng)含小數的直角三角形三邊關(guān)系的研究,讓學(xué)生用數學(xué)語(yǔ)言概括出一般的結論,盡管學(xué)生可能講的不完全正確,但對于培養學(xué)生運用數學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結論要好的多。

  2、驗證 為了讓學(xué)生確信結論的正確性,引導學(xué)生在紙上任意作一個(gè)直角三角形,通過(guò)測量、計算來(lái)驗證結論的正確性。這一過(guò)程有利于培養學(xué)生嚴謹、科學(xué)的學(xué)習態(tài)度。然后引導學(xué)生用符號語(yǔ)言表示,因為將文字語(yǔ)言轉化為數學(xué)語(yǔ)言是學(xué)習數學(xué)學(xué)習的一項基本能力。接著(zhù)教師向學(xué)生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向學(xué)生介紹古今中外對勾股定理的研究,對學(xué)生進(jìn)行愛(ài)國主義教育。

 。ㄋ模﹩(wèn)題解決:

  讓學(xué)生解決開(kāi)頭的實(shí)際問(wèn)題,前后呼應,學(xué)生從中能體會(huì )到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì )勾股定理在實(shí)際生活中的應用,數學(xué)是與實(shí)際生活緊密相連的。

 。ㄎ澹┱n堂小結:

  主要通過(guò)學(xué)生回憶本節課所學(xué)內容,從內容、應用、數學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結,后由教師總結。

 。┎贾米鳂I(yè):

  課本P6習題1.1 1,2,3,4一方面鞏固勾股定理,另一方面進(jìn)一步體會(huì )定理與實(shí)際生活的聯(lián)系。另外,補充一道開(kāi)放題。

  四、 設計說(shuō)明

  1、本節課是公式課,根據學(xué)生的知識結構,我采用的教學(xué)流程是:提出問(wèn)題—實(shí)驗操作—歸納驗證—問(wèn)題解決—課堂小結—布置作業(yè)六部分,這一流程體現了知識發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì )到觀(guān)察、猜想、歸納、驗證的思想和數形結合的思想。

  2、探索定理采用了面積法,引導學(xué)生利用實(shí)驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的研究,得出結論。這種方法是認識事物規律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對學(xué)生的終身發(fā)展也有一定的作用。

  3、關(guān)于練習的設計,除兩個(gè)實(shí)際問(wèn)題和課本習題以外,我準備設計一道開(kāi)放題,大致思路是在已畫(huà)出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線(xiàn)段之間的關(guān)系。

  4、本課小結從內容,應用,數學(xué)思想方法,獲取知識的途徑等幾個(gè)方面展開(kāi),既有知識的總結,又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識的意識是有很大的促進(jìn)的。

《探索勾股定理》初中數學(xué)說(shuō)課稿2

  一、教材分析

 。ㄒ唬┙滩牡匚

  這節課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數量關(guān)系。它在數學(xué)的發(fā)展中起過(guò)重要的作用,在現時(shí)世界中也有著(zhù)廣泛的作用。學(xué)生通過(guò)對勾股定理的學(xué)習,可以在原有的基礎上對直角三角形有進(jìn)一步的認識和理解。

 。ǘ┙虒W(xué)目標

  1、知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。

  2、過(guò)程與方法:經(jīng)歷探索及驗證勾股定理的過(guò)程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動(dòng)探究的習慣,感受數形結合和從特殊到一般的思想。

  3、情感態(tài)度與價(jià)值觀(guān): 激發(fā)學(xué)生愛(ài)國熱情,讓學(xué)生體驗自己努力得到結論的成就感,體驗數學(xué)充滿(mǎn)探索和創(chuàng )造,體驗數學(xué)的美感,從而了解數學(xué),喜歡數學(xué)。

 。ㄈ┙虒W(xué)重點(diǎn)

  經(jīng)歷探索及驗證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗,讓學(xué)生在實(shí)驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析

  學(xué)情分析:

  七年級學(xué)生已經(jīng)具備一定的觀(guān)察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來(lái)解決問(wèn)題的意識和能力還不夠。

  另外,學(xué)生普遍學(xué)習積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強.

  教法分析:

  結合七年級學(xué)生和本節教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境————建立模型————解釋?xiě)谩卣轨柟獭钡哪J剑?選擇引導探索法。

  把教學(xué)過(guò)程轉化為學(xué)生親身觀(guān)察,大膽猜想,自主探究,合作交流,歸納總結的過(guò)程。

  學(xué)法分析:在教師的組織引導下,學(xué)生采用自主探究合作交流的研討式學(xué)習方式,使學(xué)生真正成為學(xué)習的主人。

  三、教學(xué)過(guò)程設計

 。ㄒ唬﹦(chuàng )設情境,提出問(wèn)題

 。1)圖片欣賞勾股定理數形圖

  1955年希臘發(fā)行美麗的勾股樹(shù)

  20xx年國際數學(xué)的一枚紀念郵票

  大會(huì )會(huì )標

  設計意圖:通過(guò)圖形欣賞,感受數學(xué)美,感受勾股定理的文化價(jià)值。

 。2)某樓房三樓失火,消防隊員趕來(lái)救火,了解到每層樓高3米,消防隊員取來(lái)6。5米長(cháng)的云梯,如果梯子的底部離墻基的距離是2。5米,請問(wèn)消防隊員能否進(jìn)入三樓滅火?

  設計意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現了知識的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數學(xué)化”的過(guò)程,從而引出下面的環(huán)節。

 。ǘ⿲(shí)驗操作模型構建

  1、等腰直角三角形(數格子)

  2、一般直角三角形(割補)

  問(wèn)題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設計意圖:這樣做利于學(xué)生參與探索,利于培養學(xué)生的語(yǔ)言表達能力,體會(huì )數形結合的思想。

  問(wèn)題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補法是本節的難點(diǎn),組織學(xué)生合作交流)

  設計意圖:不僅有利于突破難點(diǎn),而且為歸納結論打下基礎,讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。

  通過(guò)以上實(shí)驗歸納總結勾股定理。

  設計意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗了從特殊—— 一般的認知規律。

 。ㄈ┗貧w生活應用新知

  讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應,增強學(xué)生學(xué)數學(xué)、用數學(xué)的意識,增加學(xué)以致用的樂(lè )趣和信心。

 。ㄋ模┲R拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習,照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識的運用得到升華。

  基礎題: 直角三角形的一直角邊長(cháng)為3,斜邊為5,另一直角邊長(cháng)為X,你可以根據條件提出多少個(gè)數學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設計意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng )設情境 ,鍛煉了發(fā)散思維。

  情境題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長(cháng)和46厘米寬,他覺(jué)得一定是售貨員搞錯了。你同意他的想法嗎?

  設計意圖:增加學(xué)生的生活常識,也體現了數學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長(cháng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(cháng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識說(shuō)明。

  設計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

 。ㄎ澹└形蚴斋@布置作業(yè)

  這節課你的收獲是什么?

  作業(yè):

  1、課本習題2.1

  2、搜集有關(guān)勾股定理證明的資料。

  四、板書(shū)設計

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設計說(shuō)明:

  1、探索定理采用面積法,為學(xué)生創(chuàng )設一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì )數形結合及從特殊到一般的思想方法。

  2、讓學(xué)生人人參與,注重對學(xué)生活動(dòng)的評價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現出來(lái)的思維水平、表達水平。

  圖文搜集自網(wǎng)絡(luò ),如有侵權,請聯(lián)系刪除。

  鐵樹(shù)老師面試輔導,喜馬拉雅app—主播—教師面試大雜燴

【《探索勾股定理》初中數學(xué)說(shuō)課稿】相關(guān)文章:

初中數學(xué)說(shuō)課稿《探索勾股定理》10-14

探索勾股定理初中數學(xué)說(shuō)課稿11-16

初中數學(xué)《勾股定理》說(shuō)課稿06-25

初中數學(xué)勾股定理說(shuō)課稿11-05

初中數學(xué)《勾股定理》說(shuō)課稿范文11-22

初中數學(xué)說(shuō)課稿:勾股定理10-15

初中數學(xué)說(shuō)課稿勾股定理12-21

勾股定理的初中數學(xué)說(shuō)課稿01-09

初中數學(xué)獲獎?wù)f(shuō)課稿《勾股定理》范文04-29

初中數學(xué)《勾股定理的逆定理》說(shuō)課稿11-22

激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频