激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频

高中數學(xué)說(shuō)課稿

時(shí)間:2021-06-18 09:10:04 高中說(shuō)課稿 我要投稿

有關(guān)高中數學(xué)說(shuō)課稿合集五篇

  作為一名教師,時(shí)常需要編寫(xiě)說(shuō)課稿,說(shuō)課稿有助于學(xué)生理解并掌握系統的知識。那么說(shuō)課稿應該怎么寫(xiě)才合適呢?下面是小編為大家整理的高中數學(xué)說(shuō)課稿5篇,歡迎大家分享。

有關(guān)高中數學(xué)說(shuō)課稿合集五篇

高中數學(xué)說(shuō)課稿 篇1

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質(zhì)的第2小節。

  奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。因此,本節課起著(zhù)承上啟下的重要作用。

  2、學(xué)情分析

  從學(xué)生的認知基礎看,學(xué)生在初中已經(jīng)學(xué)習了軸對稱(chēng)圖形和中心對稱(chēng)圖形,并且有了一定數量的簡(jiǎn)單函數的儲備。同時(shí),剛剛學(xué)習了函數單調性,已經(jīng)積累了研究函數的基本方法與初步經(jīng)驗。

  從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗型向抽象理論型轉變,能夠用假設、推理來(lái)思考和解決問(wèn)題、

  3、教學(xué)目標

  基于以上對教材和學(xué)生的分析,以及新課標理念,我設計了這樣的教學(xué)目標:

  【知識與技能】

  1、能判斷一些簡(jiǎn)單函數的奇偶性。

  2、能運用函數奇偶性的代數特征和幾何意義解決一些簡(jiǎn)單的問(wèn)題。

  【過(guò)程與方法】

  經(jīng)歷奇偶性概念的形成過(guò)程,提高觀(guān)察抽象能力以及從特殊到一般的歸納概括能力。

  【情感、態(tài)度與價(jià)值觀(guān)】

  通過(guò)自主探索,體會(huì )數形結合的思想,感受數學(xué)的對稱(chēng)美。

  從課堂反應看,基本上達到了預期效果。

  4、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):函數奇偶性的概念和幾何意義。

  幾年的教學(xué)實(shí)踐證明,雖然函數奇偶性這一節知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了考慮函數定義域的問(wèn)題。因此,在介紹奇、偶函數的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把函數的奇偶性概念設計為本節課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強本節課重點(diǎn)問(wèn)題的講解。

  難點(diǎn):奇偶性概念的數學(xué)化提煉過(guò)程。

  由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數學(xué)化提煉過(guò)程設計為本節課的難點(diǎn)。

  二、教法與學(xué)法分析

  1、教法

  根據本節教材內容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認知規律,遵循教師為主導,學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用以引導發(fā)現法為主,直觀(guān)演示法、類(lèi)比法為輔。教學(xué)中,精心設計一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng )設問(wèn)題情景,誘導學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),從而培養思維能力。從課堂反應看,基本上達到了預期效果。

  2、學(xué)法

  讓學(xué)生在觀(guān)察一歸納一檢驗一應用的學(xué)習過(guò)程中,自主參與知識的發(fā)生、發(fā)展、形成的過(guò)程,從而使學(xué)生掌握知識。

  三、教學(xué)過(guò)程

  具體的教學(xué)過(guò)程是師生互動(dòng)交流的過(guò)程,共分六個(gè)環(huán)節:設疑導入、觀(guān)圖激趣;指導觀(guān)察、形成概念;學(xué)生探索、領(lǐng)會(huì )定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學(xué)以致用。下面我對這六個(gè)環(huán)節進(jìn)行說(shuō)明。

 。ㄒ唬┰O疑導入、觀(guān)圖激趣

  由于本節內容相對獨立,專(zhuān)題性較強,所以我采用了開(kāi)門(mén)見(jiàn)山導入方式,直接點(diǎn)明要學(xué)的內容,使學(xué)生的思維迅速定向,達到開(kāi)始就明確目標突出重點(diǎn)的效果。

  用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱(chēng)美。再讓學(xué)生觀(guān)察幾個(gè)特殊函數圖象。通過(guò)讓學(xué)生觀(guān)察圖片導入新課,既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為學(xué)習新知識作好鋪墊。

 。ǘ┲笇в^(guān)察、形成概念

  在這一環(huán)節中共設計了2個(gè)探究活動(dòng)。

  探究1 、2 數學(xué)中對稱(chēng)的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開(kāi)探究。這個(gè)探究主要是通過(guò)學(xué)生的自主探究來(lái)實(shí)現的,由于有圖片的鋪墊,絕大多數學(xué)生很快就說(shuō)出函數圖象關(guān)于Y軸(原點(diǎn))對稱(chēng)。接著(zhù)學(xué)生填表,從數值角度研究圖象的這種特征,體現在自變量與函數值之間有何規律? 引導學(xué)生先把它們具體化,再用數學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現兩個(gè)函數的對稱(chēng)性反應到函數值上具有的特性, ()然后通過(guò)解析式給出嚴格證明,進(jìn)一步說(shuō)明這個(gè)特性對定義域內任意一個(gè) 都成立。 最后給出偶函數(奇函數)定義(板書(shū))。

  在這個(gè)過(guò)程中,學(xué)生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗。

 。ㄈ 學(xué)生探索、領(lǐng)會(huì )定義

  探究3 下列函數圖象具有奇偶性嗎?

  設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱(chēng)。(突破了本節課的難點(diǎn))

 。ㄋ模┲R應用,鞏固提高

  在這一環(huán)節我設計了4道題

  例1判斷下列函數的奇偶性

  選例1的第(1)及(3)小題板書(shū)來(lái)示范解題步驟,其他小題讓學(xué)生在下面完成。

  例1設計意圖是歸納出判斷奇偶性的步驟:

  (1) 先求定義域,看是否關(guān)于原點(diǎn)對稱(chēng);

  (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

  例2 判斷下列函數的奇偶性:

  例3 判斷下列函數的奇偶性:

  例2、3設計意圖是探究一個(gè)函數奇偶性的可能情況有幾種類(lèi)型?

  例4(1)判斷函數的奇偶性。

 。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫(huà)出它在y軸左邊的圖象嗎?

  例4設計意圖加強函數奇偶性的幾何意義的應用。

  在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。通過(guò)這些問(wèn)題的解決,學(xué)生對函數的奇偶性認識、理解和應用都能提升很大一個(gè)高度,達到當堂消化吸收的效果。

 。ㄎ澹┛偨Y反饋

  在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現了啟發(fā)式、問(wèn)題式教學(xué)法的特色。

  在本節課的最后對知識點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導學(xué)生總結出本節課應積累的解題經(jīng)驗。知識在于積累,而學(xué)習數學(xué)更在于知識的應用經(jīng)驗的積累。所以提高知識的應用能力、增強錯誤的預見(jiàn)能力是提高數學(xué)綜合能力的很重要的策略。

 。┓謱幼鳂I(yè),學(xué)以致用

  必做題:課本第36頁(yè)練習第1-2題。

  選做題:課本第39頁(yè)習題1、3A組第6題。

  思考題:課本第39頁(yè)習題1、3B組第3題。

  設計意圖:面向全體學(xué)生,注重個(gè)人差異,加強作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達到不同的人在數學(xué)上得到不同的發(fā)展。

高中數學(xué)說(shuō)課稿 篇2

  【一】教學(xué)背景分析

  1。教材結構分析

  《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。

  2。學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。

  根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:

  3。教學(xué)目標

 。1) 知識目標:①掌握圓的標準方程;

 、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;

 、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。

 。2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;

 、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;

 、墼鰪妼W(xué)生用數學(xué)的意識。

 。3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;

 、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。

  根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4。 教學(xué)重點(diǎn)與難點(diǎn)

 。1)重點(diǎn):圓的標準方程的求法及其應用。

 。2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;

 、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。

  為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1。教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。

  2。學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:

  【三】教學(xué)過(guò)程與設計

  整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:

  創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

  反饋訓練 形成方法 小結反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。

  首先:縱向敘述教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情境——啟迪思維

  問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?

  通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

  通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。

 。ǘ┥钊胩骄俊@得新知

  問(wèn)題二 1。根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2。如果圓心在,半徑為時(shí)又如何呢?

  好學(xué)教育:

  這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。

  得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。

 。ㄈ⿷门e例——鞏固提高

  I。直接應用 內化新知

  問(wèn)題三 1。寫(xiě)出下列各圓的標準方程:

 。1)圓心在原點(diǎn),半徑為3;

 。2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。

  2。寫(xiě)出圓的圓心坐標和半徑。

  我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。

  II。靈活應用 提升能力

  問(wèn)題四 1。求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。

  2。求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。

  3。已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。

  你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?

  我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮。

  III。實(shí)際應用 回歸自然

  問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。

  好學(xué)教育:

  我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。

 。ㄋ模┓答佊柧殹纬煞椒

  問(wèn)題六 1。求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。

  2。求圓過(guò)點(diǎn)的切線(xiàn)方程。

  3。求圓過(guò)點(diǎn)的切線(xiàn)方程。

  接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。

 。ㄎ澹┬〗Y反思——拓展引申

  1。課堂小結

  把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。

 、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。

  2。分層作業(yè)

 。ˋ)鞏固型作業(yè):教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。

  3。激發(fā)新疑

  問(wèn)題七 1。把圓的標準方程展開(kāi)后是什么形式?

  2。方程表示什么圖形?

  在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。

  以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計

 。ㄒ唬┩怀鲋攸c(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  好學(xué)教育:

  求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。

 。ǘ⿲W(xué)生主體 教師主導 探究主線(xiàn)

  本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。

 。ㄈ┡囵B思維 提升能力 激勵創(chuàng )新

  為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。

高中數學(xué)說(shuō)課稿 篇3

  各位評委,老師們:大家好!

  很高興參加這次說(shuō)課活動(dòng)。這對我來(lái)說(shuō)也是一次難得的學(xué)習和鍛煉的機會(huì ),感謝各位老師在百忙之中來(lái)此予以指導。希望各位評委和老師們對我的說(shuō)課內容提出寶貴意見(jiàn)。

  我說(shuō)課的內容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(shū)(試驗修訂本—必修)<數學(xué)>第一冊下,教學(xué)內容為第96頁(yè)至98頁(yè)第五章第一節。本校是浙江省一級重點(diǎn)中學(xué),學(xué)生基礎相對較好。我在進(jìn)行教學(xué)設計時(shí),也充分考慮到了這一點(diǎn)。

  下面我從教材分析,教學(xué)目標的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設計四個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。

  一說(shuō)教材

 。1)地位和作用

  向量是近代數學(xué)中重要和基本的概念之一,有著(zhù)深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質(zhì)轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著(zhù)極其豐富的實(shí)際背景,在數學(xué)和物理學(xué)科中具有廣泛的應用。

  平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎上進(jìn)一步對向量的深入學(xué)習。為學(xué)習向量的知識體系奠定了知識和方法基礎。

 。2)教學(xué)結構的調整

  課本在這一部分內容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長(cháng)度,零向量,單位向量,平行向量,共線(xiàn)向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調整:將本節教學(xué)中認知過(guò)程的教學(xué)內容適當集中,以突出這節課的主題;例題,習題部分主要由學(xué)生依照概念自行分析,獨立完成。

 。3)重點(diǎn),難點(diǎn),關(guān)鍵

  由于本節課是本章內容的第一節課,是學(xué)生學(xué)習本章的基礎。為了本章后面知識的學(xué)習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點(diǎn)。本節課是為高一后半學(xué)期學(xué)生設計的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習方法和習慣,但根據以往的教學(xué)經(jīng)驗,多數學(xué)生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認為向量概念也是這節課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復雜的幾何圖形中相等的有向線(xiàn)段讓學(xué)生進(jìn)行辨認,加深對向量的理解。

  二說(shuō)教學(xué)目標的確定

  根據本課教材的特點(diǎn),新大綱對本節課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標:

 。1)基礎知識目標:理解向量,零向量,單位向量,共線(xiàn)向量,平行向量,相等向量的概念,會(huì )用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì )根據圖形判定向量是否平行,共線(xiàn),相等。

 。2)能力訓練目標:培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等發(fā)現規律的一般方法,培養學(xué)生觀(guān)察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。

 。3)情感目標:讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習的樂(lè )趣。

  三說(shuō)教學(xué)方法的選擇

 、窠虒W(xué)方法

  本節課我采用了”啟發(fā)探究式的教學(xué)方法,根據本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):

 。1)由教材的特點(diǎn)確立類(lèi)比思維為教學(xué)的主線(xiàn)。

  從教材內容看平面向量無(wú)論從形式還是內容都與物理學(xué)中的有向線(xiàn)段,矢量的概念類(lèi)似。因此在教學(xué)中運用類(lèi)比作為思維的主線(xiàn)進(jìn)行教學(xué)。讓學(xué)生充分體會(huì )數學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。

 。2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習方法

  通常學(xué)生對于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習興趣,另外,學(xué)生都有表現自己的欲望,希望得到老師和其他同學(xué)的認可,要多表?yè)P,多肯定來(lái)激勵他們的學(xué)習熱情?紤]到我校學(xué)生的基礎較好,思維較為活躍,對自主探索式的學(xué)習方法也有一定的認識,所以在教學(xué)中我通過(guò)創(chuàng )設問(wèn)題情境,啟發(fā)引導學(xué)生運用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。

 、蚪虒W(xué)手段

  本節課中,除使用常規的教學(xué)手段外,我還使用了多媒體投影儀和計算機來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過(guò)程則有助于滲透數形結合思想,更易于對概念的理解和難點(diǎn)的突破。

  四教學(xué)過(guò)程的設計

 、裰R引入階段———提出學(xué)習課題,明確學(xué)習目標

 。1)創(chuàng )設情境——引入概念

  數學(xué)學(xué)習應該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現數學(xué)、探究數學(xué)、認識并掌握數學(xué)。

  由生活中具體的向量的實(shí)例引入:大海中船只的航線(xiàn),中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習興趣。

 。2)觀(guān)察歸納——形成概念

  由實(shí)例得出有向線(xiàn)段的概念,有向線(xiàn)段的三個(gè)要素:起點(diǎn),方向,長(cháng)度。明確知道了有向線(xiàn)段的起點(diǎn),方向和長(cháng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設計,引導學(xué)生概括總結出本課新的知識點(diǎn):向量的概念及其幾何表示。

 。3)討論研究——深化概念

  在得到概念后進(jìn)行歸納,深化,之后向學(xué)生提出以下三個(gè)問(wèn)題:

 、傧蛄康囊厥鞘裁?

 、谙蛄恐g能否比較大?

 、巯蛄颗c數量的區別是什么?

  同時(shí)指出這就是本節課我們要研究和學(xué)習的主題。

 、蛑R探索階段———探索平面向量的平行向量。相等向量等概念

 。1)總結反思——提高認識

  方向相同或相反的非零向量叫平行向量,也即共線(xiàn)向量,并且規定0與任一向量平行.長(cháng)度相等且方向相同的向量叫相等向量,規定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

 。2)即時(shí)訓練—鞏固新知

  為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時(shí)訓練題,通過(guò)學(xué)生的觀(guān)察嘗試,討論研究,教師引導來(lái)鞏固新知識。

 。劬毩1]判斷下列命題是否正確,若不正確,請簡(jiǎn)述理由.

 、傧蛄颗c是共線(xiàn)向量,則A、B、C、D四點(diǎn)必在一直線(xiàn)上;

 、趩挝幌蛄慷枷嗟;

 、廴我幌蛄颗c它的相反向量不相等;

 、芩倪呅蜛BCD是平行四邊形的充要條件是=;

 、菽0是一個(gè)向量方向不確定的充要條件;

 、薰簿(xiàn)的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.

 。劬毩2]下列命題正確的是( )

  A.a(chǎn)與b共線(xiàn),b與c共線(xiàn),則a與c也共線(xiàn)

  B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)

  C.向量a與b不共線(xiàn),則a與b都是非零向量

  D.有相同起點(diǎn)的兩個(gè)非零向量不平行

 、笾R應用階段————共線(xiàn)向量,相等向量等概念的初步應用

  在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復雜圖形中觀(guān)察,辨認平行,相等的有向線(xiàn)段。選用本題的目的是讓學(xué)生進(jìn)行獨立思考,自主探究,交流討論等探索活動(dòng),加深對概念的理解和對難點(diǎn)的突破。

  例如圖所示,設O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)

  具體教學(xué)安排如下:

 。1)分析解決問(wèn)題

  先引導學(xué)生分析解決問(wèn)題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當它們的模相等,同時(shí)方向又相同時(shí),才能稱(chēng)它們相等。進(jìn)而進(jìn)行正確的辨認,直至最終解決問(wèn)題。

 。2)歸納解題方法

  主要引導學(xué)生歸納以下兩個(gè)問(wèn)題:①零向量的方向是任意的,它只與零向量相

  等;②兩個(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。

 、魧W(xué)習,小結階段———歸納知識方法,布置課后作業(yè)

  本階段通過(guò)學(xué)習小結進(jìn)行課堂教學(xué)的反饋,組織和指導學(xué)生歸納知識,技能,方法的一般規律,為后續學(xué)習打好基礎。

  具體的教學(xué)安排如下:

 。1)知識,方法小結在知識層面上我首先引導學(xué)生回顧本節課的主要內容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類(lèi)比,加深對每個(gè)概念的理解。

  在方法層面上我將帶領(lǐng)學(xué)生回顧探索過(guò)程中用到的思維方法和數學(xué)方法如:

  類(lèi)比,數形結合,等價(jià)轉化等進(jìn)行強調。

 。2)布置課后作業(yè)

  閱讀教材96至97頁(yè)內容,整理課堂筆記,習題5。1第1,2,3題。

高中數學(xué)說(shuō)課稿 篇4

  尊敬的各位評委、各位老師大家好!我說(shuō)課的題目是《直線(xiàn)的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書(shū)數學(xué)必修2(A版),是第三章直線(xiàn)與方程中的第2節的第一課時(shí)3.2.1直線(xiàn)的點(diǎn)斜式方程的內容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。

  一、教學(xué)背景的分析

  1.教材分析

  直線(xiàn)的方程是學(xué)生在初中學(xué)習了一次函數的概念和圖象及高中學(xué)習了直線(xiàn)的斜率后進(jìn)行研究的。直線(xiàn)的方程屬于解析幾何學(xué)的基礎知識,是研究解析幾何學(xué)的開(kāi)始,對后續研究?jì)蓷l直線(xiàn)的位置關(guān)系、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容,無(wú)論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內容之一!爸本(xiàn)的點(diǎn)斜式方程”可以說(shuō)是直線(xiàn)的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線(xiàn)作為常見(jiàn)的最簡(jiǎn)單的曲線(xiàn),在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。同時(shí)在這一節中利用坐標法來(lái)研究曲線(xiàn)的數形結合、幾何直觀(guān)等數學(xué)思想將貫穿于我們整個(gè)高中數學(xué)教學(xué)。

  2.學(xué)情分析

  我校的生源較差,學(xué)生的基礎和學(xué)習習慣都有待加強。又由于剛開(kāi)始學(xué)習解析幾何,第一次用坐標法來(lái)求曲線(xiàn)的方程,在學(xué)習過(guò)程中,會(huì )出現“數”與“形”相互轉化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面更有待加強。

  根據上述教材分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:

  3.教學(xué)目標

  (1)了解直線(xiàn)的方程的概念和直線(xiàn)的點(diǎn)斜式方程的推導過(guò)程及方法;

  (2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì )準確地使用直線(xiàn)的點(diǎn)斜式、斜截式方程 ;

  (3)從實(shí)例入手,通過(guò)類(lèi)比、推廣、特殊化等,使學(xué)生體會(huì )從特殊到一般再到特殊的認知規律;

  (4)提倡學(xué)生用舊知識解決新問(wèn)題,通過(guò)體會(huì )直線(xiàn)的斜截式方程與一次函數的關(guān)系等活動(dòng),培養學(xué)生主動(dòng)探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。

  4. 教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn): 直線(xiàn)點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應用。

  (2)難點(diǎn):直線(xiàn)的方程的概念,點(diǎn)斜式方程的推導及點(diǎn)斜式、斜截式方程的應用。

  二、教法學(xué)法分析

  1.教法分析:根據學(xué)情,為了能調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“實(shí)例引導的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數化,用代數的語(yǔ)言描述直線(xiàn)的幾何要素及其關(guān)系,進(jìn)而將直線(xiàn)的問(wèn)題轉化為直線(xiàn)方程的問(wèn)題,通過(guò)對直線(xiàn)的方程的研究,最終解決有關(guān)直線(xiàn)的一些簡(jiǎn)單的問(wèn)題。另外可以恰當的利用多媒體課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習興趣。

  2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結、質(zhì)疑、運用,體會(huì )學(xué)習數學(xué)的樂(lè )趣;通過(guò)推導直線(xiàn)的點(diǎn)斜式方程的學(xué)習,要了解用坐標法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線(xiàn),進(jìn)而可求出直線(xiàn)的點(diǎn)斜式方程,要能體會(huì )“形”與“數”的轉化思想。

  下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:

  三、教學(xué)過(guò)程的設計及實(shí)施

  整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節,學(xué)習或涉及四個(gè)概念:

  溫故知新,澄清概念----直線(xiàn)的方程

  深入探究,獲得新知--------點(diǎn)斜式

  拓展知識,再獲新知--------斜截式

  小結引申,思維延續--------兩點(diǎn)式

  平面上的點(diǎn)可以用坐標表示,直線(xiàn)的傾斜程度可以用斜率表示,那么平面上的直線(xiàn)如何表示呢?這就是本節要學(xué)習的內容。

  (一)溫故知新,澄清概念----直線(xiàn)的方程

  問(wèn)題一:畫(huà)出一次函數y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標有何關(guān)系?

  [學(xué)生活動(dòng)] 通過(guò)動(dòng)手畫(huà)圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。

  [教師活動(dòng)] 對于不同學(xué)生的`表述進(jìn)行分析、歸納,用規范的語(yǔ)言對方程和直線(xiàn)的方程進(jìn)行描述。

  [設計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線(xiàn)的方程的概念,試圖做到“用學(xué)生已有的數學(xué)知識去學(xué)數學(xué)”,從而突破難點(diǎn)。通過(guò)對這個(gè)問(wèn)題的研究,一方面認識到以方程的解為坐標的點(diǎn)在直線(xiàn)上,另一方面認識到直線(xiàn)上的點(diǎn)的坐標滿(mǎn)足方程;從而使同學(xué)意識到直線(xiàn)可以由直線(xiàn)上任意一點(diǎn)P(x,y)的坐標x和y之間的等量關(guān)系來(lái)表示。

  問(wèn)題二:若直線(xiàn)經(jīng)過(guò)點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線(xiàn)l上。

  (1) 若點(diǎn)P在直線(xiàn)l上從A點(diǎn)開(kāi)始運動(dòng),橫坐標增加1時(shí),點(diǎn)P的坐標是 ;

  (2)畫(huà)出直線(xiàn)l,你能求出直線(xiàn)l的方程嗎?

  (3)若點(diǎn)P在直線(xiàn)l上運動(dòng),設P點(diǎn)的坐標為(x,y),你會(huì )有什么方法找到x,y滿(mǎn)足的關(guān)系式?

  [學(xué)生活動(dòng)]學(xué)生獨立思考5分鐘,必要的話(huà)可進(jìn)行分組討論、合作交流。

  [教師活動(dòng)]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導學(xué)生觀(guān)察發(fā)現,得到當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線(xiàn)的斜率恒等于-2,體會(huì )“動(dòng)中有靜”的思維策略。

  [設計意圖]復習斜率公式;待定系數法;初步體會(huì )坐標法。同時(shí)引導學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數學(xué)簡(jiǎn)潔的美感和嚴謹性。還要指出這樣的事實(shí):當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí),P的坐標(x,y)滿(mǎn)足方程2x+y-1=0.反過(guò)來(lái),以方程2x+y-1=0的解為坐標的點(diǎn)在直線(xiàn)l上。把學(xué)生的思維引到用坐標法研究直線(xiàn)的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。

  (二)深入探究,獲得新知----點(diǎn)斜式

  問(wèn)題三: ① 若直線(xiàn)l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線(xiàn)l的方程。

 、谥本(xiàn)的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線(xiàn)?

  [學(xué)生活動(dòng)] ①學(xué)生敘述,老師板書(shū),強調斜率公式與點(diǎn)斜式的區別。 ②指導學(xué)生用筆轉一轉不難發(fā)現,當直線(xiàn)l的傾斜角α=90°時(shí),斜率k不存在,當然不存在點(diǎn)斜式方程;討論k=0的情況;觀(guān)察并總結點(diǎn)斜式方程的特征。

  [設計意圖] 由特殊到一般的學(xué)習思路,突破難點(diǎn),培養學(xué)生的歸納概括能力。通過(guò)對這個(gè)問(wèn)題的探究使學(xué)生獲得直線(xiàn)點(diǎn)斜式方程;由②知:當直線(xiàn)斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線(xiàn),培養思維的嚴謹性,這時(shí)直線(xiàn)l與y軸平行,它上面的每一點(diǎn)的橫坐標都等于x0,直線(xiàn)l的方程是:x=x0;通過(guò)學(xué)生的觀(guān)察討論總結,明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎練習,突破重難點(diǎn)。

  問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿(mǎn)足下列條件的直線(xiàn)的方程

  (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

  [練習]P95.1、2。

  [學(xué)生活動(dòng)]學(xué)生獨立完成并展示或敘述,老師點(diǎn)評。

  [設計意圖]充分用好教材的例題和習題,因為這些題都是專(zhuān)家精心編排的,充分體現必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節的教學(xué),指導下個(gè)環(huán)節的安排;突破重點(diǎn)內容后,進(jìn)入第三環(huán)節。

  (三)拓展知識,再獲新知----斜截式

  問(wèn)題五:(1)一條直線(xiàn)與y軸交于點(diǎn)(0,3),直線(xiàn)的斜率為2,求這條直線(xiàn)的方程。

  (2)若直線(xiàn)l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線(xiàn)l的方程。

  [學(xué)生活動(dòng)]學(xué)生獨立完成后口述,教師板書(shū)。

  [設計意圖] 由一般到特殊再到一般,培養學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強調截距不是距離。類(lèi)比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數的關(guān)系。通過(guò)下面的基礎練習,突破重點(diǎn)。

  [練習]P95.3。

  [設計意圖]充分用好教材習題,及時(shí)反饋本環(huán)節的教學(xué)情況,指導下個(gè)環(huán)節的安排。

  (四)小結引申,思維延續----兩點(diǎn)式

  課堂小結 1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線(xiàn)方程的方法:公式法、等斜率法、待定系數法。)

  2、哪些地方還沒(méi)有學(xué)好?

  問(wèn)題六:(1)直線(xiàn)l過(guò)(1,0)點(diǎn),且與直線(xiàn)平行,求直線(xiàn)l的方程。

  (2)直線(xiàn)l過(guò)點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線(xiàn)l的方程。

  [學(xué)生活動(dòng)]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。

  [教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話(huà),可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式;沒(méi)時(shí)間就布置分層作業(yè)。

  [設計意圖](1)小題與上一節的平行綜合,學(xué)生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機會(huì ),以及課后學(xué)習的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節課研究直線(xiàn)的兩點(diǎn)式方程作了重要的準備。

  分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.

  選做題:P100.A組:1.(4)(5)(6).

  [設計意圖]通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展。

  四、教學(xué)特點(diǎn)分析

  (一)實(shí)例引導。在字母運算、公式推導之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習知識的可能和興趣,關(guān)注學(xué)困生的成長(cháng)與發(fā)展。

  (二)啟發(fā)式教學(xué)。教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內容,如:1.直角坐標系內的所有直線(xiàn)都有點(diǎn)斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會(huì )求直線(xiàn)在軸上的截距嗎?4.觀(guān)察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話(huà)與交流活動(dòng)。

  (三)注重自主探究。設計問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區上,布設了由淺入深的學(xué)習環(huán)境突破重點(diǎn)、難點(diǎn),引導學(xué)生逐步發(fā)現知識的形成過(guò)程。設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng )造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。

高中數學(xué)說(shuō)課稿 篇5

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學(xué)作鋪墊,起著(zhù)鏈條的作用。同時(shí),這部分內容較好地反映了方程、不等式、函數知識的內在聯(lián)系和相互轉化,蘊含著(zhù)歸納、轉化、數形結合等豐富的數學(xué)思想方法,能較好地培養學(xué)生的觀(guān)察能力、概括能力、探究能力及創(chuàng )新意識。

  (二)教學(xué)內容

  本節內容分2課時(shí)學(xué)習。本課時(shí)通過(guò)二次函數的圖象探索一元二次不等式的解集。通過(guò)復習“三個(gè)一次”的關(guān)系,即一次函數與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數與一元二次方程、一元二次不等式的關(guān)系;采用“畫(huà)、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數學(xué)中的和諧美,體驗成功的樂(lè )趣。

  二、教學(xué)目標分析

  根據教學(xué)大綱的要求、本節教材的特點(diǎn)和高一學(xué)生的認知規律,本節課的教學(xué)目標確定為:

  知識目標——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標——通過(guò)看圖象找解集,培養學(xué)生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標——創(chuàng )設問(wèn)題情景,激發(fā)學(xué)生觀(guān)察、分析、探求的學(xué)習激情、強化學(xué)生參與意識及主體作用。

  三、重難點(diǎn)分析

  一元二次不等式是高中數學(xué)中最基本的不等式之一,是解決許多數學(xué)問(wèn)題的重要工具。本節課的重點(diǎn)確定為:一元二次不等式的解法。

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點(diǎn)的橫坐標的內在聯(lián)系。由于初中沒(méi)有專(zhuān)門(mén)研究過(guò)這類(lèi)問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

  四、教法與學(xué)法分析

  (一)學(xué)法指導

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì )學(xué)是目的。因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習方法,這樣做增加了學(xué)生自主參與,合作交流的機會(huì ),教給了學(xué)生獲取知識的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì )逐步感受到數學(xué)的美,會(huì )產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習數學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應素質(zhì)教育下培養“創(chuàng )新型”人才的需要。

  (二)教法分析

  本節課設計的指導思想是:現代認知心理學(xué)——建構主義學(xué)習理論。

  建構主義學(xué)習理論認為:應把學(xué)習看成是學(xué)生主動(dòng)的建構活動(dòng),學(xué)生應與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。

  本節課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導學(xué)生“畫(huà)、看、說(shuō)、用”。較好地探求一元二次不等式的解法。

  五、課堂設計

  本節課的教學(xué)設計充分體現以學(xué)生發(fā)展為本,培養學(xué)生的觀(guān)察、概括和探究能力,遵循學(xué)生的認知規律,體現理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng )設,激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì )走向會(huì )學(xué),由被動(dòng)答題走向主動(dòng)探究。

  (一)創(chuàng )設情景,引出“三個(gè)一次”的關(guān)系

  本節課開(kāi)始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問(wèn)開(kāi)始”,這樣直奔主題,目的在于構造懸念,激活學(xué)生的思維興趣。

  為此,我設計了以下幾個(gè)問(wèn)題:

  1、請同學(xué)們解以下方程和不等式:

 、2x-7=0;②2x-7>0;③2x-7<0

  學(xué)生回答,我板書(shū)

【有關(guān)高中數學(xué)說(shuō)課稿合集五篇】相關(guān)文章:

有關(guān)高中數學(xué)說(shuō)課稿合集8篇07-19

有關(guān)高中數學(xué)說(shuō)課稿合集六篇07-15

有關(guān)高中數學(xué)說(shuō)課稿合集八篇07-24

有關(guān)高中數學(xué)說(shuō)課稿范文合集10篇07-19

有關(guān)高中數學(xué)說(shuō)課稿合集十篇06-26

有關(guān)高中數學(xué)說(shuō)課稿范文合集9篇08-01

有關(guān)高中數學(xué)說(shuō)課稿范文合集5篇07-31

有關(guān)高中數學(xué)說(shuō)課稿模板合集8篇07-23

有關(guān)高中數學(xué)說(shuō)課稿模板合集七篇08-13

激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频