高中數學(xué)說(shuō)課稿(通用16篇)
作為一名專(zhuān)為他人授業(yè)解惑的人民教師,常常要寫(xiě)一份優(yōu)秀的說(shuō)課稿,借助說(shuō)課稿可以更好地提高教師理論素養和駕馭教材的能力。那么說(shuō)課稿應該怎么寫(xiě)才合適呢?下面是小編幫大家整理的高中數學(xué)說(shuō)課稿,僅供參考,歡迎大家閱讀。
高中數學(xué)說(shuō)課稿 1
各位評委老師,大家好!
我是本科數學(xué)xx號選手,今天我要進(jìn)行說(shuō)課的課題是高中數學(xué)必修一第一章第三節第一課時(shí)《函數單調性與最大(。┲怠罚ǹ梢栽谶@時(shí)候板書(shū)課題,以緩解緊張)。我將從教材分析;教學(xué)目標分析;教法、學(xué)法;教學(xué)過(guò)程;教學(xué)評價(jià)五個(gè)方面來(lái)陳述我對本節課的設計方案。懇請在座的專(zhuān)家評委批評指正。
一、教材分析
1、教材的地位和作用
。1)本節課主要對函數單調性的學(xué)習;
。2)它是在學(xué)習函數概念的基礎上進(jìn)行學(xué)習的,同時(shí)又為基本初等函數的學(xué)習奠定了基礎,所以他在教材中起著(zhù)承前啟后的重要作用;(可以看看這一課題的前后章節來(lái)寫(xiě))
。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題
。ǜ鶕唧w的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問(wèn)題就刪掉)
2、教材重、難點(diǎn)
重點(diǎn):函數單調性的定義
難點(diǎn):函數單調性的證明
重難點(diǎn)突破:在學(xué)生已有知識的基礎上,通過(guò)認真觀(guān)察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現重難點(diǎn)突破。(這個(gè)必須要有)
3.學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節總是創(chuàng )設恰當的問(wèn)題情境,引導學(xué)生積極思考,培養他們的邏輯思維能力。從學(xué)生的認知結構來(lái)看,他們只能根據函數的圖象觀(guān)察出“隨著(zhù)自變量的增大函數值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數圖象的直觀(guān)性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統性、嚴謹性,在教學(xué)中注意加強。
二、教學(xué)目標
知識目標:
。1)函數單調性的定義
。2)函數單調性的證明
能力目標:
培養學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復雜,由特殊到一般的化歸思想
情感目標:
培養學(xué)生勇于探索的精神和善于合作的意識
。ㄟ@樣的教學(xué)目標設計更注重教學(xué)過(guò)程和情感體驗,立足教學(xué)目標多元化)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無(wú)定法”,只有方法得當才會(huì )有效。新課程標準之處教師是教學(xué)的組織者、引導者、合作者,在教學(xué)過(guò)程要充分調動(dòng)學(xué)生的積極性、主動(dòng)性。本著(zhù)這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價(jià)法
2、學(xué)法分析
“授人以魚(yú),不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀(guān)察發(fā)現法、合作交流法、歸納總結法。
。ㄇ叭糠钟脮r(shí)控制在三分鐘以?xún),可適當刪減)
四、教學(xué)過(guò)程
1、以舊引新,導入新知
通過(guò)課前小研究讓學(xué)生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀(guān)察函數圖象的特點(diǎn),總結歸納。通過(guò)課上小組討論歸納,引導學(xué)生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線(xiàn)上升的`,而二次函數f(x)=x^2的圖像是一個(gè)曲線(xiàn),在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來(lái)更自然)
2、創(chuàng )設問(wèn)題,探索新知
緊接著(zhù)提出問(wèn)題,你能用二次函數f(x)=x^2表達式來(lái)描述函數在(-∞,0)的圖像?教師總結,并板書(shū),揭示函數單調性的定義,并注意強調可以利用作差法來(lái)判斷這個(gè)函數的單調性。
讓學(xué)生模仿剛才的表述法來(lái)描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規范學(xué)生的數學(xué)用語(yǔ)。
讓學(xué)生自主學(xué)習函數單調區間的定義,為接下來(lái)例題學(xué)習打好基礎。
3、例題講解,學(xué)以致用
例1主要是對函數單調區間的鞏固運用,通過(guò)觀(guān)察函數定義在(—5,5)的圖像來(lái)找出函數的單調區間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評來(lái)糾正答案,檢查學(xué)生對函數單調區間的掌握。強調單調區間一般寫(xiě)成半開(kāi)半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習效果。
例2是將函數單調性運用到其他領(lǐng)域,通過(guò)函數單調性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對例題進(jìn)行證明,以規范總結證明步驟。一設二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過(guò)自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學(xué)習了函數單調性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養學(xué)生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學(xué)生學(xué)習不同的數學(xué),我將采用分層布置作業(yè)的方式:一組習題1.3A組1、2、3,二組習題1.3A組2、3、B組1、2
6、板書(shū)設計
我力求簡(jiǎn)潔明了地概括本節課的學(xué)習要點(diǎn),讓學(xué)生一目了然。
。ㄟ@部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說(shuō)明學(xué)生的活動(dòng))
五、教學(xué)評價(jià)
本節課是在學(xué)生已有知識的基礎上學(xué)習的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評、互評,讓內部動(dòng)機和外界刺激協(xié)調作用,促進(jìn)其數學(xué)素養不斷提高。
高中數學(xué)說(shuō)課稿 2
今天我說(shuō)課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過(guò)程五方面逐一加以分析和說(shuō)明。
一、說(shuō)教材
1、教材的地位和作用
本節內容選自北師大版高中數學(xué)必修1,第二章第3節。函數是高中數學(xué)的課程,它是描述事物運動(dòng)變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學(xué)習奠定重要基礎。
2、學(xué)情分析
本節課的學(xué)生是高一學(xué)生,他們在初中階段,通過(guò)一次函數、二次函數、反比例函數的學(xué)習已經(jīng)對函數的增減性有了初步的感性認識。在高中階段,用符號語(yǔ)言刻畫(huà)圖形語(yǔ)言,用定量分析解釋定性結果,有利于培養學(xué)生的理性思維,為后續函數的學(xué)習作準備,也為利用倒數研究單調性的相關(guān)知識奠定了基礎。
教學(xué)目標分析
基于以上對教材和學(xué)情的分析以及新課標教學(xué)理念,我將教學(xué)目標分為以下三個(gè)部分:
1、知識與技能(1)理解函數的單調性和單調函數的意義;
。2)會(huì )判斷和證明簡(jiǎn)單函數的單調性。
2、過(guò)程與方法
。1)培養從概念出發(fā),進(jìn)一步研究性質(zhì)的意識及能力;
。2)體會(huì )數形結合、分類(lèi)討論的數學(xué)思想。
3、情感態(tài)度與價(jià)值觀(guān)
由合適的例子引發(fā)學(xué)生探求數學(xué)知識的欲望,突出學(xué)生的主觀(guān)能動(dòng)性,激發(fā)學(xué)生學(xué)習數學(xué)的興趣。
三、教學(xué)重難點(diǎn)分析
通過(guò)以上對教材和學(xué)生的分析以及教學(xué)目標,我將本節課的重難點(diǎn)
重點(diǎn):
函數單調性的概念,判斷和證明簡(jiǎn)單函數的單調性。
難點(diǎn):
1、函數單調性概念的認知
。1)自然語(yǔ)言到符號語(yǔ)言的轉化;
。2)常量到變量的轉化。
2、應用定義證明單調性的代數推理論證。
四、教法與學(xué)法分析
1、教法分析
基于以上對教材、學(xué)情的分析以及新課標的教學(xué)理念,本節課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數學(xué)在生活中的應用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養學(xué)生善于思考的能力。
2、學(xué)法分析
新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會(huì )怎樣學(xué)習,為終生學(xué)習奠定扎實(shí)的基礎。所以本節課我將引導學(xué)生通過(guò)合作交流、自主探索的方法理解函數的單調性及特征。
五、教學(xué)過(guò)程
為了更好的實(shí)現本課的三維目標,并突破重難點(diǎn),我設計以下五個(gè)環(huán)節來(lái)進(jìn)行我的教學(xué)。
。ㄒ唬┲R導入
溫故而知新,我將先從之前學(xué)習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數的圖像,然后讓學(xué)生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過(guò)程中不僅可以檢查學(xué)生掌握基本初等函數圖像的情況,而且符合學(xué)生的認知結構,通過(guò)學(xué)生自主探究,從知識產(chǎn)生、發(fā)展的過(guò)程中構建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習的積極主動(dòng)性。
。ǘ┲v授新課
1.問(wèn)題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個(gè)區間是上升的,在哪個(gè)區間是下降的?
通過(guò)學(xué)生熟悉的圖像,及時(shí)引導學(xué)生觀(guān)察,函數圖像上A點(diǎn)的運動(dòng)情況,引導學(xué)生能用自然語(yǔ)言描述出,隨著(zhù)x增大時(shí)圖像變化規律。讓學(xué)生大膽的去說(shuō),老師逐步修正、完善學(xué)生的說(shuō)法,最后給出正確答案。
2、觀(guān)察函數y=x2隨自變量x變化的情況,設置啟發(fā)式問(wèn)題:
。1)在y軸的右側部分圖象具有什么特點(diǎn)?
。2)如果在y軸右側部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當x1
。3)如何用數學(xué)符號語(yǔ)言來(lái)描述這個(gè)規律?
教師補充:這時(shí)我們就說(shuō)函數y=x2在(0,+∞)上是增函數。
。4)反過(guò)來(lái),如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?
類(lèi)似地分析圖象在y軸的左側部分。
通過(guò)對以上問(wèn)題的分析,從正、反兩方面領(lǐng)會(huì )函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的'關(guān)鍵詞,如:區間內,任意,當x1
仿照單調增函數定義,由學(xué)生說(shuō)出單調減函數的定義。
教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個(gè)區間上的局部性質(zhì),也就是說(shuō),一個(gè)函數在不同的區間上可以有不同的單調性。
。ㄎ覍⒔o出函數y=x2,并畫(huà)出這個(gè)函數的圖像,讓學(xué)生觀(guān)察函數圖像的特點(diǎn),讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個(gè)過(guò)程中,學(xué)生把對圖像的感性認識轉化為了數學(xué)關(guān)系,這種從特殊到一般的學(xué)習過(guò)程有利于學(xué)生對概念的理解)
。ㄈ╈柟叹毩
1練習1:說(shuō)出函數f(x)=的單調區間,并指明在該區間上的單調性。x
練習2:練習2:判斷下列說(shuō)法是否正確
、俣x在R上的函數f(x)滿(mǎn)足f(2)>f(1),則函數是R上的增函數。
、诙x在R上的函數f(x)滿(mǎn)足f(2)>f(1),則函數是R上不是減函數。
1③已知函數y=,因為f(-1)
1我將給出一些具體的函數,如y=,f(x)=3x+2讓學(xué)生說(shuō)出函數的單調區間,并指明在該區間x
上的單調性。通過(guò)這種練習的方式,幫助學(xué)生鞏固對知識的掌握。
。ㄋ模w納總結
我先讓學(xué)生進(jìn)行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進(jìn)行補充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習情況有一定的了解,為下一節課的教學(xué)過(guò)程做好準備。
。ㄎ澹┎贾米鳂I(yè)
必做題:習題2-3A組第2,4,5題。
選做題:習題2-3B組第2題。
新課程理念告訴我們,不同的人在數學(xué)上可以獲得不同的發(fā)展,因此要設計不同程度要求的習題。
高中數學(xué)說(shuō)課稿 3
一、說(shuō)教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類(lèi)型函數,本節課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數的概念,并進(jìn)一步體會(huì )函數是刻畫(huà)變量之間關(guān)系的數學(xué)模型,從中體會(huì )函數的模型思想。因此本節課重點(diǎn)是理解和領(lǐng)悟反比例函數的概念,所滲透的數學(xué)思想方法有:類(lèi)比,轉化,建模。
2.學(xué)情分析:對八年級學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對函數,正比例函數,一次函數的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的`一次函數時(shí),還可能存在一些思維障礙,如學(xué)生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結出反比例函數的概念,因此,本節課的難點(diǎn)是理解和領(lǐng)悟反比例函數的概念。
二、說(shuō)教學(xué)目標
根據本人對《數學(xué)課程標準》的理解與分析,考慮學(xué)生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實(shí)的情境和已有的知識經(jīng)驗出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數概念的理解。
2.經(jīng)歷抽象反比例函數概念的過(guò)程,領(lǐng)會(huì )反比例函數的意義,理解反比例函數的概念。
三、說(shuō)教法
本節課從知識結構呈現的角度看,為了實(shí)現教學(xué)目標,我建立了“創(chuàng )設情境→建立模型→解釋知識→應用知識”的學(xué)習模式,這種模式清晰地再現了知識的生成與發(fā)展的過(guò)程,也符合學(xué)生的認知規律。于是,從教學(xué)內容的性質(zhì)出發(fā),我設計了如下的課堂結構:創(chuàng )設出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現新知,把上述問(wèn)題進(jìn)行類(lèi)比,導出概念,獲得新知,最后總結評價(jià)、內化新知。
四、說(shuō)學(xué)法
我認為學(xué)生將實(shí)際問(wèn)題轉化成函數的能力是有限的,所以我借助多媒體輔助教學(xué),指導學(xué)生通過(guò)類(lèi)比、轉化、直觀(guān)形象的觀(guān)察與演示,親身經(jīng)歷函數模型的轉化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng )造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。
好學(xué)教育:
因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著(zhù)問(wèn)題的深入而跳躍。
高中數學(xué)說(shuō)課稿 4
說(shuō)教學(xué)目標
A、知識目標:
掌握等差數列前n項和公式的推導方法;掌握公式的運用。
B、能力目標:
。1)通過(guò)公式的探索、發(fā)現,在知識發(fā)生、發(fā)展以及形成過(guò)程中培養學(xué)生觀(guān)察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
。2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認知規律,讓學(xué)生在實(shí)踐中通過(guò)觀(guān)察、嘗試、分析、類(lèi)比的方法導出等差數列的求和公式,培養學(xué)生類(lèi)比思維能力。
。3)通過(guò)對公式從不同角度、不同側面的剖析,培養學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
C、情感目標:(數學(xué)文化價(jià)值)
。1)公式的發(fā)現反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。
。2)通過(guò)公式的運用,樹(shù)立學(xué)生"大眾教學(xué)"的思想意識。
。3)通過(guò)生動(dòng)具體的現實(shí)問(wèn)題,令人著(zhù)迷的數學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹(shù)立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數學(xué)的心理體驗,產(chǎn)生熱愛(ài)數學(xué)的`情感。
說(shuō)教學(xué)重點(diǎn):
等差數列前n項和的公式。
說(shuō)教學(xué)難點(diǎn):
等差數列前n項和的公式的靈活運用。
說(shuō)教學(xué)方法:
啟發(fā)、討論、引導式。
教具:
現代教育多媒體技術(shù)。
教學(xué)過(guò)程
一、創(chuàng )設情景,導入新課。
師:上幾節,我們已經(jīng)掌握了等差數列的概念、通項公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數列的前n項和公式。提起數列求和,我們自然會(huì )想到德國偉大的數學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時(shí),一次教師布置了一道數學(xué)習題:"把從1到100的自然數加起來(lái),和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計算出來(lái)的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀(guān)察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。
例1,計算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。
生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個(gè)11,得到55。
生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫(xiě)成S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+。+11=10×11=110
10個(gè)
所以我們得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學(xué)的方法相類(lèi)似。
理由是:1+100=2+99=3+98=。=50+51=101,有50個(gè)101,所以1+2+3+。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數列的哪一個(gè)性質(zhì)呢?
生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq。
二、教授新課(嘗試推導)
師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質(zhì),如何來(lái)導出它的前n項和Sn計算公式呢?根據上面的例子同學(xué)們自己完成推導,并請一位學(xué)生板演。
生4:Sn=a1+a2+。an—1+an也可寫(xiě)成
Sn=an+an—1+。a2+a1
兩式相加得2Sn=(a1+an)+(a2+an—1)+。(an+a1)
n個(gè)
=n(a1+an)
所以Sn=(I)
師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n—1)d代入公式(1)得
Sn=na1+d(II)
上面(I)、(II)兩個(gè)式子稱(chēng)為等差數列的前n項和公式。公式(I)是基本的,我們可以發(fā)現,它可與梯形面積公式(上底+下底)×高÷2相類(lèi)比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學(xué)生總結:這些公式中出現了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應用。
三、公式的應用(通過(guò)實(shí)例演練,形成技能)。
1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計算:
。1)1+2+3+。+n
。2)1+3+5+。+(2n—1)
。3)2+4+6+。+2n
。4)1—2+3—4+5—6+。+(2n—1)—2n
請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。
生5:直接利用等差數列求和公式(I),得
。1)1+2+3+。+n=
。2)1+3+5+。+(2n—1)=
。3)2+4+6+。+2n==n(n+1)
師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學(xué)生發(fā)言解答。
生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開(kāi),可看成兩個(gè)等差數列,所以
原式=[1+3+5+。+(2n—1)]—(2+4+6+。+2n)
=n2—n(n+1)=—n
生7:上題雖然不是等差數列,但有一個(gè)規律,兩項結合都為—1,故可得另一解法:
原式=—1—1—!1=—n
n個(gè)
師:很好!在解題時(shí)我們應仔細觀(guān)察,尋找規律,往往會(huì )尋找到好的方法。注意在運用Sn公式時(shí),要看清等差數列的項數,否則會(huì )引起錯解。
例3、(1)數列{an}是公差d=—2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=—2,∴a1=6
∴S12=12a1+66×(—2)=—60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3∴S10=10a1+=145
師:通過(guò)上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個(gè)變量。已知三個(gè)變量,可利用構造方程或方程組求另外兩個(gè)變量(知三求二),請同學(xué)們根據例3自己編題,作為本節的課外練習題,以便下節課交流。
師:(繼續引導學(xué)生,將第(2)小題改編)
、贁盗衶an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
、谌舸祟}不求a1,d而只求S10時(shí),是否一定非來(lái)求得a1,d不可呢?引導學(xué)生運用等差數列性質(zhì),用整體思想考慮求a1+a10的值。
2、用整體觀(guān)點(diǎn)認識Sn公式。
例4,在等差數列{an},(1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)
師:來(lái)看第(1)小題,寫(xiě)出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現了什么?
生10:根據等差數列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
師:對。ê(jiǎn)單小結)這個(gè)題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質(zhì)可求a1與an的和,于是這個(gè)問(wèn)題就得到解決。這是整體思想在解數學(xué)問(wèn)題的體現。
師:由于時(shí)間關(guān)系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學(xué)生觀(guān)察當d≠0時(shí),Sn是n的二次函數,那么從二次(或一次)的函數的觀(guān)點(diǎn)如何來(lái)認識Sn公式后,這留給同學(xué)們課外繼續思考。
最后請大家課外思考Sn公式(1)的逆命題:
已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=。數列{an}是否為等差數列,并說(shuō)明理由。
四、小結與作業(yè)。
師:接下來(lái)請同學(xué)們一起來(lái)小結本節課所講的內容。
生11:1、用倒序相加法推導等差數列前n項和公式。
2、用所推導的兩個(gè)公式解決有關(guān)例題,熟悉對Sn公式的運用。
生12:1、運用Sn公式要注意此等差數列的項數n的值。
2、具體用Sn公式時(shí),要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當已知條件不足以求此項a1和公差d時(shí),要認真觀(guān)察,靈活應用等差數列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。
師:通過(guò)以上幾例,說(shuō)明在解題中靈活應用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習方法。同時(shí)希望大家在學(xué)習中做一個(gè)有心人,去發(fā)現更多的性質(zhì),主動(dòng)積極地去學(xué)習。
本節所滲透的數學(xué)方法;觀(guān)察、嘗試、分析、歸納、類(lèi)比、特定系數等。
數學(xué)思想:類(lèi)比思想、整體思想、方程思想、函數思想等。
作業(yè):P49:13、14、15、17
高中數學(xué)說(shuō)課稿 5
一、教材分析
1、教學(xué)內容
本節課內容教材共分兩課時(shí)進(jìn)行,這是第一課時(shí),該課時(shí)主要學(xué)習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。
2、教材的地位和作用
函數單調性是高中數學(xué)中相當重要的一個(gè)基礎知識點(diǎn),是研究和討論初等函數有關(guān)性質(zhì)的基礎。掌握本節內容不僅為今后的函數學(xué)習打下理論基礎,還有利于培養學(xué)生的抽象思維能力,及分析問(wèn)題和解決問(wèn)題的能力。
3、教材的重點(diǎn)﹑難點(diǎn)﹑關(guān)鍵
教學(xué)重點(diǎn):函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個(gè)局部概念。
教學(xué)難點(diǎn):領(lǐng)會(huì )函數單調性的實(shí)質(zhì)與應用,明確單調性是一個(gè)局部的概念。
教學(xué)關(guān)鍵:從學(xué)生的學(xué)習心理和認知結構出發(fā),講清楚概念的形成過(guò)程、
4、學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節總是創(chuàng )設恰當的問(wèn)題情境,引導學(xué)生積極思考,培養他們的邏輯思維能力。從學(xué)生的認知結構來(lái)看,他們只能根據函數的圖象觀(guān)察出“隨著(zhù)自變量的增大函數值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數圖象的直觀(guān)性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統性、嚴謹性,在教學(xué)中注意加強。
二、目標分析
。ㄒ唬┲R目標:
1、知識目標:理解函數單調性的概念,掌握判斷一些簡(jiǎn)單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說(shuō)出函數的單調區間。
2、能力目標:通過(guò)證明函數的單調性的學(xué)習,使學(xué)生體驗和理解從特殊到一般的數學(xué)歸納推理思維方式,培養學(xué)生的觀(guān)察能力,分析歸納能力,領(lǐng)會(huì )數學(xué)的歸納轉化的思想方法,增加學(xué)生的知識聯(lián)系,增強學(xué)生對知識的主動(dòng)構建的能力。
3、情感目標:讓學(xué)生積極參與觀(guān)察、分析、探索等課堂教學(xué)的雙邊活動(dòng),在掌握知識的過(guò)程中體會(huì )成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會(huì )用運動(dòng)變化的觀(guān)點(diǎn)去觀(guān)察分析事物的方法。通過(guò)滲透數形結合的數學(xué)思想,對學(xué)生進(jìn)行辨證唯物主義的思想教育。
。ǘ┻^(guò)程與方法
培養學(xué)生嚴密的邏輯思維能力以及用運動(dòng)變化、數形結合、分類(lèi)討論的方法去分析和處理問(wèn)題,以提高學(xué)生的思維品質(zhì),通過(guò)函數的單調性的學(xué)習,掌握自變量和因變量的關(guān)系。通過(guò)多媒體手段激發(fā)學(xué)生學(xué)習興趣,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題和解題的邏輯推理能力。
三、教法與學(xué)法
1、教學(xué)方法
在教學(xué)中,要注重展開(kāi)探索過(guò)程,充分利用好函數圖象的直觀(guān)性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節課采用問(wèn)答式教學(xué)法、探究式教學(xué)法進(jìn)行教學(xué),教師在課堂中只起著(zhù)主導作用,讓學(xué)生在教師的提問(wèn)中自覺(jué)的發(fā)現新知,探究新知,并且加入激勵性的語(yǔ)言以提高學(xué)生的積極性,提高學(xué)生參與知識形成的全過(guò)程。
2、學(xué)習方法
自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學(xué)生學(xué)習的主要方式。
四、過(guò)程分析
本節課的教學(xué)過(guò)程包括:?jiǎn)?wèn)題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業(yè)六個(gè)板塊。這里分別就其過(guò)程和設計意圖作一一分析。
。ㄒ唬﹩(wèn)題情景:
為了激發(fā)學(xué)生的學(xué)習興趣,本節課借助多媒體設計了多個(gè)生活背景問(wèn)題,并就圖表和圖象所提供的信息,提出一系列問(wèn)題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習興趣和求知欲望,為學(xué)習函數的單調性做好鋪墊。(祥見(jiàn)課件)
新課程理念認為:情境應貫穿課堂教學(xué)的始終。本節課所創(chuàng )設的生活情境,讓學(xué)生親近數學(xué),感受到數學(xué)就在他們的周?chē),強化學(xué)生的.感性認識,從而達到學(xué)生對數學(xué)的理解。讓學(xué)生在課堂的一開(kāi)始就感受到數學(xué)就在我們身邊,讓學(xué)生學(xué)會(huì )用數學(xué)的眼光去關(guān)注生活。
。ǘ┖瘮祮握{性的定義引入
1、幾何畫(huà)板動(dòng)畫(huà)演示,請學(xué)生認真觀(guān)察,并回答問(wèn)題:通過(guò)學(xué)生已學(xué)過(guò)的函數y=2x+4,的圖象的動(dòng)態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對函數單調性有感性認識。進(jìn)行比較,分析其變化趨勢。并探討、回答以下問(wèn)題:
問(wèn)題1、觀(guān)察下列函數圖象,從左向右看圖象的變化趨勢?
問(wèn)題2:你能明確說(shuō)出“圖象呈上升趨勢”的意思嗎?
通過(guò)學(xué)生的交流、探討、總結,得到單調性的“通俗定義”:
從在某一區間內當x的值增大時(shí),函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來(lái)描述上升的圖象?
通過(guò)問(wèn)題逐步向抽象的定義靠攏,將圖形語(yǔ)言轉化為數學(xué)符號語(yǔ)言。幾何畫(huà)板的靈活使用,數形有機結合,引導學(xué)生從圖形語(yǔ)言到數學(xué)符號語(yǔ)言的翻譯變得輕松。
設計意圖:
、偻ㄟ^(guò)學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習興趣和學(xué)習熱情,同時(shí)也可以培養學(xué)生觀(guān)察、猜想、歸納的思維能力和創(chuàng )新意識,增強學(xué)生自主學(xué)習、獨立思考,由學(xué)會(huì )向會(huì )學(xué)的轉化,形成良好的思維品質(zhì)。
、谕ㄟ^(guò)學(xué)生已學(xué)過(guò)的一次y=2x+4,的圖象的動(dòng)態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對函數單調性有感性認識。
、蹚膶W(xué)生的原有認知結構入手,探討單調性的概念,符合“最近發(fā)展區的理論”要求。
、軓膱D形、直觀(guān)認識入手,研究單調性的概念,其本身就是研究、學(xué)習數學(xué)的一種方法,符合新課程的理念。
。ㄈ┰龊瘮、減函數的定義
在前面的基礎上,讓學(xué)生討論歸納:如何使用數學(xué)語(yǔ)言來(lái)準確描述函數的單調性?在學(xué)生回答的基礎上,給出增函數的概念,同時(shí)要求學(xué)生討論概念中的關(guān)鍵詞和注意點(diǎn)。
定義中的“當x1x2時(shí),都有f(x1) 注意: 。1)函數的單調性也叫函數的增減性; 。2)注意區間上所取兩點(diǎn)x1,x2的任意性; 。3)函數的單調性是對某個(gè)區間而言的,它是一個(gè)局部概念。 讓學(xué)生自己嘗試寫(xiě)出減函數概念,由兩名學(xué)生板演。提出單調區間的概念。 設計意圖:通過(guò)給出函數單調性的嚴格定義,目的是為了讓學(xué)生更準確地把握概念,理解函數的單調性其實(shí)也叫做函數的增減性,它是對某個(gè)區間而言的,它是一個(gè)局部概念,同時(shí)明確判定函數在某個(gè)區間上的單調性的一般步驟。這樣處 理,同時(shí)也是讓學(xué)生感悟、體驗學(xué)習數學(xué)感念的方法,提高其個(gè)性品質(zhì)。 。ㄋ模├}分析 在理解概念的基礎上,讓學(xué)生總結判別函數單調性的方法:圖象法和定義法。 2、例2、證明函數在區間(—∞,+∞)上是減函數。 在本題的解決過(guò)程中,要求學(xué)生對照定義進(jìn)行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過(guò)自己的解決,總結證明單調性問(wèn)題的一般方法。 變式一:函數f(x)=—3x+b在R上是減函數嗎?為什么? 變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來(lái)判斷。 變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來(lái)判斷。 錯誤:實(shí)質(zhì)上并沒(méi)有證明,而是使用了所要證明的結論 例題設計意圖:在理解概念的基礎上,讓學(xué)生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學(xué)生應用數形結合的思想方法解題的意識,進(jìn)一步加深對概念的理解,同時(shí)也是依托具體問(wèn)題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進(jìn)行觀(guān)察是一種常用而又粗略的方法。嚴格地說(shuō),它需要根據單調函數的定義進(jìn)行證明。例2是教材練習題改編,通過(guò)師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過(guò)例2的解決是學(xué)生初步掌握運用概念進(jìn)行簡(jiǎn)單論證的基本方法,強化證題的規范性訓練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數學(xué)問(wèn)題。目的是進(jìn)一步強化解題的規范性,提高邏輯推理能力,同時(shí)讓學(xué)生學(xué)會(huì )一些常見(jiàn)的變形方法。 。ㄎ澹╈柟膛c探究 1、教材p36練習2,3 2、探究:二次函數的單調性有什么規律? 。◣缀萎(huà)板演示,學(xué)生探究)本問(wèn)題作為機動(dòng)題。時(shí)間不允許時(shí),就為課后思考題。 設計意圖:通過(guò)觀(guān)察圖象,對函數是否具有某種性質(zhì)作出一種猜想,然后通過(guò)推理的辦法,證明這種猜想的正確性,是發(fā)現和解決問(wèn)題的一種常用數學(xué)方法。 通過(guò)課堂練習加深學(xué)生對概念的理解,進(jìn)一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時(shí)強化解題步驟,形成并提高解題能力。對練習的思考,讓學(xué)生學(xué)會(huì )反思、學(xué)會(huì )總結。 。┗仡櫩偨Y 通過(guò)師生互動(dòng),回顧本節課的概念、方法。本節課我們學(xué)習了函數單調性的知識,同學(xué)們要切記:?jiǎn)握{性是對某個(gè)區間而言的,同時(shí)在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進(jìn)行判斷和證明。 設計意圖:通過(guò)小結突出本節課的重點(diǎn),并讓學(xué)生對所學(xué)知識的結構有一個(gè)清晰的認識,學(xué)會(huì )一些解決問(wèn)題的思想與方法,體會(huì )數學(xué)的和諧美。 。ㄆ撸┱n外作業(yè) 1、教材p43習題1.3A組1(單調區間),2(證明單調性); 2、判斷并證明函數在上的單調性。 3、數學(xué)日記:談?wù)勀惚竟澱n中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。 設計意圖:通過(guò)作業(yè)1、2進(jìn)一步鞏固本節課所學(xué)的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學(xué)生對本結內容各項目標落實(shí)的評價(jià)。新課標要求:不同的學(xué)生學(xué)習不同的數學(xué),在數學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現。 。ㄆ撸┌鍟(shū)設計(見(jiàn)ppt) 五、評價(jià)分析 有效的概念教學(xué)是建立在學(xué)生已有知識結構基礎上,因此在教學(xué)設計過(guò)程中注意了: 第一、教要按照學(xué)的法子來(lái)教; 第二、在學(xué)生已有知識結構和新概念間尋找“最近發(fā)展區”; 第三、強化了重探究、重交流、重過(guò)程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng )設情境——探究概念——注重反思——拓展應用——歸納總結”的活動(dòng)過(guò)程,體驗了參與數學(xué)知識的發(fā)生、發(fā)展過(guò)程,培養“用數學(xué)”的意識和能力,成為積極主動(dòng)的建構者。 本節課圍繞教學(xué)重點(diǎn),針對教學(xué)目標,以多媒體技術(shù)為依托,展現知識的發(fā)生和形成過(guò)程,使學(xué)生始終處于問(wèn)題探索研究狀態(tài)之中,激情引趣,并注重數學(xué)科學(xué)研究方法的學(xué)習,是順應新課改要求的,是研究性教學(xué)的一次有益嘗試。 一、本節資料的地位與重要性 "分類(lèi)計數原理與分步計數原理"是《高中數學(xué)》一節獨特資料。這一節課與排列、組合的基本概念有著(zhù)緊密的聯(lián)系,經(jīng)過(guò)對這一節課的學(xué)習,既能夠讓學(xué)生理解、理解分類(lèi)計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學(xué)做好準備,起到奠基的重要作用。 二、關(guān)于教學(xué)目標的確定 根據兩個(gè)基本原理的地位和作用,我認為本節課的教學(xué)目標是: 。1)使學(xué)生正確理解兩個(gè)基本原理的概念; 。2)使學(xué)生能夠正確運用兩個(gè)基本原理分析、解決一些簡(jiǎn)單問(wèn)題; 。3)提高分析、解決問(wèn)題的能力 。4)使學(xué)生樹(shù)立"由個(gè)別到一般,由一般到個(gè)別"的認識事物的辯證唯物主義哲學(xué)思想觀(guān)點(diǎn)。 三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理 中學(xué)數學(xué)課程中引進(jìn)的關(guān)于排列、組合的計算公式都是以?xún)蓚(gè)計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開(kāi)兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問(wèn)題是學(xué)習本章的重點(diǎn)資料。 正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類(lèi),學(xué)生不是一下子就能理解深刻的,應對復雜的事物和現象學(xué)生對分類(lèi)和分步的選擇容易產(chǎn)生錯誤的認識,所以分類(lèi)計數原理和分步計數原理的準確應用是本節課的教學(xué)難點(diǎn)。必需使學(xué)生認清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類(lèi)還是分步,才能使學(xué)生理解概念并對如何運用這兩個(gè)基本原理有正確清楚的認識。教學(xué)中兩個(gè)基本問(wèn)題的引用及引伸,就是為突破難點(diǎn)做準備。 四、關(guān)于教學(xué)方法和教學(xué)手段的選用 根據本節課的資料及學(xué)生的'實(shí)際水平,我采取啟發(fā)引導式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。 啟發(fā)引導式作為一種啟發(fā)式教學(xué)方法,體現了認知心理學(xué)的基本理論。貼合教學(xué)論中的自覺(jué)性和積極性、鞏固性、可理解性、教學(xué)與發(fā)展相結合、教師的主導作用與學(xué)生的主體地位相統一等原則,教學(xué)過(guò)程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生經(jīng)過(guò)主動(dòng)思考、動(dòng)手操作來(lái)到達對知識的"發(fā)現"和理解,進(jìn)而完成知識的內化,使書(shū)本的知識成為自我的知識。 電腦多媒體以聲音、動(dòng)畫(huà)、影像等多種形式強化對學(xué)生感觀(guān)的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,能夠極大提高學(xué)生的學(xué)習興趣,加大一堂課的信息容量,使教學(xué)目標更完美地體現。另外,電腦軟件具有良好的交互性,能夠將教師的思路和策略以軟件的形式來(lái)體現,更好地為教學(xué)服務(wù)。 五、關(guān)于學(xué)法的指導 "授人以魚(yú),不如授人以漁",在教學(xué)過(guò)程中,不但要傳授學(xué)生課本知識,還要培養學(xué)生主動(dòng)觀(guān)察、主動(dòng)思考、自我發(fā)現的學(xué)習能力,增強學(xué)生的綜合素質(zhì),從而到達教學(xué)的目標。教學(xué)中,教師創(chuàng )設疑問(wèn),學(xué)生想辦法解決疑問(wèn),經(jīng)過(guò)教師的啟發(fā)點(diǎn)撥,類(lèi)比推理,在積極的雙邊活動(dòng)中,學(xué)生找到了解決疑難的方法。整個(gè)過(guò)程貫穿"設疑"——"思索"——"發(fā)現"——"解惑"四個(gè)環(huán)節,學(xué)生隨時(shí)對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過(guò)程,貼合學(xué)生認知水平,培養了學(xué)習能力。 六、關(guān)于教學(xué)程序的設計 。ㄒ唬┱n題導入 這是本章的第一節課,是起始課,講起始課時(shí),把這一學(xué)科的資料作一個(gè)大概的介紹,能使學(xué)生從一開(kāi)始就對將要學(xué)習的知識有一個(gè)初步的了解,并為下頭的學(xué)習打下思想基礎。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問(wèn)題,引出學(xué)習本節的必要性,明確研究計數方法是本章資料的獨特性,從應用的廣泛看學(xué)習本章資料的重要性。同時(shí)板書(shū)課題(分類(lèi)計數原理與分步計數原理) 這樣做,能使學(xué)生明白本節資料的地位和作用,激發(fā)其學(xué)習新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準備。 。ǘ┬抡n講授 經(jīng)過(guò)幻燈片給出問(wèn)題,配圖分析,講清坐火車(chē)與坐汽車(chē)兩類(lèi)方法均可,每類(lèi)中任一種辦法都能夠獨立地把從甲地到乙地這件事辦好。 緊跟著(zhù)給出: 引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不一樣的走法? 引伸2:若完成一件事,有類(lèi)辦法。在第1類(lèi)辦法中有種不一樣方法,在第2類(lèi)辦法中有種不一樣的方法,……,在第類(lèi)辦法中有種不一樣方法,每一類(lèi)中的每一種方法均可完成這件事,那么完成這件事共有多少種不一樣方法? 這個(gè)問(wèn)題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生理解分類(lèi)計數原理做好了準備。 板書(shū)分類(lèi)計數原理資料: 完成一件事,有類(lèi)辦法。在第1類(lèi)辦法中有種不一樣方法,在第2類(lèi)辦法中有種不一樣的方法,……,在第類(lèi)辦法中有種不一樣方法,那么完成這件事共有種不一樣的方法。(也稱(chēng)加法原理) 此時(shí),趁學(xué)生對于原理有了一個(gè)較清晰的認識,引導學(xué)生分析分類(lèi)計數原理資料,啟發(fā)總結得下頭三點(diǎn)注意:(出示幻燈片) 。1)各分類(lèi)之間相互獨立,都能完成這件事; 。2)根據問(wèn)題的特點(diǎn)在確定的分類(lèi)標準下進(jìn)行分類(lèi); 。3)完成這件事的任何一種方法必屬于某一類(lèi),并且分別屬于不一樣兩類(lèi)的兩種方法都是不一樣的方法。 這樣做加深學(xué)生對分類(lèi)計數原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。 接下來(lái)給出問(wèn)題2:(出示幻燈片) 由A村去B村的道路有3條,由B村去C村的道路有2條(見(jiàn)圖9-1),從A村經(jīng)B村去C村,共有多少種不一樣的走法? 提出問(wèn)題:?jiǎn)?wèn)題1與問(wèn)題2同是研究從甲地到乙地的不一樣走法,請找出這兩個(gè)問(wèn)題的不之處?學(xué)生會(huì )發(fā)現問(wèn)題1中采用乘火車(chē)或乘汽車(chē)都能夠從甲地到乙地,而問(wèn)題2中必須經(jīng)過(guò)先乘火車(chē)后乘汽車(chē)兩個(gè)步驟才能完成從甲地到乙地這件事。 問(wèn)題2的講授采用給出問(wèn)題,配圖分析,組織討論,強調分步。用多媒體配不一樣的顏色閃現出六種不一樣的走法,讓學(xué)生列式求出不一樣走法數,并列舉所有走法。 歸納得出:分步計數原理(板書(shū)原理資料) 分步計數原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不一樣的方法,做第二步有m2種不一樣的方法,……,做第n步有mn種不一樣的方法。那么,完成這件事共有 N=m1×m2×…×mn 種不一樣的方法。 同樣趁學(xué)生對定理有必須的認識,引導學(xué)生分析分步計數原理資料,啟發(fā)總結得下頭三點(diǎn)注意:(出示幻燈片) 。1)各步驟相互依存,僅有各個(gè)步驟完成了,這件事才算完成; 。2)根據問(wèn)題的特點(diǎn)在確定的分步標準下分步; 。3)分步時(shí)要注意滿(mǎn)足完成一件事必須并且只需連續完成這N個(gè)步驟這件事才算完成。 。ㄈ⿷门e例 教材例1:(書(shū)架取書(shū)問(wèn)題)引導學(xué)生分析解答,注意區分是分類(lèi)還是分步。 例2:由數字0,1,2,3,4能夠組成多少個(gè)三位整數(各位上的數字允許重復)?本題設置了4個(gè)問(wèn)題: 。1)每一個(gè)三位數是由什么構成的?(三個(gè)整數字) 。2)023是一個(gè)三位數嗎?(百位上不能是0) 。3)組成一個(gè)三位數需要怎樣做?(分成三個(gè)步驟來(lái)完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個(gè)位上的數字) 。4)怎樣表述? 教師巡視指導、并歸納 解:要組成一個(gè)三位數,需要分成三個(gè)步驟:第一步確定百位上的數字,從1~4這4個(gè)數字中任選一個(gè)數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個(gè)位上的數字,仍有5種選法。根據分步計數原理,得到能夠組成的三位整數的個(gè)數是N=4×5×5=100. 答:能夠組成100個(gè)三位整數。 。ń處煹倪B續發(fā)問(wèn)、啟發(fā)、引導,幫忙學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問(wèn)題能力有所提高。 教師在第二個(gè)例題中給出板書(shū)示范,能幫忙學(xué)生進(jìn)一步加深對兩個(gè)基本原理實(shí)質(zhì)的理解,周密的研究,準確的表達、規范的書(shū)寫(xiě),對于學(xué)生周密思考、準確表達、規范書(shū)寫(xiě)良好習慣的構成有著(zhù)積極的促進(jìn)作用,也能夠為學(xué)生后面應用兩個(gè)基本原理解排列、組合綜合題打下基礎) 。ㄋ模w納小結 師:什么時(shí)候用分類(lèi)計數原理、什么時(shí)候用分步計數原理呢? 生:分類(lèi)時(shí)用分類(lèi)計數原理,分步時(shí)用分步計數原理。 師:應用兩個(gè)基本原理時(shí)需要注意什么呢? 生:分類(lèi)時(shí)要求各類(lèi)辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨立的。 。ㄎ澹┱n堂練習 P222:練習1~4.學(xué)生板演第4題 。▽τ陬}4,教師有必要對三個(gè)多項式乘積展開(kāi)后各項的構成給以提示) 。┎贾米鳂I(yè) P222:練習5,6,7. 補充題: 1.在所有的兩位數中,個(gè)位數字小于十位數字的共有多少個(gè)? 。ㄌ崾荆喊词簧蠑底值拇笮∧軌蚍譃9類(lèi),共有9+8+7+…+2+1=45個(gè)個(gè)位數字小于十位數字的兩位數) 2.某學(xué)生填報高考志愿,有m個(gè)不一樣的志愿可供選擇,若只能按第一、二、三志愿依次填寫(xiě)3個(gè)不一樣的志愿,求該生填寫(xiě)志愿的方式的種數。 。ㄌ崾荆盒枰慈齻(gè)志愿分成三步。共有m(m-1)(m-2)種填寫(xiě)方式) 3.在所有的三位數中,有且僅有兩個(gè)數字相同的三位數共有多少個(gè)? 。ㄌ崾荆耗軌蛴孟骂^方法來(lái)求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類(lèi)中每類(lèi)都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)僅有兩個(gè)數字相同的三位數) 4.某小組有10人,每人至少會(huì )英語(yǔ)和日語(yǔ)中的一門(mén),其中8人會(huì )英語(yǔ),5人會(huì )日語(yǔ),(1)從中任選一個(gè)會(huì )外語(yǔ)的人,有多少種選法?(2)從中選出會(huì )英語(yǔ)與會(huì )日語(yǔ)的各1人,有多少種不一樣的選法? 。ㄌ崾荆河捎8+5=13》10,所以10人中必有3人既會(huì )英語(yǔ)又會(huì )日語(yǔ)。(1)N=5+2+3;(2)N=5×2+5×3+2×3) 只要大家用心學(xué)習,認真復習,就有可能在高中的戰場(chǎng)上考取自我夢(mèng)想的成績(jì)。 一、地位作用 數列是高中數學(xué)重要的內容之一,等比數列是在學(xué)習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個(gè)高中數學(xué)內容中數列與已學(xué)過(guò)的函數及后面的數列極限有密切聯(lián)系,它也是培養學(xué)生數學(xué)能力的良好題材,它可以培養學(xué)生的觀(guān)察、分析、歸納、猜想及綜合解決問(wèn)題的能力。 基于此,設計本節的數學(xué)思路上: 利用類(lèi)比的思想,聯(lián)系等差數列的概念及通項公式的`學(xué)習方法,采取自學(xué)、引導、歸納、猜想、類(lèi)比總結的教學(xué)思路,充分發(fā)揮學(xué)生主觀(guān)能動(dòng)性,調動(dòng)學(xué)生的主體地位,充分體現教為主導、學(xué)為主體、練為主線(xiàn)的教學(xué)思想。 二、教學(xué)目標 知識目標:1)理解等比數列的概念 2)掌握等比數列的通項公式 3)并能用公式解決一些實(shí)際問(wèn)題 能力目標:培養學(xué)生觀(guān)察能力及發(fā)現意識,培養學(xué)生運用類(lèi)比思想、解決分析問(wèn)題的能力。 三、教學(xué)重點(diǎn) 1)等比數列概念的理解與掌握關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn) 2)等比數列的通項公式的推導及應用 四、教學(xué)難點(diǎn) “等比”的理解及利用通項公式解決一些問(wèn)題。 五、教學(xué)過(guò)程設計 。ㄒ唬╊A習自學(xué)環(huán)節。(8分鐘) 首先讓學(xué)生重新閱讀課本105頁(yè)國際象棋發(fā)明者的故事,并出示預習提綱,要求學(xué)生閱讀課本P122至P123例1上面。 回答下列問(wèn)題 1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數列的定義。 2)觀(guān)察以下幾個(gè)數列,回答下面問(wèn)題: 1,,,,…… 。1,-2,-4,-8…… 1,2,-4,8…… 。1,-1,-1,-1,…… 1,0,1,0…… 、儆心膸讉(gè)是等比數列?若是公比是什么? 、诠萹為什么不能等于零?首項能為零嗎? 、酃萹=1時(shí)是什么數列? 、躴>0時(shí)數列遞增嗎?q<0時(shí)遞減嗎? 3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導? 4)等比數列通項公式與函數關(guān)系怎樣? 。ǘw納主導與總結環(huán)節(15分鐘) 這一環(huán)節主要是通過(guò)學(xué)生回答為主體,教師引導總結為主線(xiàn)解決本節兩個(gè)重點(diǎn)內容。 通過(guò)回答問(wèn)題(1)(2)給出等比數列的定義并強調以下幾點(diǎn):①定義關(guān)鍵字“第二項起”“常數”; 、谝龑W(xué)生用數學(xué)語(yǔ)言表達定義:=q(n≥2);③q=1時(shí)為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類(lèi)討論的思想。 、躴>0時(shí)等比數列單調性不定,q<0為擺動(dòng)數列,類(lèi)比等差數列d>0為遞增數列,d<0為遞減數列。 通過(guò)回答問(wèn)題(3)回憶等差數列的推導方法,比較兩個(gè)數列定義的不同,引導推出等比數列通項公式。 法一:歸納法,學(xué)會(huì )從特殊到一般的方法,并從次數中發(fā)現規律,培養觀(guān)察力。 法二:迭乘法,聯(lián)系等差數列“迭加法”,培養學(xué)生類(lèi)比能力及新舊知識轉化能力。 一、說(shuō)教材 1、教材的地位和作用 《集合的概念》是人教版第一章的內容(中職數學(xué))。本節課的主要內容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數學(xué)課本中已現了一些數和點(diǎn)的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數學(xué)中的含義,集合是一個(gè)基礎性的概念,也是也是中職數學(xué)的開(kāi)篇,是我們后續學(xué)習的重要工具,如:用集合的語(yǔ)言表示函數的定義域、值域、方程與不等式的解集,曲線(xiàn)上點(diǎn)的集合等。通過(guò)本章節的學(xué)習,能讓學(xué)生領(lǐng)會(huì )到數學(xué)語(yǔ)言的簡(jiǎn)潔和準確性,幫助學(xué)生學(xué)會(huì )用集合的語(yǔ)言描述客觀(guān),發(fā)展學(xué)生運用數學(xué)語(yǔ)言交流的能力。 2、教學(xué)目標 。1)知識目標:a、通過(guò)實(shí)例了解集合的含義,理解集合以及有關(guān)概念; b、初步體會(huì )元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。 。2)能力目標:a、讓學(xué)生感知數學(xué)知識與實(shí)際生活得密切聯(lián)系,培養學(xué)生解決實(shí)際的能力; b、學(xué)會(huì )借助實(shí)例分析,探究數學(xué)問(wèn)題,發(fā)展學(xué)生的觀(guān)察歸納能力。 。3)情感目標:a、通過(guò)聯(lián)系生活,提高學(xué)生學(xué)習數學(xué)的積極性,形成積極的'學(xué)習態(tài)度; b、通過(guò)主動(dòng)探究,合作交流,感受探索的樂(lè )趣和成功的體驗,體會(huì )數學(xué)的理性和嚴謹。 3、重點(diǎn)和難點(diǎn) 重點(diǎn):集合的概念,元素與集合的關(guān)系。 難點(diǎn):準確理解集合的概念。 二、學(xué)情分析(說(shuō)學(xué)情) 對于中職生來(lái)說(shuō),學(xué)生的數學(xué)基礎相對薄弱,他們還沒(méi)具備一定的觀(guān)察、分析理解、解決實(shí)際問(wèn)題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數學(xué)的自信心不強,學(xué)習積極性不高,有厭學(xué)情緒。 三、說(shuō)教法 針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習興趣。在創(chuàng )設情境認知策略上給予適當的點(diǎn)撥和引導,引導學(xué)生主動(dòng)思、交流、討論,提出問(wèn)題。在此基礎上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數學(xué)學(xué)習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。 四、學(xué)習指導(說(shuō)學(xué)法) 教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì )學(xué)是目的,因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。根據數學(xué)的特點(diǎn)這節課主要是教學(xué)生動(dòng)腦思考、多訓練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機會(huì ),增強了參與的意識,教學(xué)生獲取知識的途徑,思考問(wèn)題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達到預期的教學(xué)目的和效果。 五、教學(xué)過(guò)程 1、引入新課: a、創(chuàng )設情境,揭示本課主題,同時(shí)對集合的整體性有個(gè)初步的感性認識。 b、介紹集合論的創(chuàng )始者康托爾 2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現有的認知水平,以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究,為本課教學(xué)創(chuàng )造出一種自然和諧的氛圍,充分調動(dòng)學(xué)生的學(xué)習熱情接待探究過(guò)程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導學(xué)生尋找實(shí)例中的共同特征,培養學(xué)生觀(guān)察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。 3、集合的概念,本課的重點(diǎn)。結合探究中的實(shí)例,讓學(xué)生說(shuō)出集合和元素各是什么?知識的呈現由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問(wèn)題中的集合和元素為后面學(xué)習兩者間的關(guān)系做好鋪墊。 教師在這一環(huán)節做好學(xué)習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。 4、熟悉鞏固集合的概念通過(guò)例題,練習、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。 5、集合的符號記法,為本節重點(diǎn)做好鋪墊。 6、從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語(yǔ)言描述,如何用數學(xué)語(yǔ)言描述,給出元素與集合關(guān)系符號表示,在這個(gè)環(huán)節教師適當引導學(xué)生積極主動(dòng)參與到知識逐步形成過(guò)程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習指導:⑴集合元素的確定。⑵理解兩符號的含義。 7、思考交流本課的重要環(huán)節在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過(guò)自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達自己見(jiàn)解的能力。 8、從所舉的例子中抽象出數集的概念,并給出常見(jiàn)數集的記法。 9、學(xué)生練習:通過(guò)練習,識記常見(jiàn)數集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。 10、知識的實(shí)際應用: 問(wèn)題不難,落實(shí)課本能力目標,培養學(xué)生運用數學(xué)的意識和能力初步培養學(xué)生應用集合的眼光觀(guān)看世界。 11、課堂小節 以學(xué)生小節為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認識到要學(xué)會(huì )梳理所學(xué)內容,要學(xué)會(huì )總結反思,使學(xué)生的認識進(jìn)一步升華,培養學(xué)生的鬼納總結能力。 六、評價(jià) 教學(xué)評價(jià)的及時(shí)能有效調動(dòng)課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著(zhù)積極作用,教學(xué)過(guò)程尊重學(xué)生之間的差異培養學(xué)生應用集合的眼光看研究對象,注重過(guò)程評價(jià)與多元評價(jià)將教學(xué)評價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節。 七、教學(xué)反思 1、通過(guò)現實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學(xué)生理解接受。 2、啟發(fā)探究教學(xué),營(yíng)造學(xué)生的學(xué)習氛圍,培養學(xué)生自主學(xué)習,合作交流的能力。 八、板書(shū)設計 一、教材分析: 集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。 二、目標分析: 教學(xué)重點(diǎn)、難點(diǎn) 重點(diǎn):集合的含義與表示方法。 難點(diǎn):表示法的恰當選擇。 教學(xué)目標 l.知識與技能 。1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合的屬于關(guān)系; 。2)知道常用數集及其專(zhuān)用記號; 。3)了解集合中元素的確定性;ギ愋。無(wú)序性; 。4)會(huì )用集合語(yǔ)言表示有關(guān)數學(xué)對象; 2.過(guò)程與方法 。1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義。 。2)讓學(xué)生歸納整理本節所學(xué)知識。 3.情感、態(tài)度與價(jià)值觀(guān) 使學(xué)生感受到學(xué)習集合的必要性,增強學(xué)習的積極性。 三、教法分析 1.教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習。思考。交流。討論和概括,從而更好地完成本節課的教學(xué)目標。 2.教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué)。 四、過(guò)程分析 。ㄒ唬﹦(chuàng )設情景,揭示課題 1、教師首先提出問(wèn)題: 。1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現在的班級。 。2)問(wèn)題:像"家庭"、"學(xué)校"、"班級"等,有什么共同特征? 引導學(xué)生互相交流。與此同時(shí),教師對學(xué)生的活動(dòng)給予評價(jià)。 2.活動(dòng): 。1)列舉生活中的集合的例子; 。2)分析、概括各實(shí)例的共同特征 由此引出這節要學(xué)的內容。 設計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為新知作好鋪墊 。ǘ┭刑叫轮,建構概念 1.教師利用多媒體設備向學(xué)生投影出下面7個(gè)實(shí)例: 。1)1-20以?xún)鹊乃匈|(zhì)數; 。2)我國古代的`四大發(fā)明; 。3)所有的安理會(huì )常任理事國; 。4)所有的正方形; 。5)海南省在20xx年9月之前建成的所有立交橋; 。6)到一個(gè)角的兩邊距離相等的所有的點(diǎn); 。7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體。 2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么? 3.每個(gè)小組選出--位同學(xué)發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義。 一般地,指定的某些對象的全體稱(chēng)為集合(簡(jiǎn)稱(chēng)為集)。集合中的每個(gè)對象叫作這個(gè)集合的元素。 4.教師指出:集合常用大寫(xiě)字母A,B,C,D,…表示,元素常用小寫(xiě)字母…表示。 設計意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習的興趣,培養學(xué)生樂(lè )于求索的精神 。ㄈ┵|(zhì)疑答辯,發(fā)展思維 1.教師引導學(xué)生閱讀教材中的相關(guān)內容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導,解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性;ギ愋院蜔o(wú)序性。只要構成兩個(gè)集合的元素是一樣的,我們就稱(chēng)這兩個(gè)集合相等。 2.教師組織引導學(xué)生思考以下問(wèn)題: 判斷以下元素的全體是否組成集合,并說(shuō)明理由: 。1)大于3小于11的偶數; 。2)我國的小河流。 讓學(xué)生充分發(fā)表自己的建解。 3.讓學(xué)生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說(shuō)明理由。教師對學(xué)生的學(xué)習活動(dòng)給予及時(shí)的評價(jià)。 4.教師提出問(wèn)題,讓學(xué)生思考 。1)如果用A表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。 如果是集合A的元素,就說(shuō)屬于集合A,記作。 如果不是集合A的元素,就說(shuō)不屬于集合A,記作。 。2)如果用A表示"所有的安理會(huì )常任理事國"組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數學(xué)符號分別表示。 。3)讓學(xué)生完成教材第6頁(yè)練習第1題。 5.教師引導學(xué)生回憶數集擴充過(guò)程,然后閱讀教材中的相交內容,寫(xiě)出常用數集的記號。并讓學(xué)生完成習題1.1A組第1題。 6.教師引導學(xué)生閱讀教材中的相關(guān)內容,并思考。討論下列問(wèn)題: 。1)要表示一個(gè)集合共有幾種方式? 。2)試比較自然語(yǔ)言。列舉法和描述法在表示集合時(shí),各自有什么特點(diǎn)?適用的對象是什么? 。3)如何根據問(wèn)題選擇適當的集合表示法? 使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì )它們存在的必要性和適用對象。 設計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。 。ㄋ模╈柟躺罨,反饋矯正 教師投影學(xué)習: 。1)用自然語(yǔ)言描述集合{1,3,5,7,9}; 。2)用例舉法表示集合 。3)試選擇適當的方法表示下列集合:教材第6頁(yè)練習第2題。 設計意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì )三種表示方式存在的必要性和適用對象(五)歸納小結,布置作業(yè) 小結:在師生互動(dòng)中,讓學(xué)生了解或體會(huì )下例問(wèn)題: 1.本節課我們學(xué)習了哪些知識內容? 2.你認為學(xué)習集合有什么意義? 3.選擇集合的表示法時(shí)應注意些什么? 設計意圖:通過(guò)回顧,對概念的發(fā)生與發(fā)展過(guò)程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。 作業(yè): 1.課后書(shū)面作業(yè):第13頁(yè)習題1.1A組第4題。 2.元素與集合的關(guān)系有多少種?如何表示?類(lèi)似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過(guò)預習教材。 一、教材分析 1.《指數函數》在教材中的地位、作用和特點(diǎn) 《指數函數》是人教版高中數學(xué)(必修)第一冊第二章“函數”的第六節內容,是在學(xué)習了《指數》一節內容之后編排的。通過(guò)本節課的學(xué)習,既可以對指數和函數的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習對數、對數函數尤其是利用互為反函數的圖象間的關(guān)系來(lái)研究對數函數的性質(zhì)打下堅實(shí)的概念和圖象基礎,又因為《指數函數》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學(xué)習基礎,所以《指數函數》不僅是本章《函數》的重點(diǎn)內容,也是高中學(xué)段的主要研究?jì)热葜,有?zhù)不可替代的重要作用。 此外,《指數函數》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著(zhù)緊密的聯(lián)系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習這部分知識還有著(zhù)廣泛的現實(shí)意義。本節內容的特點(diǎn)之一是概念性強,特點(diǎn)之二是凸顯了數學(xué)圖形在研究函數性質(zhì)時(shí)的重要作用。 2.教學(xué)目標、重點(diǎn)和難點(diǎn) 通過(guò)初中學(xué)段的學(xué)習和高中對集合、函數等知識的系統學(xué)習,學(xué)生對函數和圖象的關(guān)系已經(jīng)構建了一定的認知結構,主要體現在三個(gè)方面: 知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡(jiǎn)單的函數概念和性質(zhì)已有了初步認識,能夠從初中運動(dòng)變化的角度認識函數初步轉化到從集合與對應的觀(guān)點(diǎn)來(lái)認識函數。 技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質(zhì)做好準備。 素質(zhì)維度:由觀(guān)察到抽象的數學(xué)活動(dòng)過(guò)程已有一定的體會(huì ),已初步了解了數形結合的思想。 鑒于對學(xué)生已有的知識基礎和認知能力的分析,根據《教學(xué)大綱》的要求,我確定本節課的教學(xué)目標、教學(xué)重點(diǎn)和難點(diǎn)如下: (1)知識目標: 、僬莆罩笖岛瘮档母拍; 、谡莆罩笖岛瘮档膱D象和性質(zhì); 、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實(shí)際問(wèn)題; (2)技能目標: 、贊B透數形結合的基本數學(xué)思想方法 、谂囵B學(xué)生觀(guān)察、聯(lián)想、類(lèi)比、猜測、歸納的能力; (3)情感目標: 、袤w驗從特殊到一般的學(xué)習規律,認識事物之間的普遍聯(lián)系與相互轉化,培養學(xué)生用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題②通過(guò)教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習興趣,提高學(xué)生抽象、概括、分析、綜合的能力 、垲I(lǐng)會(huì )數學(xué)科學(xué)的應用價(jià)值。 (4)教學(xué)重點(diǎn):指數函數的圖象和性質(zhì)。 (5)教學(xué)難點(diǎn):指數函數的圖象性質(zhì)與底數a的關(guān)系。 突破難點(diǎn)的關(guān)鍵:尋找新知生長(cháng)點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數形結合來(lái)掃清障礙。 二、教法設計 由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過(guò)這一節課的教學(xué)達到不僅使學(xué)生初步理解并能簡(jiǎn)單應用指數函數的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數圖象性質(zhì)的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學(xué)生學(xué)習能力的目的,我根據自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結合起來(lái),主要突出了幾個(gè)方面: 1.創(chuàng )設問(wèn)題情景.按照指數函數的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調動(dòng)學(xué)生的學(xué)習興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。 2.強化“指數函數”概念.引導學(xué)生結合指數的有關(guān)概念來(lái)歸納出指數函數的定義,并向學(xué)生指出指數函數的形式特點(diǎn),請學(xué)生思考對于底數a是否需要限制,如不限制會(huì )有什么問(wèn)題出現,這樣避免了學(xué)生對于底數a范圍分類(lèi)的不清楚,也為研究指數函數的圖象做了“分類(lèi)討論”的鋪墊。 3.突出圖象的作用.在數學(xué)學(xué)習過(guò)程中,圖形始終使我們需要借助的重要輔助手段。一位數學(xué)家曾經(jīng)說(shuō)過(guò)“數離形時(shí)少直觀(guān),形離數時(shí)難入微”,而在研究指數函數的性質(zhì)時(shí),更是直接由圖象觀(guān)察得出性質(zhì),因此圖象發(fā)揮了主要的作用。 4.注意數學(xué)與生活和實(shí)踐的聯(lián)系.數學(xué)的本質(zhì)是來(lái)源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的`引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關(guān)的生活問(wèn)題,力圖使學(xué)生了解到數學(xué)的基礎學(xué)科作用,培養學(xué)生的數學(xué)應用意識。 三、學(xué)法指導 本節課是在學(xué)習完“指數”的概念和運算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個(gè)方面做了嘗試: 1.再現原有認知結構。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數的概念,幫助學(xué)生再現原有認知結構,為理解指數函數的概念做好準備。 2.領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法。在借助圖象研究指數函數的性質(zhì)時(shí)會(huì )遇到分類(lèi)討論、數形結合等基本數學(xué)思想方法,這些方法將會(huì )貫穿整個(gè)高中的數學(xué)學(xué)習。 3.在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導入、指數函數的性質(zhì)研究、例題與訓練、課內小節等教學(xué)環(huán)節中都安排了學(xué)生的討論、分組、交流等活動(dòng),讓學(xué)生變被動(dòng)的接受和記憶知識為在合作學(xué)習的樂(lè )趣中主動(dòng)地建構新知識的框架和體系,從而完成知識的內化過(guò)程。 4.注意學(xué)習過(guò)程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應用、拓展的過(guò)程中按照先易后難的順序層層遞進(jìn),讓學(xué)生感到有挑戰、有收獲,跳一跳,夠得著(zhù),不同難度的題目設計將盡可能照顧到課堂學(xué)生的個(gè)體差異。 四、程序設計 在設計本節課的教學(xué)過(guò)程中,本著(zhù)遵循學(xué)生的認知規律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程的原則,我設計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現和認識指數函數的圖象和性質(zhì)。 1.創(chuàng )設情景、導入新課 教師活動(dòng): 、儆秒娔X展示兩個(gè)實(shí)例,第一個(gè)是計算機價(jià)格下降問(wèn)題,第二個(gè)是生物中細胞分裂的例子, 、趯W(xué)生按奇數列、偶數列分組。 學(xué)生活動(dòng): 、俜謩e寫(xiě)出計算機價(jià)格y與經(jīng)過(guò)月份x的關(guān)系式和細胞個(gè)數y與分裂次數x的關(guān)系式,并互相交流; 、诨貞浿笖档母拍; 、蹥w納指數函數的概念; 、芊治龀鰧χ笖岛瘮档讛涤懻摰谋匾砸约胺诸(lèi)的方法。 設計意圖:通過(guò)生活實(shí)例激發(fā)學(xué)生的學(xué)習動(dòng)機,掃清由概念不清而造成的知識障礙,培養學(xué)生思維的主動(dòng)性,為突破難點(diǎn)做好準備; 2.啟發(fā)誘導、探求新知 教師活動(dòng): 、俳o出兩個(gè)簡(jiǎn)單的指數函數并要求學(xué)生畫(huà)它們的圖象②在準備好的小黑板上規范地畫(huà)出這兩個(gè)指數函數的圖象③板書(shū)指數函數的性質(zhì)。 學(xué)生活動(dòng): 、佼(huà)出兩個(gè)簡(jiǎn)單的指數函數圖象 、诮涣、討論 、蹥w納出研究函數性質(zhì)涉及的方面 、芸偨Y出指數函數的性質(zhì)。 設計意圖:讓學(xué)生動(dòng)手作簡(jiǎn)單的指數函數的圖象對深刻理解本節課的內容有著(zhù)一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進(jìn)一步規范學(xué)生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學(xué)生就會(huì )很自然的通過(guò)觀(guān)察圖象總結出指數函數的性質(zhì),同時(shí)對于底數的討論也就變得順理成章。 3.鞏固新知、反饋回授 教師活動(dòng): 、侔鍟(shū)例1 、诎鍟(shū)例2第一問(wèn) 、劢榻B有關(guān)考古的拓展知識。 各位老師: 大家好!我叫周xx,來(lái)自湖南科技大學(xué)。我說(shuō)課的題目是《算法的概念》,內容選自于新課程人教A版必修3第一章第一節,課時(shí)安排為兩個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過(guò)程分析等五大方面來(lái)闡述我對這節課的分析和設計: 一、教材分析 1.教材所處的地位和作用 現代社會(huì )是一個(gè)信息技術(shù)發(fā)展很快的社會(huì ),算法進(jìn)入高中數學(xué)正是反映了時(shí)代的需要,它是當今社會(huì )必備的基礎知識,算法的學(xué)習是使用計算機處理問(wèn)題前的一個(gè)必要的步驟,它可以讓學(xué)生們知道如何利用現代技術(shù)解決問(wèn)題。又由于算法的具體實(shí)現上可以和信息技術(shù)相結合。因此,算法的學(xué)習十分有利于提高學(xué)生的邏輯思維能力,培養學(xué)生的理性精神和實(shí)踐能力。 2.教學(xué)的重點(diǎn)和難點(diǎn) 重點(diǎn):初步理解算法的定義,體會(huì )算法思想,能夠用自然語(yǔ)言描述算法難點(diǎn):把自然語(yǔ)言轉化為算法語(yǔ)言。 二、教學(xué)目標分析 1.知識目標:了解算法的含義,體會(huì )算法的思想;能夠用自然語(yǔ)言描述解決具體問(wèn)題的算法;理解正確的算法應滿(mǎn)足的要求。 2.能力目標:讓學(xué)生感悟人們認識事物的一般規律:由具體到抽象,再有抽象到具體,培養學(xué)生的觀(guān)察能力,表達能力和邏輯思維能力。 3.情感目標:對計算機的算法語(yǔ)言有一個(gè)基本的了解,明確算法的要求,認識到計算機是人類(lèi)征服自然的一有力工具,進(jìn)一步提高探索、認識世界的能力。 三、教學(xué)方法分析 采用"問(wèn)題探究式"教學(xué)法,以多媒體為輔助手段,讓學(xué)生主動(dòng)發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題,培養學(xué)生的探究論證、邏輯思維能力。 四、學(xué)情分析 算法這部分的使用性很強,與日常生活聯(lián)系緊密,雖然是新引入的章節,但很容易激發(fā)學(xué)生的學(xué)習興趣。在教師的引導下,通過(guò)多媒體輔助教學(xué),學(xué)生比較容易掌握本節課的內容。 五、教學(xué)過(guò)程分析 1.創(chuàng )設情景:我首先向學(xué)生們展示章頭圖,介紹圖中的后景是取自宋朝數學(xué)家朱世杰的數學(xué)作品《四元玉鑒》,告訴學(xué)生們章頭圖正是體現了中國古代數學(xué)與現代計算機科學(xué)的聯(lián)系,它們的基礎都是"算法". 「設計意圖」是為了充分挖掘章頭圖的教學(xué)價(jià)值,體現 1)算法概念的由來(lái); 2)我們將要學(xué)習的算法與計算機有關(guān); 3)展示中國古代數學(xué)的成就; 4)激發(fā)學(xué)生學(xué)習算法的興趣。從而順其自然的過(guò)渡到本節課要討論的話(huà)題。(約4分鐘) 2.引入新課:在這一環(huán)節我首先和學(xué)生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學(xué)生經(jīng)歷算法分析的基本過(guò)程,培養思維的條理性,引導學(xué)生關(guān)注更具一般性解法,形成解法向算法過(guò)渡的準備,為建立算法概念打下基礎。緊接著(zhù)在此基礎上進(jìn)一步復習回顧解一般的二元一次方程組的步驟,引導學(xué)生分析解題過(guò)程的結構,寫(xiě)出求一般的二元一次方程組的解的算法,并把它編成程序,讓學(xué)生輸入數據,體驗計算機直接給出方程組的解。目的是讓學(xué)生明白算法是用來(lái)解決某一類(lèi)問(wèn)題的,從而提高學(xué)生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。 之后,我就向學(xué)生們提出問(wèn)題:到底什么是算法?如何用語(yǔ)言來(lái)表達算法的`涵義?這里讓學(xué)生們根據剛剛的探索交流、思考并回答,然后老師進(jìn)行歸納,得出算法的基本概念,并幫助學(xué)生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學(xué)生們真正參與到算法概念的形成過(guò)程中來(lái),體會(huì )算法思想。(約8分鐘) 3.例題講解:在這一環(huán)節我安排了兩道例題,以幫助學(xué)生們能更好地理解算法的基本概念,并應用到實(shí)際解決問(wèn)題中去,而不只是單純的對數學(xué)思想的領(lǐng)悟。 這兩道例題均選自課本的例1和例2. 例1是讓我們設定一個(gè)程序以判斷一個(gè)數是否為質(zhì)數。質(zhì)數是我們之前已經(jīng)學(xué)習的內容,為了能更順利地完成解題過(guò)程,這里有必要引導學(xué)生們回顧一下質(zhì)數應滿(mǎn)足的條件,然后再根據這個(gè)來(lái)探索解題步驟。通過(guò)例1讓學(xué)生認識到求解結構中存在"重復".為導出一般問(wèn)題的算法創(chuàng )造條件,也為學(xué)習算法的自然語(yǔ)言表示提供前提。告訴學(xué)生們本算法就是用自然語(yǔ)言的形式描述的。并且設計算法一定要做到以下要求: 。1)寫(xiě)出的算法必須能解決一類(lèi)問(wèn)題,并且能夠重復使用。 。2)要使算法盡量簡(jiǎn)單、步驟盡量少。 。3)要保證算法正確,且計算機能夠執行。 在例1的基礎上我們繼續研究例2,例2是要求我們設計一個(gè)利用二分法來(lái)求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過(guò)程,然后設計出解題步驟。二分法是算法中的經(jīng)典問(wèn)題,具有明顯的順序和可操作的特點(diǎn)。因此通過(guò)例2可以讓學(xué)生進(jìn)一步了解算法的邏輯結構,領(lǐng)會(huì )算法的思想,體會(huì )算法的的特征。同時(shí)也可以鞏固用自然語(yǔ)言描述算法,提高用自然語(yǔ)言描述算法的表達水平。另外,借助例題加強學(xué)生對算法概念的理解,體會(huì )算法具有程序性、有限性、構造性、精確性、指向性的特點(diǎn),算法以問(wèn)題為載體,泛泛而談沒(méi)有意義。(約20分鐘) 4.課堂小結: 。1)算法的概念和算法的基本特征 。2)算法的描述方法,算法可以用自然語(yǔ)言描述。 。3)能利用算法的思想和方法解決實(shí)際問(wèn)題,并能寫(xiě)出一此簡(jiǎn)單問(wèn)題的算法課堂小結是一堂課內容的概括和總結,有利于學(xué)生把握本節課的重點(diǎn),對所學(xué)知識有一個(gè)系統整體的認識。(約6分鐘) 5.布置作業(yè):課本練習1、2題 課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。對作業(yè)實(shí)施分層設置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。 一、教材分析 1、教材內容 本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》2.1。3函數簡(jiǎn)單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習增函數、減函數的定義,以及應用定義解決一些簡(jiǎn)單問(wèn)題。 2、教材所處地位、作用 函數的性質(zhì)是研究函數的基石,函數的單調性是首先研究的一個(gè)性質(zhì)。通過(guò)對本節課的學(xué)習,讓學(xué)生領(lǐng)會(huì )函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡(jiǎn)單的實(shí)際問(wèn)題。通過(guò)上述活動(dòng),加深對函數本質(zhì)的認識。函數的單調性既是學(xué)生學(xué)過(guò)的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎。此外在比較數的大小、函數的定性分析以及相關(guān)的數學(xué)綜合問(wèn)題中也有廣泛的應用,它是整個(gè)高中數學(xué)中起著(zhù)承上啟下作用的核心知識之一。從方法論的角度分析,本節教學(xué)過(guò)程中還滲透了探索發(fā)現、數形結合、歸納轉化等數學(xué)思想方法。 3、教學(xué)目標 。1)知識與技能:使學(xué)生理解函數單調性的概念,掌握判別函數單調性 的方法; 。2)過(guò)程與方法:從實(shí)際生活問(wèn)題出發(fā),引導學(xué)生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問(wèn)題,讓學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。 。3)情感態(tài)度價(jià)值觀(guān):讓學(xué)生體驗數學(xué)的科學(xué)功能、符號功能和工具功能,培養學(xué)生直覺(jué)觀(guān)察、探索發(fā)現、科學(xué)論證的良好的數學(xué)思維品質(zhì)。 4、重點(diǎn)與難點(diǎn) 教學(xué)重點(diǎn)(1)函數單調性的概念; 。2)運用函數單調性的定義判斷一些函數的單調性。 教學(xué)難點(diǎn)(1)函數單調性的知識形成; 。2)利用函數圖象、單調性的定義判斷和證明函數的單調性。 二、教法分析與學(xué)法指導 本節課是一節較為抽象的數學(xué)概念課,因此,教法上要注意: 1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)了學(xué)生求知欲,調動(dòng)了學(xué)生主體參與的積極性。 2、在運用定義解題的過(guò)程中,緊扣定義中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的`主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類(lèi)問(wèn)題的解決。 3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用。具體體現在設問(wèn)、講評和規范書(shū)寫(xiě)等方面,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并成功地完成書(shū)面表達。 4、采用投影儀、多媒體等現代教學(xué)手段,增大教學(xué)容量和直觀(guān)性。 在學(xué)法上: 1、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和解決問(wèn)題的能力。 2、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的一個(gè)飛躍。 三、教學(xué)過(guò)程 教學(xué) 環(huán)節 教學(xué)過(guò)程 設計意圖 問(wèn)題 情境 。úシ胖醒腚娨暸_天氣預報的音樂(lè )) 滿(mǎn)足在定義域上的單調性的討論。 2、重視學(xué)生發(fā)現的過(guò)程。如:充分暴露學(xué)生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過(guò)程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認知結構升華、發(fā)現的過(guò)程。 3、重視學(xué)生的動(dòng)手實(shí)踐過(guò)程。通過(guò)對定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運用定義。 4、重視課堂問(wèn)題的設計。通過(guò)對問(wèn)題的設計,引導學(xué)生解決問(wèn)題。 一、教材分析: "數列"是中學(xué)數學(xué)的重要內容之一。不僅在歷年的高考中占有一定的比重,而且在實(shí)際生活中也經(jīng)常要用到數列的一些知識。例如:儲蓄、分期付款中的有關(guān)計算就要用到數列知識。 就本節課而言,在給出數列的基本概念之后,結合例題,指出數列可以看作定義域為正整數集(或它的有限子集)的函數。因此,本節課的內容,一方面是前面函數知識的延伸及應用,可以使學(xué)生加深對函數概念的理解;另一方面也可以為后面學(xué)習等差數列、等比數列的通項、求和等知識打下鋪墊。所以本節課在教材中起到了"承上啟下"的作用,必須講清、講透。 二、教學(xué)目標: 根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標。 1、知識目標: 。1)形成并掌握數列及其有關(guān)概念,識記數列的表示和分類(lèi),了解數列通項公式的意義。 。2)理解數列的通項公式,能根據數列的通項公式寫(xiě)出數列的任意一項。對比較簡(jiǎn)單的數列,使學(xué)生能根據數列的前幾項觀(guān)察歸納出數列的通項公式,并通過(guò)數列與函數的比較加深對數列的認識。 2、能力目標: 培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等分析問(wèn)題的能力,同時(shí)加深理解數學(xué)知識之間相互滲透性的思想。 3、情感目標: 通過(guò)滲透函數、方程思想,培養學(xué)生的思維能力,使學(xué)生在民主、和諧的活動(dòng)中感受學(xué)習的樂(lè )趣。通過(guò)介紹數列與函數間存在的特殊到一般關(guān)系,向學(xué)生進(jìn)行辯證唯物主義思想教育。 三、重點(diǎn)、難點(diǎn): 1、教學(xué)重點(diǎn) 理解數列的概念及其通項公式,加強與函數的聯(lián)系,并能根據通項公式寫(xiě)出數列中的任意一項。 2、教學(xué)難點(diǎn) 根據數列前幾項的特點(diǎn),通過(guò)多角度、多層次的觀(guān)察和分析,歸納出數列的通項公式。 四、教法學(xué)法 本節課以"問(wèn)題情境——歸納抽象——鞏固訓練"的模式展開(kāi),引導學(xué)生從知識和生活經(jīng)驗出發(fā),提出問(wèn)題并與學(xué)生共同探索、討論解決問(wèn)題的方法,讓學(xué)生經(jīng)歷知識的形成過(guò)程,從而理解更加透徹。 現代教學(xué)觀(guān)明確指出:教師是主導,學(xué)生是主體,學(xué)生應成為學(xué)習的主人。根據本節內容及學(xué)生的認知規律,針對不同內容應選擇不同的方法。對于國際象棋棋盤(pán)麥粒采用電腦動(dòng)畫(huà)演示,增強感性認識;所舉的引例及數列的函數定義,可采用探索發(fā)現法;對通項公式及數列的分類(lèi)等概念采用指導閱讀法;對于難題(根據數列的前幾項寫(xiě)出一個(gè)通項公式)采用講練結合法。 "授人以魚(yú),不如授人以漁",平時(shí)在教學(xué)中教師應不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課從學(xué)生實(shí)際出發(fā),創(chuàng )設情境,引導學(xué)生觀(guān)察、分析,探索發(fā)現,歸納總結,培養學(xué)生積極思維的品質(zhì),加強主動(dòng)學(xué)習的能力。 為了有效地突出重點(diǎn),突破難點(diǎn),增大課堂容量,提高課堂效率,本節課將常規教學(xué)手段與現代教學(xué)手段相結合,將引例、例題、練習等實(shí)物投影。 五、教學(xué)過(guò)程 1、創(chuàng )設情景,激發(fā)興趣,引入新課 。1)電腦動(dòng)畫(huà)演示:國際象棋棋盤(pán)格子中放有麥粒的示意圖,從而得到一組數:1,2,22,23……263 敘述故事:給你一張報紙,你可以用它登上月球,你相信嗎?只要不斷地將報紙對折42次以后,報紙的厚度就可以達到月球和地球的距離。 設計意圖:以實(shí)例引入概念,再配以電腦動(dòng)畫(huà),敘述小故事,增強了感性認識,調動(dòng)學(xué)生學(xué)習新知識的積極性。 。2)投影演示,再觀(guān)察以下幾列數: 、倌嘲鄬W(xué)生的學(xué)號:1,2,3,4……,50 、趶1984年到2004年,中國體育健兒參加奧運會(huì )每屆所得的金牌數: 15,5,16,16,28,32 、勰炒位顒(dòng),在1km長(cháng)的路段,從起點(diǎn)開(kāi)始,每隔10m放置一個(gè)垃圾筒,由近及遠各筒與起點(diǎn)的距離排成一列數:0.10.20.30,……1000 、芊派湫晕镔|(zhì)衰變,設原質(zhì)量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,…… 2、歸納抽象,形成概念 。1)學(xué)生嘗試敘述數列的定義:?jiǎn)l(fā)學(xué)生觀(guān)察上述幾組數據后,進(jìn)行歸納總結定義:按一定次序排成的一列數,叫數列,便于培養學(xué)生的抽象概括能力。 舉例1:1,3,5,7與7,5,3,1這兩個(gè)數列有何區別? 舉例2:-1,1,-1,1,……是不是一個(gè)數列? 設計意圖:使學(xué)生注意把數列中的數和集合中的元素區分開(kāi)來(lái): 、贁盗兄械臄凳怯许樞虻,而集合中的元素是無(wú)序的。 、跀盗兄械臄悼梢灾貜统霈F,而集中的元素不能重復出現。 進(jìn)一步加深學(xué)生對數列定義的理解。 。2)數列的項及項的`表示方法:an 。3)數列的表示方法:可寫(xiě)成:a1,a2,a3,……,an…… 或簡(jiǎn)記為:{an},注意an與{an}的區別 上述(2)(3)采用指導閱讀法(書(shū)P106頁(yè)第7節~第8節第一句話(huà)),對an與{an}的區別進(jìn)行集體討論歸納。 3、通項公式的探索 。1)觀(guān)察歸納定義 由學(xué)生觀(guān)察引例中數列的項與它在數列中的位置(即項的序號)間的關(guān)系: 實(shí)物投影: 序號123……64 ↓↓↓↓ 項1=21-12=22-122=23-1……263 從而可看出項與項的序號之間可用一個(gè)公式:an=2n-1表示,該公式叫數列的通項公式,然后歸納抽象出數列的通項公式的定義(略)。 。2)用函數觀(guān)點(diǎn)看待數列:這是一個(gè)難點(diǎn),講解必須清楚、透徹。數列可看作是以自然數集或它的有限子集為定義域的函數,當自變量由小到大依次取值時(shí)對應的一列函數值(這是數列的本質(zhì)),其圖象是一群孤立的點(diǎn),畫(huà)圖(棋盤(pán)麥粒這個(gè)數列) 設計意圖:加深對函數概念的理解。 。3)數列的分類(lèi),并口答引例及數列①②③④分別歸于哪類(lèi)數列。 4、講解例題 設計例題:①根據通項公式寫(xiě)出前幾項并會(huì )判斷某個(gè)數是否為該數列中的項;②根據數列的前幾項寫(xiě)出一個(gè)通項公式。 例1,根據下列數列{an}的通項公式,寫(xiě)出它的前5項 。1)an=n/(n+1)(2)an=(-1)n·n 設計意圖:使學(xué)生正確掌握通項與序號的關(guān)系。 變式訓練:?jiǎn)?wèn)2589/2590是否為數列(1)中的項 設計意圖:使學(xué)生明確方程思想是解決數列問(wèn)題的重要方法。 例2,寫(xiě)出下列數列的一個(gè)通項公式,使它的前4項分別是下列各數: 。1)1,3,5,7 。2)2,-2,2,-2 。3)1,11,111, 設計意圖:引導學(xué)生進(jìn)行解題后反思,對完善學(xué)生的認知結構是十分必要。寫(xiě)通項公式時(shí),就是要去發(fā)現an與n的關(guān)系,對各項進(jìn)行多角度、多層次觀(guān)察,找出這些項與相應的項數(即序號)之間的對應關(guān)系。(注:遇到分數,可分別觀(guān)察分子組的數列特征與分母組成的數列特征;若為正負相間的項,則可用-1的奇次冪或偶次冪進(jìn)行符號交換,有時(shí)也可根據相鄰的項,適當調整有關(guān)的表達式。) 5、練習鞏固 投影演示: 。1)寫(xiě)出數列1,-1,1,-1,……的一個(gè)通項公式 。2)是否所有數列都有通項公式? 上述(1)的設計意圖:an=(-1)n+1也可寫(xiě)成(分段函數的形式)(當n為奇數時(shí),n為偶數時(shí)),說(shuō)明根據數列的前幾項寫(xiě)出的通項公式可能不唯一。(2):引例②就沒(méi)有通項公式。通過(guò)這些練習,使學(xué)生能及時(shí)消化,及時(shí)鞏固所學(xué)內容。 6、歸納小結 由學(xué)生試著(zhù)總結本節課所學(xué)內容,老師適當補充,可以訓練學(xué)生的收斂思維,有助于完善學(xué)生的思維結構。 。1)數列及有關(guān)概念。 。2)根據數列的通項公式求任意一項,并能判斷某數是否為該數列中的項。 。3)根據數列的前幾項寫(xiě)出數列的一個(gè)通項公式。 。4)數列與函數的關(guān)系 7、課后作業(yè): 。1)課本P110/習題3.1/1(3)(4)(5); 書(shū)P108/4(1)(3)(4) 。2)復習看書(shū)P106-107 六、評價(jià)與分析 本節課,教師可通過(guò)創(chuàng )設情景,適時(shí)引導的方式來(lái)激發(fā)學(xué)生積極思考的欲望,有時(shí)直接講解,有時(shí)組織掌握學(xué)生集體討論、探索發(fā)現,課堂上除反復強調注意點(diǎn)外,還應通過(guò)課堂練習和課后作業(yè)來(lái)強化它們。 通過(guò)本節課的學(xué)習,學(xué)生不僅掌握了數列及有關(guān)概念,而且可體會(huì )到數學(xué)概念形成過(guò)程中蘊含的基本數學(xué)思想:"函數思想、數形結合思想、特殊化思想",使之獲得內心感受,提高了基本技能和解決問(wèn)題的能力,也可以逐漸學(xué)會(huì )辯證地看待問(wèn)題。 一、說(shuō)教材 1、從在教材中的地位與作用來(lái)看 《等比數列的前n項和》是數列這一章中的一個(gè)重要資料,它不僅僅在現實(shí)生活中有著(zhù)廣泛的實(shí)際應用,如儲蓄、分期付款的有關(guān)計算等等,并且公式推導過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習和工作中必備的數學(xué)素養。 2、從學(xué)生認知角度看 從學(xué)生的思維特點(diǎn)看,很容易把本節資料與等差數列前n項和從公式的構成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著(zhù)本質(zhì)的不一樣,這對學(xué)生的思維是一個(gè)突破,另外,對于q=1這一特殊情景,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯。 3、學(xué)情分析 教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有必須的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步構成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴謹。 4、重點(diǎn)、難點(diǎn) 教學(xué)重點(diǎn):公式的推導、公式的特點(diǎn)和公式的運用。 教學(xué)難點(diǎn):公式的推導方法和公式的靈活運用。 公式推導所使用的“錯位相減法”是高中數學(xué)數列求和方法中最常用的方法之一,它蘊含了重要的數學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。 二、說(shuō)目標 知識與技能目標: 理解并掌握等比數列前n項和公式的推導過(guò)程、公式的特點(diǎn),在此基礎上能初步應用公式解決與之有關(guān)的問(wèn)題。 過(guò)程與方法目標: 經(jīng)過(guò)對公式推導方法的探索與發(fā)現,向學(xué)生滲透特殊到一般、類(lèi)比與轉化、分類(lèi)討論等數學(xué)思想,培養學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。 情感與態(tài)度價(jià)值觀(guān): 經(jīng)過(guò)對公式推導方法的探索與發(fā)現,優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉化和理論聯(lián)系實(shí)際的辯證唯物主義觀(guān)點(diǎn)。 三、說(shuō)過(guò)程 學(xué)生是認知的主體,設計教學(xué)過(guò)程必須遵循學(xué)生的認知規律,盡可能地讓學(xué)生去經(jīng)歷知識的構成與發(fā)展過(guò)程,結合本節課的`特點(diǎn),我設計了如下的教學(xué)過(guò)程: 1、創(chuàng )設情境,提出問(wèn)題 在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當時(shí)的印度國王大為贊賞,對他說(shuō):我能夠滿(mǎn)足你的任何要求。西薩說(shuō):請給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學(xué)家計算,結果出來(lái)后,國王大吃一驚。為什么呢 設計意圖:設計這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調動(dòng)學(xué)習的積極性。故事資料緊扣本節課的主題與重點(diǎn)。 此時(shí)我問(wèn):同學(xué)們,你們明白西薩要的是多少粒小麥嗎引導學(xué)生寫(xiě)出麥?倲。帶著(zhù)這樣的問(wèn)題,學(xué)生會(huì )動(dòng)手算了起來(lái),他們想到用計算器依次算出各項的值,然后再求和。這時(shí)我對他們的這種思路給予肯定。 設計意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉過(guò)彎來(lái),因而在教學(xué)中應舍得花時(shí)間營(yíng)造知識構成過(guò)程的氛圍,突破學(xué)生學(xué)習的障礙。同時(shí),構成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆。 2、師生互動(dòng),探究問(wèn)題 在肯定他們的思路后,我之后問(wèn):1,2,22,…,263是什么數列有何特征應歸結為什么數學(xué)問(wèn)題呢 探討1:,記為(1)式,注意觀(guān)察每一項的特征,有何聯(lián)系(學(xué)生會(huì )發(fā)現,后一項都是前一項的2倍) 探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現 設計意圖:留出時(shí)間讓學(xué)生充分地比較,等比數列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,所以教學(xué)中應著(zhù)力在這兒做文章,從而抓住培養學(xué)生的辯證思維能力的良好契機。 經(jīng)過(guò)比較、研究,學(xué)生發(fā)現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。教師指出:這就是錯位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢 設計意圖:經(jīng)過(guò)繁難的計算之苦后,突然發(fā)現上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗,從而增強學(xué)習數學(xué)的興趣和學(xué)好數學(xué)的信心。 3、類(lèi)比聯(lián)想,解決問(wèn)題 這時(shí)我再順勢引導學(xué)生將結論一般化, 那里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個(gè)別學(xué)生進(jìn)行指導。 設計意圖:在教師的指導下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自我探究公式,從而體驗到學(xué)習的愉快和成就感。 對不對那里的q能不能等于1等比數列中的公比能不能為1q=1時(shí)是什么數列此時(shí)sn=(那里引導學(xué)生對q進(jìn)行分類(lèi)討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎。) 再次追問(wèn):結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(lái)(引導學(xué)生得出公式的另一形式) 設計意圖:經(jīng)過(guò)反問(wèn)精講,一方面使學(xué)生加深對知識的認識,完善知識結構,另一方面使學(xué)生由簡(jiǎn)單地模仿和理解,變?yōu)閷χR的主動(dòng)認識,從而進(jìn)一步提高分析、類(lèi)比和綜合的能力。這一環(huán)節十分重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話(huà),然而卻有畫(huà)龍點(diǎn)睛之妙用。 4、討論交流,延伸拓展 。裕 一、說(shuō)教材: 1、地位及作用: “橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書(shū)的重點(diǎn)內容之一,也是歷年高考、會(huì )考的必考內容,是在學(xué)完求曲線(xiàn)方程的基礎上,進(jìn)一步研究橢圓的特性,以完成對圓錐曲線(xiàn)的全面研究,為今后的學(xué)習打好基礎,因此本節內容具有承前啟后的作用。 2、教學(xué)目標: 根據《教學(xué)大綱》,《考試說(shuō)明》的要求,并根據教材的具體內容和學(xué)生的實(shí)際情況,確定本節課的教學(xué)目標: 。1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。 。2)能力目標: 。╝)培養學(xué)生靈活應用知識的能力。 。╞)培養學(xué)生全面分析問(wèn)題和解決問(wèn)題的能力。 。╟)培養學(xué)生快速準確的運算能力。 。3)德育目標旨在引導學(xué)生培養數形結合的思維方式,掌握類(lèi)比和分類(lèi)討論的方法,并樹(shù)立由直觀(guān)感受向理性思考過(guò)渡的辯證唯物主義觀(guān)念。 3、重點(diǎn)、難點(diǎn)和關(guān)鍵點(diǎn): 橢圓的定義與標準方程是解析幾何學(xué)習中的核心內容,它們不僅為理解雙曲線(xiàn)和拋物線(xiàn)提供了基礎框架,同時(shí)也是本節教學(xué)的重點(diǎn)所在。然而,學(xué)生的邏輯推理及歸納總結能力相對較弱,在處理橢圓標準方程推導過(guò)程中的根式二次平方運算,以及由此帶來(lái)的`復雜計算,構成了本節課的主要挑戰點(diǎn)。正確的坐標系構建對于橢圓標準方程的形成與簡(jiǎn)化至關(guān)重要,因此,選擇合適的直角坐標系是本節教學(xué)的關(guān)鍵環(huán)節之一。 二、說(shuō)教材處理 為了完成本節課的教學(xué)目標,突出重點(diǎn)、分散難點(diǎn)、根據教材的內容和學(xué)生的實(shí)際情況,對教材做以下的處理: 1、學(xué)生狀況分析及對策: 2、教材內容的組織和安排: 本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進(jìn),層層深入的原則組織和安排如下: 。1)復習提問(wèn) 。2)引入新課 。3)新課講解 。4)反饋練習 。5)歸納總結 。6)布置作業(yè) 三、說(shuō)教法和學(xué)法 為了激發(fā)學(xué)生的學(xué)習熱情,引導他們從被動(dòng)接受轉變?yōu)榉e極主動(dòng)且愉悅地探索知識,本課程將注重實(shí)踐操作,鼓勵學(xué)生親自動(dòng)手,并在教師的引導下逐步深入思考,積極參與課堂互動(dòng)。我們特別強調方程推導的教學(xué),旨在將知識傳授與能力培養緊密結合起來(lái),實(shí)現兩者和諧統一。為此,我們將采用"啟發(fā)式教學(xué)法"作為主要的教學(xué)策略。通過(guò)啟發(fā)式教學(xué)法,教師將扮演引導者的角色,通過(guò)提出問(wèn)題、設置情境和提供資源,激發(fā)學(xué)生的好奇心和求知欲。學(xué)生將在教師的引導下,主動(dòng)思考、探索和解決問(wèn)題,形成獨立思考的能力。在這個(gè)過(guò)程中,教師將適時(shí)介入,給予必要的提示和反饋,幫助學(xué)生構建知識體系,同時(shí)促進(jìn)他們的批判性思維和創(chuàng )新意識的發(fā)展。通過(guò)這樣的教學(xué)方式,不僅能夠確保知識的有效傳遞,還能有效提升學(xué)生的綜合能力,使他們在學(xué)習過(guò)程中體驗到成就感和樂(lè )趣。 3、利用計算機繪制圖形的動(dòng)態(tài)展示來(lái)歸納出規律性特征,并通過(guò)計算機的動(dòng)態(tài)效果增強學(xué)生的學(xué)習熱情。 四、教學(xué)過(guò)程 教學(xué)環(huán)節 3、設a(—2,0),b(2,0),三角形abp周長(cháng)為10,動(dòng)點(diǎn)p軌跡方程。 例1屬基礎,主要反饋學(xué)生掌握基本知識的程度。 例2可強化基本技能訓練和基本知識的靈活運用。 小結 為了確保學(xué)生對當前章節的內容有全面且深入的理解,教師應指導學(xué)生從以下幾方面進(jìn)行總結:1、xx知識要點(diǎn)回顧xx:首先,學(xué)生應回顧本章節的主要知識點(diǎn),包括核心概念、定義、公式等,確保對每個(gè)細節都了如指掌。2、xx邏輯結構分析xx:其次,分析章節的邏輯結構,理解各部分之間的聯(lián)系和層次,以及作者或教材如何構建知識體系的。3、xx實(shí)例應用探討xx:接著(zhù),通過(guò)具體實(shí)例來(lái)應用所學(xué)知識,思考在實(shí)際情境中如何運用這些理論或方法,增強實(shí)踐能力。4、xx難點(diǎn)疑點(diǎn)解答xx:針對在學(xué)習過(guò)程中遇到的難點(diǎn)或疑問(wèn),進(jìn)行深入討論,尋求解決之道,以鞏固理解。5、xx自我反思與總結xx:最后,鼓勵學(xué)生進(jìn)行個(gè)人反思,思考自己在學(xué)習過(guò)程中的收獲、存在的不足以及改進(jìn)的方法,形成個(gè)人的學(xué)習心得。通過(guò)這樣的總結方式,不僅能夠加深學(xué)生對知識的理解和記憶,還能培養其批判性思維和自主學(xué)習的能力。 1、橢圓的定義和標準方程及其應用。 2、橢圓標準方程中a,b,c諸關(guān)系。 3、求橢圓方程常用方法和基本思路。 構建知識概要以形成系統化的知識結構,這一過(guò)程能顯著(zhù)提升學(xué)生對當前章節內容的理解深度,并且在培養他們的歸納和總結能力方面發(fā)揮重要作用。通過(guò)這一方法,學(xué)生不僅能夠更牢固地掌握圓錐曲線(xiàn)的知識,還能建立起自信,確信自己有能力深入學(xué)習和理解這一數學(xué)領(lǐng)域。 布置作業(yè) 。1)77頁(yè)——78頁(yè)1,2,3,79頁(yè)11 。2)預習下節內容 加強本章節學(xué)習要點(diǎn)的掌握,深化基礎技能的實(shí)踐操作,引導學(xué)生養成高效的學(xué)習態(tài)度與優(yōu)良品質(zhì),識別并填補教學(xué)過(guò)程中的空白與缺陷。 尊敬的各位評委、各位老師大家好!我說(shuō)課的題目是《函數的單調性》,我將從四個(gè)方面來(lái)闡述我對這節課的設計. 一、教材分析 1、 教材的地位和作用 。1)本節課主要對函數單調性的學(xué)習; 。2)它是在學(xué)習函數概念的基礎上進(jìn)行學(xué)習的,同時(shí)又為基本初等函數的學(xué)習奠定了基礎,所以他在教材中起著(zhù)承前啟后的重要作用;(可以看看這一課題的前后章節來(lái)寫(xiě)) 。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題 。ǜ鶕唧w的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問(wèn)題就刪掉) 2、 教材重、難點(diǎn) 重點(diǎn):函數單調性的定義 難點(diǎn):函數單調性的證明 重難點(diǎn)突破:在學(xué)生已有知識的基礎上,通過(guò)認真觀(guān)察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現重難點(diǎn)突破。(這個(gè)必須要有) 二、教學(xué)目標 知識目標:(1)函數單調性的定義 。2)函數單調性的證明 能力目標:培養學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復雜,由特殊到一般的化歸思想 情感目標:培養學(xué)生勇于探索的精神和善于合作的意識 。ㄟ@樣的教學(xué)目標設計更注重教學(xué)過(guò)程和情感體驗,立足教學(xué)目標多元化) 三、教法學(xué)法分析 1、教法分析 “教必有法而教無(wú)定法”,只有方法得當才會(huì )有效。新課程標準之處教師是教學(xué)的組織者、引導者、合作者,在教學(xué)過(guò)程要充分調動(dòng)學(xué)生的積極性、主動(dòng)性。本著(zhù)這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價(jià)法 2、學(xué)法分析 “授人以魚(yú),不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀(guān)察發(fā)現法、合作交流法、歸納總結法。 。ㄇ叭糠钟脮r(shí)控制在三分鐘以?xún),可適當刪減) 四、教學(xué)過(guò)程 1、以舊引新,導入新知 通過(guò)課前小研究讓學(xué)生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀(guān)察函數圖象的特點(diǎn),總結歸納。通過(guò)課上小組討論歸納,引導學(xué)生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線(xiàn)上升的,而二次函數f(x)=x^2的圖像是一個(gè)曲線(xiàn),在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來(lái)更自然) 2、創(chuàng )設問(wèn)題,探索新知 緊接著(zhù)提出問(wèn)題,你能用二次函數f(x)=x^2表達式來(lái)描述函數在(-∞,0)的圖像?教師總結,并板書(shū),揭示函數單調性的定義,并注意強調可以利用作差法來(lái)判斷這個(gè)函數的單調性。 讓學(xué)生模仿剛才的.表述法來(lái)描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規范學(xué)生的數學(xué)用語(yǔ)。 讓學(xué)生自主學(xué)習函數單調區間的定義,為接下來(lái)例題學(xué)習打好基礎。 3、 例題講解,學(xué)以致用 例1主要是對函數單調區間的鞏固運用,通過(guò)觀(guān)察函數定義在(—5,5)的圖像來(lái)找出函數的單調區間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評來(lái)糾正答案,檢查學(xué)生對函數單調區間的掌握。強調單調區間一般寫(xiě)成半開(kāi)半閉的形式 例題講解之后可讓學(xué)生自行完成課后練習4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習效果。 例2是將函數單調性運用到其他領(lǐng)域,通過(guò)函數單調性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對例題進(jìn)行證明,以規范總結證明步驟。一設二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。 學(xué)生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過(guò)自評、互評檢查證明步驟。 4、歸納小結 本節課我們主要學(xué)習了函數單調性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養學(xué)生勇于探索的精神和善于合作的意識。 5、作業(yè)布置 為了讓學(xué)生學(xué)習不同的數學(xué),我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2 6、板書(shū)設計 我力求簡(jiǎn)潔明了地概括本節課的學(xué)習要點(diǎn),讓學(xué)生一目了然。 。ㄟ@部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說(shuō)明學(xué)生的活動(dòng)) 五、教學(xué)評價(jià) 本節課是在學(xué)生已有知識的基礎上學(xué)習的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評、互評,讓內部動(dòng)機和外界刺激協(xié)調作用,促進(jìn)其數學(xué)素養不斷提高。 【高中數學(xué)說(shuō)課稿】相關(guān)文章: 高中數學(xué)的說(shuō)課稿04-19 高中數學(xué)全套說(shuō)課稿06-08 高中數學(xué)優(yōu)秀說(shuō)課稿03-03 高中數學(xué)數列說(shuō)課稿06-07 高中數學(xué)優(yōu)秀說(shuō)課稿03-08 高中數學(xué)說(shuō)課稿06-13 高中數學(xué)說(shuō)課稿06-12 高中數學(xué)說(shuō)課稿 6
高中數學(xué)說(shuō)課稿 7
高中數學(xué)說(shuō)課稿 8
高中數學(xué)說(shuō)課稿 9
高中數學(xué)說(shuō)課稿 10
高中數學(xué)說(shuō)課稿 11
高中數學(xué)說(shuō)課稿 12
高中數學(xué)說(shuō)課稿 13
高中數學(xué)說(shuō)課稿 14
高中數學(xué)說(shuō)課稿 15
高中數學(xué)說(shuō)課稿 16