實(shí)用的高中數學(xué)說(shuō)課稿模板匯總8篇
作為一名為他人授業(yè)解惑的教育工作者,就難以避免地要準備說(shuō)課稿,說(shuō)課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。怎樣寫(xiě)說(shuō)課稿才更能起到其作用呢?以下是小編精心整理的高中數學(xué)說(shuō)課稿8篇,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數學(xué)說(shuō)課稿 篇1
本節課講述的是人教版高一數學(xué)(上)3.2等差數列(第一課時(shí))的內容。
一、教材分析
1、教材的地位和作用:
數列是高中數學(xué)重要內容之一,它不僅有著(zhù)廣泛的實(shí)際應用,而且起著(zhù)承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學(xué)習數列也為進(jìn)一步學(xué)習數列的極限等內容做好準備。而等差數列是在學(xué)生學(xué)習了數列的有關(guān)概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進(jìn)一步深入和拓廣。同時(shí)等差數列也為今后學(xué)習等比數列提供了學(xué)習對比的依據。
2、教學(xué)目標
根據教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標
a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過(guò)程及思想;初步引入“數學(xué)建!钡乃枷敕椒ú⒛苓\用。
b在能力上:培養學(xué)生觀(guān)察、分析、歸納、推理的能力;在領(lǐng)會(huì )函數與數列關(guān)系的前提下,把研究函數的方法遷移來(lái)研究數列,培養學(xué)生的知識、方法遷移能力;通過(guò)階梯性練習,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
c在情感上:通過(guò)對等差數列的研究,培養學(xué)生主動(dòng)探索、勇于發(fā)現的求知精神;養成細心觀(guān)察、認真分析、善于總結的良好思維習慣。
3、教學(xué)重點(diǎn)和難點(diǎn)
根據教學(xué)大綱的要求我確定本節課的教學(xué)重點(diǎn)為:
、俚炔顢盗械母拍。
、诘炔顢盗械耐椆降耐茖н^(guò)程及應用。
由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對“數學(xué)建!钡乃枷敕椒ㄝ^為陌生,因此用數學(xué)思想解決實(shí)際問(wèn)題是本節課的另一個(gè)難點(diǎn)。
二、學(xué)情教法分析:
對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導、啟發(fā)、研究和探討以符合
這類(lèi)學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
針對高中生這一思維特點(diǎn)和心理特征,本節課我采用啟發(fā)式、討論式以及講練結合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數學(xué)實(shí)踐活動(dòng),以獨立思考和相互交流的形式,在教師的指導下發(fā)現、分析和解決問(wèn)題。
三、學(xué)法指導:
在引導分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見(jiàn),把思路方法和需要解決的問(wèn)題弄清。
四、教學(xué)程序
本節課的教學(xué)過(guò)程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業(yè),六個(gè)教學(xué)環(huán)節構成。
(一)復習引入:
1.從函數觀(guān)點(diǎn)看,數列可看作是定義域為_(kāi)_________對應的一列函數值,從而數列的通項公式也就是相應函數的______。(N﹡;解析式)
通過(guò)練習1復習上節內容,為本節課用函數思想研究數列問(wèn)題作準備。
2.小明目前會(huì )100個(gè)單詞,他她打算從今天起不再背單詞了,結果不知不覺(jué)地每天忘掉2個(gè)單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92 ①
3. 小芳只會(huì )5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25 ②
通過(guò)練習2和3引出兩個(gè)具體的等差數列,初步認識等差數列的特征,為后面的概念學(xué)習建立基礎,為學(xué)習新知識創(chuàng )設問(wèn)題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀(guān)察兩個(gè)數列特點(diǎn),引出等差數列的概念,對問(wèn)題的總結又培養學(xué)生由具體到抽象、由特殊到一般的認知能力。
(二) 新課探究
1、由引入自然的給出等差數列的概念:
如果一個(gè)數列,從第二項開(kāi)始它的每一項與前一項之差都等于同一常數,這個(gè)數列就叫等差數列,
這個(gè)常數叫做等差數列的公差,通常用字母d來(lái)表示。強調:
、 “從第二項起”滿(mǎn)足條件;
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個(gè)常數(強調“同一個(gè)常數” );
在理解概念的基礎上,由學(xué)生將等差數列的文字語(yǔ)言轉化為數學(xué)語(yǔ)言,歸納出數學(xué)表達式:
an+1-an=d (n≥1)同時(shí)為了配合概念的理解,我找了5組數列,由學(xué)生判斷是否為等差數列,是等差數列的找出公差。
1. 9 ,8,7,6,5,4,??;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01
3. 0,0,0,0,0,0,??.; √ d=0
4. 1,2,3,2,3,4,??;×
5. 1,0,1,0,1,??×
其中第一個(gè)數列公差<0,>0,第三個(gè)數列公差=0
由此強調:公差可以是正數、負數,也可以是0
2、第二個(gè)重點(diǎn)部分為等差數列的通項公式
在歸納等差數列通項公式中,我采用討論式的教學(xué)方法。給出等差數列的首項,公差d,由學(xué)生研究分組討論a4的通項公式。通過(guò)總結a4的通項公式由學(xué)生猜想a40的通項公式,進(jìn)而歸納an的通項公式。整個(gè)過(guò)程由學(xué)生完成,通過(guò)互相討論的方式既培養了學(xué)生的協(xié)作意識又化解了教學(xué)難點(diǎn)。
若一等差數列{an }的首項是a1,公差是d,則據其定義可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
??
猜想: a40 = a1 +39d,進(jìn)而歸納出等差數列的通項公式:
an=a1+(n-1)d
此時(shí)指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學(xué)生嚴謹的學(xué)習態(tài)度,在這里向學(xué)生介紹另外一種求數列通項公式的辦法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
??
an – an-1=d
將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d
。1)
當n=1時(shí),(1)也成立,
所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數列{an}的通項公式。
在迭加法的證明過(guò)程中,我采用啟發(fā)式教學(xué)方法。
利用等差數列概念啟發(fā)學(xué)生寫(xiě)出n-1個(gè)等式。
對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項公式。
在這里通過(guò)該知識點(diǎn)引入迭加法這一數學(xué)思想,逐步達到“注重方法,凸現思想” 的教學(xué)要求
接著(zhù)舉例說(shuō)明:若一個(gè)等差數列{an}的首項是1,公差是2,得出這個(gè)數列的通項公式是:an=1+(n-1)×2 ,
即an=2n-1 以此來(lái)鞏固等差數列通項公式運用
同時(shí)要求畫(huà)出該數列圖象,由此說(shuō)明等差數列是關(guān)于正整數n一次函數,其圖像是均勻排開(kāi)的無(wú)窮多個(gè)孤立點(diǎn)。用函數的思想來(lái)研究數列,使數列的性質(zhì)顯現得更加清楚。
。ㄈ⿷门e例
這一環(huán)節是使學(xué)生通過(guò)例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實(shí)際問(wèn)題的能力。通過(guò)例1和例2向學(xué)生表明:要用運動(dòng)變化的觀(guān)點(diǎn)看等差數列通項公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當其中的部分量已知時(shí),可根據該公式求出另
一部分量。
例1 (1)求等差數列8,5,2,?的第20項;第30項;第40項
。2)-401是不是等差數列-5,-9,-13,?的項?如果是,是第幾項?
在第一問(wèn)中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問(wèn)實(shí)際上是求正整數解的問(wèn)題,而關(guān)鍵是求出數列的通項公式an.
例2 在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。
在前面例1的基礎上將例2當作練習作為對通項公式的鞏固
例3 是一個(gè)實(shí)際建模問(wèn)題
建造房屋時(shí)要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問(wèn)每級臺階高為多少米?
這道題我采用啟發(fā)式和討論式相結合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構成等差數列,引導學(xué)生將該實(shí)際問(wèn)題轉化為數學(xué)模型------等差數列:(學(xué)生討論分析,分別演板,教師評析問(wèn)題。問(wèn)題可能出現在:項數學(xué)生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實(shí)際樓梯圖以化解難點(diǎn))。
設置此題的目的:1.加強同學(xué)們對應用題的綜合分析能力,2.通過(guò)數學(xué)實(shí)際問(wèn)題引出等差數列問(wèn)題,激發(fā)了學(xué)生的興趣;3.再者通過(guò)數學(xué)實(shí)例展示了“從實(shí)際問(wèn)題出發(fā)經(jīng)抽象概括建立數學(xué)模型,最后還原說(shuō)明實(shí)際問(wèn)題的“數學(xué)建!钡臄祵W(xué)思想方法
(四)反饋練習
1、小節后的練習中的第1題和第2題(要求學(xué)生在規定時(shí)間內完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進(jìn)行基本技能訓練。
2、書(shū)上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。
目的:對學(xué)生加強建模思想訓練。
3、若數例{an} 是等差數列,若 bn = k an ,(k為常數)試證明:數列{bn}是等差數列
此題是對學(xué)生進(jìn)行數列問(wèn)題提高訓練,學(xué)習如何用定義證明數列問(wèn)題同時(shí)強化了等差數列的概念。
。ㄎ澹w納小結(由學(xué)生總結這節課的收獲)
1.等差數列的概念及數學(xué)表達式.
強調關(guān)鍵字:從第二項開(kāi)始它的每一項與前一項之差都等于同一常數
2.等差數列的通項公式 an= a1+(n-1) d會(huì )知三求一
3.用“數學(xué)建!彼枷敕椒ń鉀Q實(shí)際問(wèn)題
(六)布置作業(yè)
必做題:課本P114 習題3.2第2,6 題
選做題:已知等差數列{an}的首項a1=-24,從第10項開(kāi)始為正數,求公差d的取值范圍。
。康模和ㄟ^(guò)分層作業(yè),提高同學(xué)們的求知欲和滿(mǎn)足不同層次的學(xué)生需求)
五、板書(shū)設計
在板書(shū)中突出本節重點(diǎn),將強調的地方如定義中,“從第二項起”及“同一常數”等幾個(gè)字用紅色粉筆標注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書(shū)充分體現了精講多練的教學(xué)方法。
高中數學(xué)說(shuō)課稿 篇2
各位同仁,各位專(zhuān)家:
我說(shuō)課的課題是《任意角的三角函數》,內容取自蘇教版高中實(shí)驗教科書(shū)《數學(xué)》第四冊 第1。2節
先對教材進(jìn)行分析
教學(xué)內容:任意角三角函數的定義、定義域,三角函數值的符號。
地位和作用: 任意角的三角函數是本章教學(xué)內容的基本概念對三角內容的整體學(xué)習至關(guān)重要。同時(shí)它又為平面向量、解析幾何等內容的學(xué)習作必要的準備,通過(guò)這部分內容的學(xué)習,又可以幫助學(xué)生更加深入理解函數這一基本概念。所以這個(gè)內容要認真探討教材,精心設計過(guò)程。
教學(xué)重點(diǎn):任意角三角函數的定義
教學(xué)難點(diǎn):正確理解三角函數可以看作以實(shí)數為自變量的函數、初中用邊長(cháng)比值來(lái)定義轉變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀(guān)念的轉換以及坐標定義的合理性的理解;
學(xué)情分析:
學(xué)生已經(jīng)掌握的內容,學(xué)生學(xué)習能力
1。初中學(xué)生已經(jīng)學(xué)習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見(jiàn)的知識和求法。
2。我們南山區經(jīng)過(guò)多年的初中課改,學(xué)生已經(jīng)具備較強的自學(xué)能力,多數同學(xué)對數學(xué)的學(xué)習有相當的興趣和積極性。
3。在探究問(wèn)題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進(jìn)行
針對對教材內容重難點(diǎn)的和學(xué)生實(shí)際情況的分析我們制定教學(xué)目標如下
知識目標:
。1)任意角三角函數的定義;三角函數的定義域;三角函數值的符號,
能力目標:
。1)理解并掌握任意角的三角函數的定義;
。2)正確理解三角函數是以實(shí)數為自變量的函數;
。3)通過(guò)對定義域,三角函數值的符號的推導,提高學(xué)生分析探究解決問(wèn)題的能力。
德育目標:
。1)學(xué)習轉化的思想,(2)培養學(xué)生嚴謹治學(xué)、一絲不茍的科學(xué)精神;
針對學(xué)生實(shí)際情況為達到教學(xué)目標須精心設計教學(xué)方法
教法學(xué)法:溫故知新,逐步拓展
。1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發(fā)展新知識,形成新的概念;
。2)通過(guò)例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
。1)提高直觀(guān)性增強趣味性。
教學(xué)過(guò)程分析
總體來(lái)說(shuō), 由舊及新,由易及難,
逐步加強,逐步推進(jìn)
先由初中的直角三角形中銳角三角函數的定義
過(guò)度到直角坐標系中銳角三角函數的定義
再發(fā)展到直角坐標系中任意角三角函數的定義
給定定義后通過(guò)應用定義又逐步發(fā)現新知識拓展完善定義。
具體教學(xué)過(guò)程安排
引入: 復習提問(wèn):初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學(xué)生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。
我們知道,隨著(zhù)角的概念的推廣,研究角時(shí)多放在直角坐標系里, 那么三角函數的定義能否也放到坐標系去研究呢?
引導學(xué)生發(fā)現B的坐標和邊長(cháng)的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現由于相似三角形的相似比導致OB上任一P點(diǎn)都可以代換B,把三角函數的定義發(fā)展到用終邊上任一點(diǎn)的坐標來(lái)表示, 從而銳角三角函數可以使用直角坐標系來(lái)定義,自然地,要想定義任意一個(gè)角三角函數,便考慮放在直角坐標中進(jìn)行合理進(jìn)行定義了
從而得到
知識點(diǎn)一:任意一個(gè)角的三角函數的定義
提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個(gè)比值的大小和P點(diǎn)在角的終邊上的位置無(wú)關(guān)。
精心設計例題,引出新內容深化概念,完善定義
例1已知角A 的終邊經(jīng)過(guò)P(2,—3),求角A的三個(gè)三角函數值
。ù祟}由學(xué)生自己分析獨立動(dòng)手完成)
例題變式1,已知角A 的大小是30度,由定義求角A的三個(gè)三角函數值
結合變式我們發(fā)現三個(gè)三角函數值的大小與角的大小有關(guān),只會(huì )隨角的大小而變化,符合當初函數的定義,而我們又一直稱(chēng)呼為三角函數,
提出問(wèn)題:這三個(gè)新的定義確實(shí)問(wèn)是函數嗎?為什么?
從而引出函數極其定義域
由學(xué)生分析討論,得出結論
知識點(diǎn)二:三個(gè)三角函數的定義域
同時(shí)教師強調:由于弧度制使角和實(shí)數建立了一一對應關(guān)系,所以三角函數是以實(shí)數為自變量的函數
例題變式2, 已知角A 的終邊經(jīng)過(guò)P(—2a,—3a)( a不為0),求角A的三個(gè)三角函數值
解答中需要對變量的正負即角所在象限進(jìn)行討論, 讓學(xué)生意識到三角函數值的正負與角所在象限有關(guān),從而導出第三個(gè)知識點(diǎn)
知識點(diǎn)三:三角函數值的正負與角所在象限的關(guān)系
由學(xué)生推出結論,教師總結符號記憶方法,便于學(xué)生記憶
例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA
求cosA,tanA
綜合練習鞏固提高,更為下節的同角關(guān)系式打下基礎
拓展,如果不限制A的象限呢,可以留作課外探討
小結回顧課堂內容
課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解
課堂作業(yè)P16 1,2,4
。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)
課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)
必作P23 1(2),5(2),6(2)(4) 選作P23 3,4
板書(shū)設計(見(jiàn)PPT)
高中數學(xué)說(shuō)課稿 篇3
一、教材分析
1、從在教材中的地位與作用來(lái)看
《等比數列的前n項和》是數列這一章中的一個(gè)重要內容,它不僅在現實(shí)生活中有著(zhù)廣泛的實(shí)際應用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習和工作中必備的數學(xué)素養。
2、從學(xué)生認知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節內容與等差數列前n項和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著(zhù)本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯。
3、學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。
4、重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導、公式的特點(diǎn)和公式的運用。
教學(xué)難點(diǎn):公式的推導方法和公式的靈活運用。
公式推導所使用的"錯位相減法"是高中數學(xué)數列求和方法中最常用的方法之一,它蘊含了重要的數學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
二、目標分析
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過(guò)程、公式的特點(diǎn),在此基礎上能初步應用公式解決與之有關(guān)的問(wèn)題。
過(guò)程與方法目標:
通過(guò)對公式推導方法的探索與發(fā)現,向學(xué)生滲透特殊到一般、類(lèi)比與轉
化、分類(lèi)討論等數學(xué)思想,培養學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價(jià)值觀(guān):
通過(guò)對公式推導方法的探索與發(fā)現,優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉化和理論聯(lián)系實(shí)際的辯證唯物主義觀(guān)點(diǎn)。
三、過(guò)程分析
學(xué)生是認知的主體,設計教學(xué)過(guò)程必須遵循學(xué)生的認知規律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程,結合本節課的特點(diǎn),我設計了如下的教學(xué)過(guò)程:
1、創(chuàng )設情境,提出問(wèn)題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當時(shí)的印度國王大為贊賞,對他說(shuō):我可以滿(mǎn)足你的任何要求。西薩說(shuō):請給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學(xué)家計算,結果出來(lái)后,國王大吃一驚。為什么呢?
設計意圖:設計這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調動(dòng)學(xué)習的積極性。故事內容緊扣本節課的主題與重點(diǎn)。
此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導學(xué)生寫(xiě)出麥?倲。帶著(zhù)這樣的問(wèn)題,學(xué)生會(huì )動(dòng)手算了起來(lái),他們想到用計算器依次算出各項的值,然后再求和。這時(shí)我對他們的這種思路給予肯定。
設計意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的"無(wú)用功",急急忙忙地拋出"錯位相減法",這樣做有悖學(xué)生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉過(guò)彎來(lái),因而在教學(xué)中應舍得花時(shí)間營(yíng)造知識形成過(guò)程的氛圍,突破學(xué)生學(xué)習的障礙。同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆、
2、師生互動(dòng),探究問(wèn)題
在肯定他們的思路后,我接著(zhù)問(wèn):1,2,22,.....,263是什么數列?有何特征?應歸結為什么數學(xué)問(wèn)題呢?
探討1:,記為(1)式,注意觀(guān)察每一項的特征,有何聯(lián)系?(學(xué)生會(huì )發(fā)現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現?
設計意圖:留出時(shí)間讓學(xué)生充分地比較,等比數列前n項和的公式推導關(guān)鍵是變"加"為"減",在教師看來(lái)這是"天經(jīng)地義"的,但在學(xué)生看來(lái)卻是"不可思議"的,因此教學(xué)中應著(zhù)力在這兒做文章,從而抓住培養學(xué)生的辯證思維能力的良好契機。
經(jīng)過(guò)比較、研究,學(xué)生發(fā)現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經(jīng)過(guò)繁難的計算之苦后,突然發(fā)現上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗,從而增強學(xué)習數學(xué)的興趣和學(xué)好數學(xué)的信心。
3、類(lèi)比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢引導學(xué)生將結論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個(gè)別學(xué)生進(jìn)行指導。
設計意圖:在教師的指導下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習的愉快和成就感。
對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時(shí)是什么數列?此時(shí)sn=?(這里引導學(xué)生對q進(jìn)行分類(lèi)討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎。)
再次追問(wèn):結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(lái)?(引導學(xué)生得出公式的另一形式)
設計意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對知識的認識,完善知識結構,另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷χR的主動(dòng)認識,從而進(jìn)一步提高分析、類(lèi)比和綜合的能力。這一環(huán)節非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話(huà),然而卻有畫(huà)龍點(diǎn)睛之妙用。
4、討論交流,延伸拓展
在此基礎上,我提出:探究等比數列前n項和公式,還有其它方法嗎?我們知道,
那么我們能否利用這個(gè)關(guān)系而求出sn呢?根據等比數列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?
設計意圖:以疑導思,激發(fā)學(xué)生的探索欲望,營(yíng)造一個(gè)讓學(xué)生主動(dòng)觀(guān)察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實(shí)就是關(guān)于的一個(gè)遞推式,遞推數列有非常重要的研究?jì)r(jià)值,是研究性學(xué)習和課外拓展的極佳資源,它源于課本,又高于課本,對學(xué)生的思維發(fā)展有促進(jìn)作用、
5、變式訓練,深化認識
首先,學(xué)生獨立思考,自主解題,再請學(xué)生上臺來(lái)幻燈演示他們的解答,其它同學(xué)進(jìn)行評價(jià),然后師生共同進(jìn)行總結。
設計意圖:采用變式教學(xué)設計題組,深化學(xué)生對公式的認識和理解,通過(guò)直接套用公式、變式運用公式、研究公式特點(diǎn)這三個(gè)層次的問(wèn)題解決,促進(jìn)學(xué)生新的數學(xué)認知結構的形成。通過(guò)以上形式,讓全體學(xué)生都參與教學(xué),以此培養學(xué)生的參與意識和競爭意識。
6、例題講解,形成技能
設計意圖:解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥,該題有意培養學(xué)生對含有參數的問(wèn)題進(jìn)行分類(lèi)討論的數學(xué)思想。
7、總結歸納,加深理解
以問(wèn)題的形式出現,引導學(xué)生回顧公式、推導方法,鼓勵學(xué)生積極回答,然后老師再從知識點(diǎn)及數學(xué)思想方法兩方面總結。
設計意圖:以此培養學(xué)生的口頭表達能力,歸納概括能力。
8、故事結束,首尾呼應
最后我們回到故事中的問(wèn)題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽(yáng)鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現不了他的承諾。
設計意圖:把引入課題時(shí)的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續積極思維。
9、課后作業(yè),分層練習
必做:P129練習1、2、3、4
選作:
。2)"遠望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問(wèn)尖頭幾盞燈?"這首中國古詩(shī)的答案是多少?
設計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。
四、教法分析
對公式的教學(xué),要使學(xué)生掌握與理解公式的來(lái)龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現公式之間的聯(lián)系。在教學(xué)中,我采用"問(wèn)題――探究"的教學(xué)模式,把整個(gè)課堂分為呈現問(wèn)題、探索規律、總結規律、應用規律四個(gè)階段。
利用多媒體輔助教學(xué),直觀(guān)地反映了教學(xué)內容,使學(xué)生思維活動(dòng)得以充分展開(kāi),從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率。
五、評價(jià)分析
本節課通過(guò)三種推導方法的研究,使學(xué)生從不同的思維角度掌握了等比數列前n項和公式。錯位相減:變加為減,等價(jià)轉化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實(shí)。學(xué)生從中深刻地領(lǐng)會(huì )到推導過(guò)程中所蘊含的數學(xué)思想,培養了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時(shí)通過(guò)精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎上,通過(guò)民主和諧的課堂氛圍,培養了學(xué)生自主學(xué)習、合作交流的學(xué)習習慣,也培養了學(xué)生勇于探索、不斷創(chuàng )新的思維品質(zhì)。
高中數學(xué)說(shuō)課稿 篇4
各位評委,老師們:大家好!
很高興參加這次說(shuō)課活動(dòng)。這對我來(lái)說(shuō)也是一次難得的學(xué)習和鍛煉的機會(huì ),感謝各位老師在百忙之中來(lái)此予以指導。希望各位評委和老師們對我的說(shuō)課內容提出寶貴意見(jiàn)。
我說(shuō)課的內容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(shū)(試驗修訂本—必修)<數學(xué)>第一冊下,教學(xué)內容為第96頁(yè)至98頁(yè)第五章第一節。本校是浙江省一級重點(diǎn)中學(xué),學(xué)生基礎相對較好。我在進(jìn)行教學(xué)設計時(shí),也充分考慮到了這一點(diǎn)。
下面我從教材分析,教學(xué)目標的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設計四個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。
一說(shuō)教材
。1)地位和作用
向量是近代數學(xué)中重要和基本的概念之一,有著(zhù)深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質(zhì)轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著(zhù)極其豐富的實(shí)際背景,在數學(xué)和物理學(xué)科中具有廣泛的應用。
平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎上進(jìn)一步對向量的深入學(xué)習。為學(xué)習向量的知識體系奠定了知識和方法基礎。
。2)教學(xué)結構的調整
課本在這一部分內容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長(cháng)度,零向量,單位向量,平行向量,共線(xiàn)向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調整:將本節教學(xué)中認知過(guò)程的教學(xué)內容適當集中,以突出這節課的主題;例題,習題部分主要由學(xué)生依照概念自行分析,獨立完成。
。3)重點(diǎn),難點(diǎn),關(guān)鍵
由于本節課是本章內容的第一節課,是學(xué)生學(xué)習本章的基礎。為了本章后面知識的學(xué)習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點(diǎn)。本節課是為高一后半學(xué)期學(xué)生設計的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習方法和習慣,但根據以往的教學(xué)經(jīng)驗,多數學(xué)生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認為向量概念也是這節課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復雜的幾何圖形中相等的有向線(xiàn)段讓學(xué)生進(jìn)行辨認,加深對向量的理解。
二說(shuō)教學(xué)目標的確定
根據本課教材的特點(diǎn),新大綱對本節課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標:
。1)基礎知識目標:理解向量,零向量,單位向量,共線(xiàn)向量,平行向量,相等向量的概念,會(huì )用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì )根據圖形判定向量是否平行,共線(xiàn),相等。
。2)能力訓練目標:培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等發(fā)現規律的一般方法,培養學(xué)生觀(guān)察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
。3)情感目標:讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習的樂(lè )趣。
三說(shuō)教學(xué)方法的選擇
、窠虒W(xué)方法
本節課我采用了”啟發(fā)探究式的教學(xué)方法,根據本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):
。1)由教材的特點(diǎn)確立類(lèi)比思維為教學(xué)的主線(xiàn)。
從教材內容看平面向量無(wú)論從形式還是內容都與物理學(xué)中的有向線(xiàn)段,矢量的概念類(lèi)似。因此在教學(xué)中運用類(lèi)比作為思維的主線(xiàn)進(jìn)行教學(xué)。讓學(xué)生充分體會(huì )數學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。
。2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習方法
通常學(xué)生對于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習興趣,另外,學(xué)生都有表現自己的欲望,希望得到老師和其他同學(xué)的認可,要多表?yè)P,多肯定來(lái)激勵他們的學(xué)習熱情?紤]到我校學(xué)生的基礎較好,思維較為活躍,對自主探索式的學(xué)習方法也有一定的認識,所以在教學(xué)中我通過(guò)創(chuàng )設問(wèn)題情境,啟發(fā)引導學(xué)生運用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。
、蚪虒W(xué)手段
本節課中,除使用常規的教學(xué)手段外,我還使用了多媒體投影儀和計算機來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過(guò)程則有助于滲透數形結合思想,更易于對概念的理解和難點(diǎn)的突破。
四教學(xué)過(guò)程的設計
、裰R引入階段———提出學(xué)習課題,明確學(xué)習目標
。1)創(chuàng )設情境——引入概念
數學(xué)學(xué)習應該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現數學(xué)、探究數學(xué)、認識并掌握數學(xué)。
由生活中具體的向量的實(shí)例引入:大海中船只的航線(xiàn),中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習興趣。
。2)觀(guān)察歸納——形成概念
由實(shí)例得出有向線(xiàn)段的概念,有向線(xiàn)段的三個(gè)要素:起點(diǎn),方向,長(cháng)度。明確知道了有向線(xiàn)段的起點(diǎn),方向和長(cháng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設計,引導學(xué)生概括總結出本課新的知識點(diǎn):向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進(jìn)行歸納,深化,之后向學(xué)生提出以下三個(gè)問(wèn)題:
、傧蛄康囊厥鞘裁?
、谙蛄恐g能否比較大?
、巯蛄颗c數量的區別是什么?
同時(shí)指出這就是本節課我們要研究和學(xué)習的主題。
、蛑R探索階段———探索平面向量的平行向量。相等向量等概念
。1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線(xiàn)向量,并且規定0與任一向量平行.長(cháng)度相等且方向相同的向量叫相等向量,規定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
。2)即時(shí)訓練—鞏固新知
為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時(shí)訓練題,通過(guò)學(xué)生的觀(guān)察嘗試,討論研究,教師引導來(lái)鞏固新知識。
。劬毩1]判斷下列命題是否正確,若不正確,請簡(jiǎn)述理由.
、傧蛄颗c是共線(xiàn)向量,則A、B、C、D四點(diǎn)必在一直線(xiàn)上;
、趩挝幌蛄慷枷嗟;
、廴我幌蛄颗c它的相反向量不相等;
、芩倪呅蜛BCD是平行四邊形的充要條件是=;
、菽0是一個(gè)向量方向不確定的充要條件;
、薰簿(xiàn)的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.
。劬毩2]下列命題正確的是( )
A.a(chǎn)與b共線(xiàn),b與c共線(xiàn),則a與c也共線(xiàn)
B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)
C.向量a與b不共線(xiàn),則a與b都是非零向量
D.有相同起點(diǎn)的兩個(gè)非零向量不平行
、笾R應用階段————共線(xiàn)向量,相等向量等概念的初步應用
在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復雜圖形中觀(guān)察,辨認平行,相等的有向線(xiàn)段。選用本題的目的是讓學(xué)生進(jìn)行獨立思考,自主探究,交流討論等探索活動(dòng),加深對概念的理解和對難點(diǎn)的突破。
例如圖所示,設O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)
具體教學(xué)安排如下:
。1)分析解決問(wèn)題
先引導學(xué)生分析解決問(wèn)題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當它們的模相等,同時(shí)方向又相同時(shí),才能稱(chēng)它們相等。進(jìn)而進(jìn)行正確的辨認,直至最終解決問(wèn)題。
。2)歸納解題方法
主要引導學(xué)生歸納以下兩個(gè)問(wèn)題:①零向量的方向是任意的,它只與零向量相
等;②兩個(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。
、魧W(xué)習,小結階段———歸納知識方法,布置課后作業(yè)
本階段通過(guò)學(xué)習小結進(jìn)行課堂教學(xué)的反饋,組織和指導學(xué)生歸納知識,技能,方法的一般規律,為后續學(xué)習打好基礎。
具體的教學(xué)安排如下:
。1)知識,方法小結在知識層面上我首先引導學(xué)生回顧本節課的主要內容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類(lèi)比,加深對每個(gè)概念的理解。
在方法層面上我將帶領(lǐng)學(xué)生回顧探索過(guò)程中用到的思維方法和數學(xué)方法如:
類(lèi)比,數形結合,等價(jià)轉化等進(jìn)行強調。
。2)布置課后作業(yè)
閱讀教材96至97頁(yè)內容,整理課堂筆記,習題5。1第1,2,3題。
高中數學(xué)說(shuō)課稿 篇5
今天我說(shuō)課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對本課的教學(xué)設計進(jìn)行說(shuō)明。
一、說(shuō)教材
1、本節在教材中的地位和作用:
本節是棱柱的后續內容,又是學(xué)習球的必要基礎。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎知識,同時(shí)培養學(xué)生猜想、類(lèi)比、比較、轉化的能力。著(zhù)名的生物學(xué)家達爾文說(shuō):“最有價(jià)值的知識是關(guān)于方法和能力的知識”,因此,應該利用這節課培養學(xué)生學(xué)習方法、提高學(xué)習能力。
2. 教學(xué)目標確定:
(1)能力訓練要求
、偈箤W(xué)生了解棱錐及其底面、側面、側棱、頂點(diǎn)、高的概念。
、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標
、倥囵B學(xué)生善于通過(guò)觀(guān)察分析實(shí)物形狀到歸納其性質(zhì)的能力。
、谔岣邔W(xué)生對事物的感性認識到理性認識的能力。
、叟囵B學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀(guān)點(diǎn)。
3. 教學(xué)重點(diǎn)、難點(diǎn)確定:
重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點(diǎn):培養學(xué)生善于比較,從比較中發(fā)現事物與事物的區別。
二、說(shuō)教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標志,以啟迪學(xué)生思維,培養學(xué)生創(chuàng )新能力為核心”。
在教學(xué)中根據高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設置一些啟發(fā)性題目,采用啟發(fā)式誘導法,講練結合,發(fā)揮教師主導作用,體現學(xué)生主體地位。
2、教學(xué)手段:
根據《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節課概念性強,思維量大,整節課以啟發(fā)學(xué)生觀(guān)察思考、分析討論為主,采用“多媒體引導點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學(xué)生沿著(zhù)積極的思維方向,逐步達到即定的教學(xué)目標,發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識,掌握規律、主動(dòng)發(fā)現、積極探索。
三、說(shuō)學(xué)法:
這節課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發(fā)學(xué)生反復思考,不斷內化成為自己的認知結構。
四、 學(xué)程序:
[復習引入新課]
1.棱柱的性質(zhì):
。1)側棱都相等,側面是平行四邊形
。2)兩個(gè)底面與平行于底面的截面是全等的多邊形
。3)過(guò)不相鄰的兩條側棱的截面是平行四邊形
2.幾個(gè)重要的四棱柱:
平行六面體、直平行六面體、長(cháng)方體、正方體
思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì )是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
。1).棱錐及其底面、側面、側棱、頂點(diǎn)、高、對角面的概念
。2).棱錐的表示方法、分類(lèi)
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:
如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
、俑鱾壤庀嗟,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;
棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形
引申:
、僬忮F的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。
引申:
、儆^(guān)察圖中三棱錐S-OBM的側面三角形狀有何特點(diǎn)?
。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)
、谌舴謩e假設正棱錐的高SO= h,斜高SM= h’,底面邊長(cháng)的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過(guò)三角形得出以上各元素間的關(guān)系式。
。ㄕn后思考題)
[例題分析]
例1.若一個(gè)正棱錐每一個(gè)側面的頂角都是600,則這個(gè)棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
。ù鸢福篋)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過(guò)SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。
﹙解析及圖略﹚
例3.已知正四棱錐的棱長(cháng)和底面邊長(cháng)均為a,求:
。1)側面與底面所成角α的余弦(2)相鄰兩個(gè)側面所成角β的余弦
﹙解析及圖略﹚
[課堂練習]
1、 知一個(gè)正六棱錐的高為h,側棱為L(cháng),求它的底面邊長(cháng)和斜高。
﹙解析及圖略﹚
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結]
一:棱錐的基本概念及表示、分類(lèi)
二:棱錐的性質(zhì)
截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質(zhì)
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
。2)棱錐的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形
引申: ①正棱錐的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
、壅忮F中各元素間的關(guān)系
[課后作業(yè)]
1:課本P52 習題9.8 : 2、 4
2:課時(shí)訓練:訓練一
高中數學(xué)說(shuō)課稿 篇6
我將從教學(xué)理念;教材分析;教學(xué)目標;教學(xué)過(guò)程;教法、學(xué)法;教學(xué)評價(jià)六個(gè)方面來(lái)陳述我對本節課的設計方案。
一、教學(xué)理念
新的課程標準明確指出“數學(xué)是人類(lèi)文化的重要組成部分,構成了公民所必須具備的一種基本素質(zhì)!逼浜x就是:我們不僅要重視數學(xué)的應用價(jià)值,更要注重其思維價(jià)值和人文價(jià)值。
因此,創(chuàng )造性地使用教材,積極開(kāi)發(fā)、利用各種教學(xué)資源,創(chuàng )設教學(xué)情境,讓學(xué)生通過(guò)主動(dòng)參與、積極思考、與人合作交流和創(chuàng )新等過(guò)程,獲得情感、能力、知識的全面發(fā)展。本節課力圖打破常規,充分體現以學(xué)生為本,全方位培養、提高學(xué)生素質(zhì),實(shí)現課程觀(guān)念、教學(xué)方式、學(xué)習方式的轉變。
二、教材分析
三角函數是中學(xué)數學(xué)的重要內容之一,它既是解決生產(chǎn)實(shí)際問(wèn)題的工具,又是學(xué)習高等數學(xué)及其它學(xué)科的基礎。本節課是在學(xué)習了任意角的三角函數,兩角和與差的三角函數以及正、余弦函數的圖象和性質(zhì)后,進(jìn)一步研究函數y=Asin(ωx+φ)的簡(jiǎn)圖的畫(huà)法,由此揭示這類(lèi)函數的圖象與正弦曲線(xiàn)的關(guān)系,以及A、ω、φ的物理意義,并通過(guò)圖象的變化過(guò)程,進(jìn)一步理解正、余弦函數的性質(zhì),它是研究函數圖象變換的一個(gè)延伸,也是研究函數性質(zhì)的一個(gè)直觀(guān)反映。共3課時(shí),本節課是繼學(xué)習完振幅、周期、初相變換后的第二課時(shí)。
本節課倡導學(xué)生自主探究,在教師的引導下,通過(guò)五點(diǎn)作圖法正確找出函數y=sinx到y=sin(ωx+φ)的圖象變換規律是本節課的重點(diǎn)。
難點(diǎn)是對周期變換、相位變換先后順序調整后,將影響圖象平移量的理解。因此,分析清不管哪種順序變換,都是對一個(gè)字母x而言的變換成為突破本節課教學(xué)難點(diǎn)的關(guān)鍵。
依據《課標》,根據本節課內容和學(xué)生的實(shí)際,我確定如下教學(xué)目標。
三、教學(xué)目標
。壑R與技能]
通過(guò)“五點(diǎn)作圖法”正確找出函數y=sinx到y=sin(ωx+φ)的圖象變換規律,能用五點(diǎn)作圖法和圖象變換法畫(huà)出函數y=Asin(ωx+φ)的簡(jiǎn)圖,能舉一反三地畫(huà)出函數y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的簡(jiǎn)圖。
。圻^(guò)程與方法]
通過(guò)引導學(xué)生對函數y=sinx到y=sin(ωx+φ)的圖象變換規律的探索,讓學(xué)生體會(huì )到由簡(jiǎn)單到復雜,特殊到一般的化歸思想;并通過(guò)對周期變換、相位變換先后順序調整后,將影響圖象變換這一難點(diǎn)的突破,讓學(xué)生學(xué)會(huì )抓住問(wèn)題的主要矛盾來(lái)解決問(wèn)題的基本思想方法。
。矍楦袘B(tài)度與價(jià)值觀(guān)]
課堂中,通過(guò)對問(wèn)題的自主探究,培養學(xué)生的獨立意識和獨立思考能力;小組交流中,學(xué)會(huì )合作意識;在解決問(wèn)題的難點(diǎn)時(shí),培養學(xué)生解決問(wèn)題抓主要矛盾的思想。在問(wèn)題逐步深入的研究中喚起學(xué)生追求真理,樂(lè )于創(chuàng )新的情感需求,引發(fā)學(xué)生渴求知識的強烈愿望,樹(shù)立科學(xué)的人生觀(guān)、價(jià)值觀(guān)。
四、教學(xué)過(guò)程(六問(wèn)三練)
1、設置情境
《函數y=Asin(ωx+φ)的圖象(第二課時(shí))》說(shuō)課稿。
高中數學(xué)說(shuō)課稿 篇7
一、教材分析
1.《指數函數》在教材中的地位、作用和特點(diǎn)
《指數函數》是人教版高中數學(xué)(必修)第一冊第二章“函數”的第六節內容,是在學(xué)習了《指數》一節內容之后編排的。通過(guò)本節課的學(xué)習,既可以對指數和函數的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習對數、對數函數尤其是利用互為反函數的圖象間的關(guān)系來(lái)研究對數函數的性質(zhì)打下堅實(shí)的概念和圖象基礎,又因為《指數函數》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學(xué)習基礎,所以《指數函數》不僅是本章《函數》的重點(diǎn)內容,也是高中學(xué)段的主要研究?jì)热葜,有?zhù)不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著(zhù)緊密的聯(lián)系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習這部分知識還有著(zhù)廣泛的現實(shí)意義。本節內容的特點(diǎn)之一是概念性強,特點(diǎn)之二是凸顯了數學(xué)圖形在研究函數性質(zhì)時(shí)的重要作用。
2.教學(xué)目標、重點(diǎn)和難點(diǎn)
通過(guò)初中學(xué)段的學(xué)習和高中對集合、函數等知識的.系統學(xué)習,學(xué)生對函數和圖象的關(guān)系已經(jīng)構建了一定的認知結構,主要體現在三個(gè)方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡(jiǎn)單的函數概念和性質(zhì)已有了初步認識,能夠從初中運動(dòng)變化的角度認識函數初步轉化到從集合與對應的觀(guān)點(diǎn)來(lái)認識函數。
技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質(zhì)做好準備。
素質(zhì)維度:由觀(guān)察到抽象的數學(xué)活動(dòng)過(guò)程已有一定的體會(huì ),已初步了解了數形結合的思想。
鑒于對學(xué)生已有的知識基礎和認知能力的分析,根據《教學(xué)大綱》的要求,我確定本節課的教學(xué)目標、教學(xué)重點(diǎn)和難點(diǎn)如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
、谡莆罩笖岛瘮档膱D象和性質(zhì);
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實(shí)際問(wèn)題;
(2)技能目標:
、贊B透數形結合的基本數學(xué)思想方法
、谂囵B學(xué)生觀(guān)察、聯(lián)想、類(lèi)比、猜測、歸納的能力;
(3)情感目標:
、袤w驗從特殊到一般的學(xué)習規律,認識事物之間的普遍聯(lián)系與相互轉化,培養學(xué)生用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題②通過(guò)教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習興趣,提高學(xué)生抽象、概括、分析、綜合的能力
、垲I(lǐng)會(huì )數學(xué)科學(xué)的應用價(jià)值。
(4)教學(xué)重點(diǎn):指數函數的圖象和性質(zhì)。
(5)教學(xué)難點(diǎn):指數函數的圖象性質(zhì)與底數a的關(guān)系。
突破難點(diǎn)的關(guān)鍵:尋找新知生長(cháng)點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數形結合來(lái)掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過(guò)這一節課的教學(xué)達到不僅使學(xué)生初步理解并能簡(jiǎn)單應用指數函數的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數圖象性質(zhì)的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學(xué)生學(xué)習能力的目的,我根據自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結合起來(lái),主要突出了幾個(gè)方面:
1.創(chuàng )設問(wèn)題情景.按照指數函數的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調動(dòng)學(xué)生的學(xué)習興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2.強化“指數函數”概念.引導學(xué)生結合指數的有關(guān)概念來(lái)歸納出指數函數的定義,并向學(xué)生指出指數函數的形式特點(diǎn),請學(xué)生思考對于底數a是否需要限制,如不限制會(huì )有什么問(wèn)題出現,這樣避免了學(xué)生對于底數a范圍分類(lèi)的不清楚,也為研究指數函數的圖象做了“分類(lèi)討論”的鋪墊。
3.突出圖象的作用.在數學(xué)學(xué)習過(guò)程中,圖形始終使我們需要借助的重要輔助手段。一位數學(xué)家曾經(jīng)說(shuō)過(guò)“數離形時(shí)少直觀(guān),形離數時(shí)難入微”,而在研究指數函數的性質(zhì)時(shí),更是直接由圖象觀(guān)察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4.注意數學(xué)與生活和實(shí)踐的聯(lián)系.數學(xué)的本質(zhì)是來(lái)源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關(guān)的生活問(wèn)題,力圖使學(xué)生了解到數學(xué)的基礎學(xué)科作用,培養學(xué)生的數學(xué)應用意識。
三、學(xué)法指導
本節課是在學(xué)習完“指數”的概念和運算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個(gè)方面做了嘗試:
1.再現原有認知結構。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數的概念,幫助學(xué)生再現原有認知結構,為理解指數函數的概念做好準備。
2.領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法。在借助圖象研究指數函數的性質(zhì)時(shí)會(huì )遇到分類(lèi)討論、數形結合等基本數學(xué)思想方法,這些方法將會(huì )貫穿整個(gè)高中的數學(xué)學(xué)習。
3.在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導入、指數函數的性質(zhì)研究、例題與訓練、課內小節等教學(xué)環(huán)節中都安排了學(xué)生的討論、分組、交流等活動(dòng),讓學(xué)生變被動(dòng)的接受和記憶知識為在合作學(xué)習的樂(lè )趣中主動(dòng)地建構新知識的框架和體系,從而完成知識的內化過(guò)程。
4.注意學(xué)習過(guò)程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應用、拓展的過(guò)程中按照先易后難的順序層層遞進(jìn),讓學(xué)生感到有挑戰、有收獲,跳一跳,夠得著(zhù),不同難度的題目設計將盡可能照顧到課堂學(xué)生的個(gè)體差異。
四、程序設計
在設計本節課的教學(xué)過(guò)程中,本著(zhù)遵循學(xué)生的認知規律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程的原則,我設計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現和認識指數函數的圖象和性質(zhì)。
1.創(chuàng )設情景、導入新課
教師活動(dòng):
、儆秒娔X展示兩個(gè)實(shí)例,第一個(gè)是計算機價(jià)格下降問(wèn)題,第二個(gè)是生物中細胞分裂的例子,
、趯W(xué)生按奇數列、偶數列分組。
學(xué)生活動(dòng):
、俜謩e寫(xiě)出計算機價(jià)格y與經(jīng)過(guò)月份x的關(guān)系式和細胞個(gè)數y與分裂次數x的關(guān)系式,并互相交流;
、诨貞浿笖档母拍;
、蹥w納指數函數的概念;
、芊治龀鰧χ笖岛瘮档讛涤懻摰谋匾砸约胺诸(lèi)的方法。
設計意圖:通過(guò)生活實(shí)例激發(fā)學(xué)生的學(xué)習動(dòng)機,,掃清由概念不清而造成的知識障礙,培養學(xué)生思維的主動(dòng)性, 為突破難點(diǎn)做好準備;
2.啟發(fā)誘導、探求新知
教師活動(dòng):
、俳o出兩個(gè)簡(jiǎn)單的指數函數并要求學(xué)生畫(huà)它們的圖象②在準備好的小黑板上規范地畫(huà)出這兩個(gè)指數函數的圖象③板書(shū)指數函數的性質(zhì)。
學(xué)生活動(dòng):
、佼(huà)出兩個(gè)簡(jiǎn)單的指數函數圖象
、诮涣、討論
、蹥w納出研究函數性質(zhì)涉及的方面
、芸偨Y出指數函數的性質(zhì)。
設計意圖:讓學(xué)生動(dòng)手作簡(jiǎn)單的指數函數的圖象對深刻理解本節課的內容有著(zhù)一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進(jìn)一步規范學(xué)生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學(xué)生就會(huì )很自然的通過(guò)觀(guān)察圖象總結出指數函數的性質(zhì),同時(shí)對于底數的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動(dòng):
、侔鍟(shū)例1
、诎鍟(shū)例2第一問(wèn)
、劢榻B有關(guān)考古的拓展知識。
高中數學(xué)說(shuō)課稿 篇8
一.說(shuō)教材
1.1 教材結構與內容簡(jiǎn)析
本節課為《江蘇省中等職業(yè)學(xué)校試用教材數學(xué)(第二冊)》5.6函數圖象的定位作圖法的第一課時(shí),主要內容為基本函數 與一般函數 間的圖象平移變換規律。
函數圖象的平移,既是前階段函數性質(zhì)及具體函數研究的延續和深化,也是后階段定位作圖法以至解析幾何中移軸化簡(jiǎn)的基礎和滲透,在教材中起著(zhù)重要的承上啟下作用。更為重要的是,這段內容還蘊涵著(zhù)重要的數學(xué)思想方法,如化歸思想、映射與對應思想、換元方法等。
1.2 教學(xué)目標
1.2.1知識目標
、、給定平移前后函數解析式,能熟練敘述相應的平移變換,正確掌握平移方向與 、 符號的關(guān)系。
、、能較熟練地化簡(jiǎn)較復雜的函數解析式,找出對應的基本函數模型(如一次函數,反比例函數、指數函數等)。
、、初步學(xué)會(huì )應用平移變換規律研究較復雜的函數的具體性質(zhì)(如值域、單調性等)。
1.2.2能力目標
、、在數學(xué)實(shí)驗平臺上,能自主探究,改變相應參數和函數解析式,觀(guān)察相應圖象變化,經(jīng)歷命題探索發(fā)現的過(guò)程,提高觀(guān)察、歸納、概括能力。
、、結合學(xué)習中發(fā)現的問(wèn)題,學(xué)會(huì )借助于數學(xué)軟件等工具研究、探索和解決問(wèn)題,學(xué)會(huì )數學(xué)
地解決問(wèn)題。
、、滲透數學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習,發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺(jué)等)。
1.2.3情感目標
培養學(xué)生積極參與、合作交流的主體意識,在知識的探索和發(fā)現的過(guò)程中,使學(xué)生感受數學(xué)學(xué)習的意義,改善學(xué)生的數學(xué)學(xué)習信念(態(tài)度、興趣等)。
1.3 教材重點(diǎn)和難點(diǎn)處理思路
重點(diǎn):函數圖象的平移變換規律及應用
難點(diǎn):經(jīng)歷數學(xué)實(shí)驗方法探索平移對函數解析式的影響及如何利用平移變換規律化簡(jiǎn)函數解析式、研究復雜函數
教材在這段內容的處理上,注重直觀(guān)性背景,注重學(xué)生豐富感性知識的獲得,淡化形式化的邏輯推導和形式化的結果即平移公式。實(shí)際教學(xué)中,我們發(fā)現如果學(xué)生不經(jīng)受足夠的親身體驗而簡(jiǎn)單的記住結論的話(huà),往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說(shuō)明這段內容不能采取簡(jiǎn)單的“告訴”方式,須讓學(xué)生自主發(fā)現命題、發(fā)現規律,讓他們“知其然,更要知其所以然!
為了突出重點(diǎn)、突破難點(diǎn),在教學(xué)中采取了以下策略:
、、從學(xué)生已有知識出發(fā),精心設計一些適合學(xué)生學(xué)力的數學(xué)實(shí)驗平臺,分層次逐步引導學(xué)生觀(guān)察圖象的平移方向與函數解析式中 、 符號的關(guān)系,抽象、歸納出平移變換規律。 ⑵、創(chuàng )設情境,引發(fā)學(xué)生認知沖突,激發(fā)學(xué)生求知欲,能借助于數學(xué)軟件多角度積極探求錯誤原因,使學(xué)生認識到形如 的函數須提取 前的系數化為 的形式,從而真正認識解析式形式化的特點(diǎn)。
、、數學(xué)實(shí)驗采取小組合作研究共同完成簡(jiǎn)單實(shí)驗報告的形式,通過(guò)學(xué)生的自主探究、合作交流,從而實(shí)現對平移變換規律知識的建構。
二.說(shuō)教法
針對職高一年級學(xué)生的認知特點(diǎn)和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎上,本節課我主要采取以實(shí)驗發(fā)現法為主,以討論法、練習法為輔的教學(xué)方法,引導學(xué)生通過(guò)實(shí)驗手段,從直觀(guān)、想象到發(fā)現、猜想,親歷數學(xué)知識建構過(guò)程,體驗數學(xué)發(fā)現的喜悅。
本節課的設計一方面重視學(xué)生數學(xué)學(xué)習過(guò)程是活動(dòng)的過(guò)程,因此不是按照已形式化了的現成的數學(xué)規則去操作數學(xué),而是采取數學(xué)實(shí)驗的方式,使學(xué)生有機會(huì )經(jīng)受足夠的親身體驗,親歷知識的自主建構過(guò)程;使學(xué)生學(xué)會(huì )從具體情境中提取適當的概念,從觀(guān)察到的實(shí)例中進(jìn)行概括,進(jìn)行合理的數學(xué)猜想與數學(xué)驗證,并作更高層次的數學(xué)概括與抽象;從而學(xué)會(huì )數學(xué)地思考。
另一方面,注重創(chuàng )設機會(huì )使學(xué)生有機會(huì )看到數學(xué)的全貌,體會(huì )數學(xué)的全過(guò)程。整堂課的設計圍繞研究較復雜函數的性質(zhì)展開(kāi),以問(wèn)題“函數 的性質(zhì)如何”為主線(xiàn),既讓學(xué)生清楚研究函數圖象平移的必要性,明確學(xué)習目標,又讓學(xué)生初步學(xué)會(huì )如何應用規律解決問(wèn)題,體會(huì )知識的價(jià)值,增強求知欲。
總之,本節課采用數學(xué)實(shí)驗發(fā)現教學(xué),學(xué)生采取小組合作的形式自主探究;利用實(shí)物投影進(jìn)行集體交流,及時(shí)反饋相關(guān)信息。
三.說(shuō)學(xué)法
“學(xué)之道在于悟,教之道在于度!睂W(xué)生是學(xué)習的主體,教師在教學(xué)過(guò)程中須將學(xué)習的主動(dòng)權交給學(xué)生。
美國某大學(xué)有一句名言:“讓我聽(tīng)見(jiàn)的,我會(huì )忘記;讓我看見(jiàn)的,我就領(lǐng)會(huì )了;讓我做過(guò)的,我就理解了!蓖ㄟ^(guò)學(xué)生的自主實(shí)驗,在探索新知的經(jīng)歷和獲得新知的體驗的基礎之上,真正正確掌握平移方向。
教師的“教”不僅要讓學(xué)生“學(xué)會(huì )知識”,更主要的是要讓學(xué)生“會(huì )學(xué)知識”。正如荷蘭數學(xué)教育家弗賴(lài)登塔爾所指出,“數學(xué)知識既不是教出來(lái)的,也不是學(xué)出來(lái)的,而是研究出來(lái)的!北竟澱n的教學(xué)中創(chuàng )設利于學(xué)生發(fā)現數學(xué)的實(shí)驗情境,讓學(xué)生自主地“做數學(xué)”,將傳統意義下的“學(xué)習”數學(xué)改變?yōu)椤把芯俊睌祵W(xué)。從而,使傳授知識與培養能力融為一體,在轉變學(xué)習方式的同時(shí)學(xué)會(huì )數學(xué)地思考。
四.說(shuō)程序
4.1創(chuàng )設情境,引入課題
在簡(jiǎn)要回顧前面研究的具體函數(指數函數、冪函數、三角函數等)性質(zhì)后,提出問(wèn)題“如何研究 的性質(zhì)?”
引導學(xué)生討論后,總結出兩種思路,即:思路1、通過(guò)描點(diǎn)法作出函數的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問(wèn)題化歸為 的問(wèn)題,借助于基本函數 的性質(zhì)解決新問(wèn)題。
從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數 與 間的聯(lián)系。
4.2數學(xué)實(shí)驗,自主探索
這一環(huán)節主要分兩階段。
1、嘗試初探
引例、函數 與 圖象間的關(guān)系
這一階段主要由教師講解,學(xué)生觀(guān)察發(fā)現,意在突出兩函數圖象形狀相同、位置不同,后者可以由前者平移得到。
講解時(shí),利用幾何畫(huà)板的度量功能,給出兩個(gè)對應點(diǎn)的坐標,易于學(xué)生發(fā)現點(diǎn)的坐標關(guān)系,并給出相應的輔助線(xiàn),一方面便于學(xué)生發(fā)現規律,另一方面也是為后面定位作圖法的學(xué)習作好鋪墊。
2、實(shí)驗發(fā)現
本階段由學(xué)生以小組合作探索的形式完成,通過(guò)填寫(xiě)實(shí)驗報告的形式完成探索規律的任務(wù)。 實(shí)驗1、試改變實(shí)驗平臺1中的參數 、 ,觀(guān)察由 的圖象到 的變換現象,依照給出的樣例填寫(xiě)下表,并總結其中的平移變換規律。
函數 解析式平移變換規律12向左平移2個(gè)單位,向上平移1個(gè)單位 實(shí)驗結論
【實(shí)用的高中數學(xué)說(shuō)課稿模板匯總8篇】相關(guān)文章:
實(shí)用的高中數學(xué)說(shuō)課稿模板匯總十篇08-19
實(shí)用的高中數學(xué)說(shuō)課稿匯總八篇07-31
實(shí)用的高中數學(xué)說(shuō)課稿匯總7篇07-28
實(shí)用的高中數學(xué)說(shuō)課稿匯總六篇07-24
實(shí)用的高中數學(xué)說(shuō)課稿模板9篇07-29
實(shí)用的高中數學(xué)說(shuō)課稿模板8篇07-28