2017年小升初數學(xué)知識點(diǎn)總結
2017年小升初數學(xué)都有哪些知識點(diǎn)和重點(diǎn)?看看下面yjbys小編給大家的大匯總,學(xué)習數學(xué)總歸用得到哦!還包括小升初中?嫉念}目類(lèi)型等。有工程問(wèn)題、行程問(wèn)題、質(zhì)數合數問(wèn)題等等。希望對同學(xué)們小升初考試復習有幫助哦~
1、小升初知識點(diǎn)(年齡問(wèn)題的三大特征)
、賰蓚(gè)人的年齡差是不變的;
、趦蓚(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;
、蹆蓚(gè)人的年齡的倍數是發(fā)生變化的;
2、小升初知識點(diǎn)(植樹(shù)問(wèn)題總結)
基本類(lèi)型:
在直線(xiàn)或者不封閉的曲線(xiàn)上植樹(shù),兩端都植樹(shù)在直線(xiàn)或者不封閉的曲線(xiàn)上植樹(shù),兩端都不植樹(shù)在直線(xiàn)或者不封閉的曲線(xiàn)上植樹(shù),只有一端植樹(shù)。
3、雞兔同籠問(wèn)題
基本概念:雞兔同籠問(wèn)題又稱(chēng)為置換問(wèn)題、假設問(wèn)題,就是把假設錯的那部分置換出來(lái);
基本思路:
、 設,即假設某種現象存在(甲和乙一樣或者乙和甲一樣):
、诩僭O后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;
、勖總(gè)事物造成的差是固定的,從而找出出現這個(gè)差的原因;
、茉俑鶕@兩個(gè)差作適當的調整,消去出現的差。
基本公式:
、侔阉须u假設成兔子:雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數)
、诎阉型米蛹僭O成雞:兔數=(總腳數一雞腳數×總頭數)÷(兔腳數一雞腳數)
關(guān)鍵問(wèn)題:找出總量的差與單位量的差。
4、知識點(diǎn)(盈虧問(wèn)題)
盈虧問(wèn)題
基本概念:一定量的對象,按照某種標準分組,產(chǎn)生一種結果:按照另一種標準分組,又產(chǎn)生一種結果,由于
分組的標準不同,造成結果的差異,由它們的關(guān)系求對象分組的組數或對象的總量.
基本思路:先將兩種分配方案進(jìn)行比較,分析由于標準的差異造成結果的變化,根據這個(gè)關(guān)系求出參加分配的總份數,然后根據題意求出對象的總量.
基本題型:
、僖淮斡杏鄶,另一次不足;
基本公式:總份數=(余數+不足數)÷兩次每份數的差
、诋攦纱味加杏鄶;
基本公式:總份數=(較大余數一較小余數)÷兩次每份數的差
、郛攦纱味疾蛔;
基本公式:總份數=(較大不足數一較小不足數)÷兩次每份數的差
基本特點(diǎn):對象總量和總的組數是不變的。
關(guān)鍵問(wèn)題:確定對象總量和總的組數。
5、小升初知識點(diǎn)(牛吃草問(wèn)題)
牛吃草問(wèn)題
基本思路:假設每頭牛吃草的速度為“1”份,根據兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(cháng)速度和總草量。
基本特點(diǎn):原草量和新草生長(cháng)速度是不變的;
關(guān)鍵問(wèn)題:確定兩個(gè)不變的量。
基本公式:
生長(cháng)量=(較長(cháng)時(shí)間×長(cháng)時(shí)間牛頭數-較短時(shí)間×短時(shí)間牛頭數)÷(長(cháng)時(shí)間-短時(shí)間);
總草量=較長(cháng)時(shí)間×長(cháng)時(shí)間牛頭數-較長(cháng)時(shí)間×生長(cháng)量。
6、小升初知識點(diǎn)(平均數問(wèn)題)
平均數
基本公式:
、倨骄鶖=總數量÷總份數
總數量=平均數×總份數
總份數=總數量÷平均數
、谄骄鶖=基準數+每一個(gè)數與基準數差的和÷總份數
基本算法:
算出總數量以及總份數,利用基本公式①或②進(jìn)行計算。
(基準數法:根據給出的數之間的關(guān)系,確定一個(gè)基準數;一般選與所有數比較接近的數或者中間數為基準數;以基準數為標準,求所有給出數與基準數的差;再求出所有差的和;再求出這些差的平均數;最后求這個(gè)差的平均數和基準數的和,就是所求的平均數,具體關(guān)系見(jiàn)基本公式②)。
7 、小升初知識點(diǎn)(周期循環(huán)數)
周期循環(huán)與數表規律
周期現象:事物在運動(dòng)變化的過(guò)程中,某些特征有規律循環(huán)出現。
周期:我們把連續兩次出現所經(jīng)過(guò)的時(shí)間叫周期。
關(guān)鍵問(wèn)題:確定循環(huán)周期。
閏 年:一年有366天;
、倌攴菽鼙4整除;②如果年份能被100整除,則年份必須能被400整除;
平 年:一年有365天。
、 年份不能被4整除;②如果年份能被100整除,但不能被400整除;
8、小升初知識點(diǎn)(抽屜原理)
抽屜原理
抽屜原則一:如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。
例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數的和,那么就有以下四種情況:
、4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀(guān)察上面四種放物體的方式,我們會(huì )發(fā)現一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說(shuō)必有一個(gè)抽屜中至少放有2個(gè)物體。
抽屜原則二:如果把n個(gè)物體放在m個(gè)抽屜里,其中n>m,那么必有一個(gè)抽屜至少有:
、賙=[n/m ]+1個(gè)物體:當n不能被m整除時(shí)。
、趉=n/m個(gè)物體:當n能被m整除時(shí)。
理解知識點(diǎn):[X]表示不超過(guò)X的最大整數。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問(wèn)題:構造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據抽屜原則進(jìn)行運算。
9、知識點(diǎn)(定義新運算)
小升初知識點(diǎn)(數列求和)
數列求和
等差數列:在一列數中,任意相鄰兩個(gè)數的差是一定的,這樣的一列數,就叫做等差數列。
基本概念:首項:等差數列的第一個(gè)數,一般用a1表示;
項數:等差數列的所有數的個(gè)數,一般用n表示;
公差:數列中任意相鄰兩個(gè)數的差,一般用d表示;
通項:表示數列中每一個(gè)數的公式,一般用an表示;
數列的和:這一數列全部數字的和,一般用Sn表示.
基本思路:等差數列中涉及五個(gè)量:a1 ,an,d, n, sn,,通項公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式:通項公式:an = a1+(n-1)d;
通項=首項+(項數一1) ×公差;
數列和公式:sn,= (a1+ an)×n÷2;
數列和=(首項+末項)×項數÷2;
項數公式:n= (an- a1)÷d+1;
項數=(末項-首項)÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末項-首項)÷(項數-1);
關(guān)鍵問(wèn)題:確定已知量和未知量,確定使用的公式。
10、小升初知識點(diǎn)(加法乘法原理和幾何計數)
加法原理:如果完成一件任務(wù)有n類(lèi)方法,在第一類(lèi)方法中有m1種不同方法,在第二類(lèi)方法中有m2種不同方法……,在第n類(lèi)方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+ m2....... +mn種不同的方法。
關(guān)鍵問(wèn)題:確定工作的分類(lèi)方法。
基本特征:每一種方法都可完成任務(wù)。
乘法原理:如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2....... ×mn種不同的方法。
關(guān)鍵問(wèn)題:確定工作的完成步驟。
基本特征:每一步只能完成任務(wù)的一部分。
直線(xiàn):一點(diǎn)在直線(xiàn)或空間沿一定方向或相反方向運動(dòng),形成的軌跡。
直線(xiàn)特點(diǎn):沒(méi)有端點(diǎn),沒(méi)有長(cháng)度。
線(xiàn)段:直線(xiàn)上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。
線(xiàn)段特點(diǎn):有兩個(gè)端點(diǎn),有長(cháng)度。
射線(xiàn):把直線(xiàn)的一端無(wú)限延長(cháng)。
射線(xiàn)特點(diǎn):只有一個(gè)端點(diǎn);沒(méi)有長(cháng)度。
、贁稻(xiàn)段規律:總數=1+2+3+…+(點(diǎn)數一1);
、跀到且幝=1+2+3+…+(射線(xiàn)數一1);
、蹟甸L(cháng)方形規律:個(gè)數=長(cháng)的線(xiàn)段數×寬的線(xiàn)段數:
、軘甸L(cháng)方形規律:個(gè)數=1×1+2×2+3×3+…+行數×列數。
11 、小升初知識點(diǎn)(質(zhì)數與合數)
質(zhì)數:一個(gè)數除了1和它本身之外,沒(méi)有別的約數,這個(gè)數叫做質(zhì)數,也叫做素數。
合數:一個(gè)數除了1和它本身之外,還有別的約數,這個(gè)數叫做合數。
質(zhì)因數:如果某個(gè)質(zhì)數是某個(gè)數的約數,那么這個(gè)質(zhì)數叫做這個(gè)數的質(zhì)因數。
分解質(zhì)因數:把一個(gè)數用質(zhì)數相乘的形式表示出來(lái),叫做分解質(zhì)因數。通常用短除法分解質(zhì)因數。任何一個(gè)合數分解質(zhì)因數的結果是唯一的。
分解質(zhì)因數的標準表示形式:N= ,其中a1、a2、a3……an都是合數N的質(zhì)因數,且a1……。
求約數個(gè)數的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互質(zhì)數:如果兩個(gè)數的最大公約數是1,這兩個(gè)數叫做互質(zhì)數。
12 、小升初知識點(diǎn)(約數與倍數)
約數和倍數:若整數a能夠被b整除,a叫做b的倍數,b就叫做a的約數。
公約數:幾個(gè)數公有的約數,叫做這幾個(gè)數的公約數;其中最大的一個(gè),叫做這幾個(gè)數的最大公約數。
最大公約數的性質(zhì):
1、幾個(gè)數都除以它們的最大公約數,所得的幾個(gè)商是互質(zhì)數。
2、幾個(gè)數的最大公約數都是這幾個(gè)數的約數。
3、幾個(gè)數的公約數,都是這幾個(gè)數的最大公約數的約數。
4、幾個(gè)數都乘以一個(gè)自然數m,所得的積的最大公約數等于這幾個(gè)數的最大公約數乘以m。
例如:12的約數有1、2、3、4、6、12;
18的約數有:1、2、3、6、9、18;
那么12和18的公約數有:1、2、3、6;
那么12和18最大的公約數是:6,記作(12,18)=6;
求最大公約數基本方法:
1、分解質(zhì)因數法:先分解質(zhì)因數,然后把相同的因數連乘起來(lái)。
2、短除法:先找公有的約數,然后相乘。
3、輾轉相除法:每一次都用除數和余數相除,能夠整除的那個(gè)余數,就是所求的最大公約數。
公倍數:幾個(gè)數公有的倍數,叫做這幾個(gè)數的公倍數;其中最小的一個(gè),叫做這幾個(gè)數的最小公倍數。
12的倍數有:12、24、36、48……;
18的倍數有:18、36、54、72……;
那么12和18的公倍數有:36、72、108……;
那么12和18最小的公倍數是36,記作[12,18]=36;
最小公倍數的性質(zhì):
1、兩個(gè)數的任意公倍數都是它們最小公倍數的倍數。
2、兩個(gè)數最大公約數與最小公倍數的乘積等于這兩個(gè)數的乘積。
求最小公倍數基本方法:1、短除法求最小公倍數;2、分解質(zhì)因數的方法。
13 、小升初知識點(diǎn)(數的整除)
一、基本概念和符號:
1、整除:如果一個(gè)整數a,除以一個(gè)自然數b,得到一個(gè)整數商c,而且沒(méi)有余數,那么叫做a能被b整除或b能整除a,記作b|a。
2、常用符號:整除符號“|”,不能整除符號“ ”;因為符號“∵”,所以的符號“∴”;
二、整除判斷方法:
1. 能被2、5整除:末位上的數字能被2、5整除。
2. 能被4、25整除:末兩位的數字所組成的數能被4、25整除。
3. 能被8、125整除:末三位的數字所組成的數能被8、125整除。
4. 能被3、9整除:各個(gè)數位上數字的和能被3、9整除。
5. 能被7整除:
、倌┤簧蠑底炙M成的數與末三位以前的數字所組成數之差能被7整除。
、谥鸫稳サ糇詈笠晃粩底植p去末位數字的2倍后能被7整除。
6. 能被11整除:
、倌┤簧蠑底炙M成的數與末三位以前的數字所組成的數之差能被11整除。
、谄鏀滴簧系臄底趾团c偶數位數的數字和的差能被11整除。
、壑鸫稳サ糇詈笠晃粩底植p去末位數字后能被11整除。
7. 能被13整除:
、倌┤簧蠑底炙M成的數與末三位以前的數字所組成的數之差能被13整除。
、谥鸫稳サ糇詈笠晃粩底植p去末位數字的9倍后能被13整除。
三、整除的性質(zhì):
1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。
2. 如果a能被b整除,c是整數,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數整除。
14 、小升初知識點(diǎn)(余數及其應用)
小升初知識點(diǎn)(余數問(wèn)題)
余數的性質(zhì):
、儆鄶敌∮诔龜。
、谌鬭、b除以c的余數相同,則c|a-b或c|b-a。
、踑與b的和除以c的余數等于a除以c的余數加上b除以c的余數的和除以c的余數。
、躠與b的積除以c的余數等于a除以c的余數與b除以c的余數的積除以c的余數
余數、同余與周期
一、同余的定義:
、偃魞蓚(gè)整數a、b除以m的余數相同,則稱(chēng)a、b對于模m同余。
、谝阎齻(gè)整數a、b、m,如果m|a-b,就稱(chēng)a、b對于模m同余,記作a≡b(mod m),讀作a同余于b模m。
二、同余的性質(zhì):
、僮陨硇裕篴≡a(mod m);
、趯ΨQ(chēng)性:若a≡b(mod m),則b≡a(mod m);
、蹅鬟f性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);
、芎筒钚裕喝鬭≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);
、菹喑诵裕喝鬭≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);
、蕹朔叫裕喝鬭≡b(mod m),則an≡bn(mod m);
、咄缎:若a≡ b(mod m),整數c,則a×c≡ b×c(mod m×c);
三、關(guān)于乘方的預備知識:
、偃鬉=a×b,則MA=Ma×b=(Ma)b
、谌鬊=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除后的余數特征:
、僖粋(gè)自然數M,n表示M的各個(gè)數位上數字的和,則M≡n(mod 9)或(mod 3);
、谝粋(gè)自然數M,X表示M的各個(gè)奇數位上數字的和,Y表示M的各個(gè)偶數數位上數字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);
五、費爾馬小定理:如果p是質(zhì)數(素數),a是自然數,且a不能被p整除,則ap-1≡1(mod p)。
15、小升初知識點(diǎn)(分數與百分數的應用)
基本概念與性質(zhì):
分數:把單位“1”平均分成幾份,表示這樣的一份或幾份的數。
分數的性質(zhì):分數的分子和分母同時(shí)乘以或除以相同的數(0除外),分數的大小不變。
分數單位:把單位“1”平均分成幾份,表示這樣一份的數。
百分數:表示一個(gè)數是另一個(gè)數百分之幾的數。
常用方法:
、 向思維方法:從題目提供條件的反方向(或結果)進(jìn)行思考。
、 對應思維方法:找出題目中具體的量與它所占的率的直接對應關(guān)系。
、坜D化思維方法:把一類(lèi)應用題轉化成另一類(lèi)應用題進(jìn)行解答。最常見(jiàn)的是轉換成比例和轉換成倍數關(guān)系;把不同的標準(在分數中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見(jiàn)的處理方法是確定不同的標準為一倍量。
、芗僭O思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進(jìn)行調整,求出最后結果。
、萘坎蛔兯季S方法:在變化的各個(gè)量當中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。
、尢鎿Q思維方法:用一種量代替另一種量,從而使數量關(guān)系單一化、量率關(guān)系明朗化。
、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規律進(jìn)行處理。
、酀舛扰浔确ǎ阂话銘糜诳偭亢头至慷及l(fā)生變化的狀況。
【小升初數學(xué)知識點(diǎn)總結】相關(guān)文章: