復變函數學(xué)習心得體會(huì )范本
數學(xué)學(xué)科發(fā)展到現在,已成為了分支眾多的學(xué)科之一,復變函數則是其中一個(gè)非常重要的分支,是19世紀,Cauchy, Riemann, Weierstrass 等數學(xué)家分別從不同角度建立了復變函數的系統理論,使復變函數真正成為分析數學(xué)的一個(gè)重要分支。
復變函數是復數域上的微積分,是基于解決數學(xué)內部矛盾的間接需要而產(chǎn)生的,是由于在生產(chǎn)實(shí)際和科學(xué)研究中發(fā)現了應用原型而發(fā)展起來(lái)的!
復變函數現在是大學(xué)理工科專(zhuān)業(yè)和數學(xué)院系數學(xué)類(lèi)專(zhuān)業(yè)的一門(mén)重要的基礎課,但是復變函數的學(xué)習要有高等數學(xué)的基礎,如果沒(méi)有這方面的知識,學(xué)習復變函數無(wú)疑會(huì )非常困難,因為這門(mén)課程在初學(xué)者看來(lái)非常抽象,理論性太強。作為復變函數的教學(xué)工作者,如何使得這門(mén)課程的課堂變得生動(dòng)有趣,而且使學(xué)生在學(xué)習過(guò)程中容易理解,是我們不得不思考的問(wèn)題。
由于復變函數的導數與可導性、微分與可微性是利用類(lèi)比的方法從一元實(shí)變函數相應概念推廣到復數域后得到的,它們在形式上與一元實(shí)變函數的導數、可導性與微分一致,因此在教學(xué)中應當勤于和善于比較,既要重視共性,更要注意不同點(diǎn),切實(shí)關(guān)注在推廣到復數域后出現了什么新情況和新問(wèn)題,探討出現新問(wèn)題的原因何在。
在這篇報告中,王錦森先生非常生動(dòng)地介紹了復變函數課程的改革思路和分別討論了復變函數教學(xué)中的難點(diǎn)和重點(diǎn),并且這些難點(diǎn)和重點(diǎn)的教學(xué)方法。
難點(diǎn)和重點(diǎn)介紹方面:討論了“在復變函數可導性(從而判斷函數解析性)的充要條件中,為什么要求函數的實(shí)部和虛部必須滿(mǎn)足Cauchy-Riemann方程?”內在含義,復變函數的導數的幾何意義是否跟實(shí)變函數導數的幾何意義相同?,一元實(shí)函數的`微分中值定理能不能推廣到復變函數中來(lái)?,復變初等函數與相應的實(shí)變初等函數之間的關(guān)系與差別,復變函數的積分與一元實(shí)變函數的第二型曲線(xiàn)積分的不同之處,即,它們積分和式的結構不同,積分的表達形式不同,物理意義不同等等,還討論了學(xué)習Cauchy-Goursat 基本定理應當注意的幾個(gè)問(wèn)題,復變函數積分中有沒(méi)有與一元實(shí)變函數微積分中的微積分基本定理和Newton-Leibniz公式相對應的結論等等。
這些難點(diǎn)和重點(diǎn)教學(xué)法方面介紹了類(lèi)比教學(xué)法,化“復”為“實(shí)”,用“已知”解決“未知”的思想等教學(xué)法。
參加培訓之前我沒(méi)有考慮過(guò)這些問(wèn)題,通過(guò)這次學(xué)習,我對這些難點(diǎn)與重點(diǎn)的認識進(jìn)一步深入了。以后的教學(xué)過(guò)程中用到所學(xué)的知識,為提高教學(xué)質(zhì)量而努力。
買(mǎi)買(mǎi)提艾力喀迪爾
(喀什師范學(xué)院數學(xué)系)
【復變函數學(xué)習心得體會(huì )范本】相關(guān)文章:
Javascript入門(mén)學(xué)習js函數11-15
二次函數學(xué)習方法必看12-30
tatic函數與普通函數的區別11-22
《詩(shī)經(jīng)》英譯的國際復譯與國內復譯的比較分析09-14
javascript函數詳解11-18
編寫(xiě)JavaScript函數11-14
excel函數有哪些種類(lèi)-函數種類(lèi)知識08-13
復星集團資本運作08-15