有關(guān)高中數學(xué)說(shuō)課稿范文匯總6篇
作為一位杰出的教職工,通常需要用到說(shuō)課稿來(lái)輔助教學(xué),借助說(shuō)課稿可以讓教學(xué)工作更科學(xué)化。那么大家知道正規的說(shuō)課稿是怎么寫(xiě)的嗎?以下是小編為大家整理的高中數學(xué)說(shuō)課稿6篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數學(xué)說(shuō)課稿 篇1
一、教材分析
1、教材內容
本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》§2.1.3函數簡(jiǎn)單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習增函數、減函數的定義,以及應用定義解決一些簡(jiǎn)單問(wèn)題.
2、教材所處地位、作用
函數的性質(zhì)是研究函數的基石,函數的單調性是首先研究的一個(gè)性質(zhì).通過(guò)對本節課的學(xué)習,讓學(xué)生領(lǐng)會(huì )函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡(jiǎn)單的實(shí)際問(wèn)題.通過(guò)上述活動(dòng),加深對函數本質(zhì)的認識.函數的單調性既是學(xué)生學(xué)過(guò)的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎.此外在比較數的大小、函數的定性分析以及相關(guān)的數學(xué)綜合問(wèn)題中也有廣泛的應用,它是整個(gè)高中數學(xué)中起著(zhù)承上啟下作用的核心知識之一.從方法論的角度分析,本節教學(xué)過(guò)程中還滲透了探索發(fā)現、數形結合、歸納轉化等數學(xué)思想方法.
3、教學(xué)目標
。1)知識與技能:使學(xué)生理解函數單調性的概念,掌握判別函數單調性
的方法;
。2)過(guò)程與方法:從實(shí)際生活問(wèn)題出發(fā),引導學(xué)生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問(wèn)題,讓學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力.
。3)情感態(tài)度價(jià)值觀(guān):讓學(xué)生體驗數學(xué)的科學(xué)功能、符號功能和工具功能,培養學(xué)生直覺(jué)觀(guān)察、探索發(fā)現、科學(xué)論證的良好的數學(xué)思維品質(zhì).
4、重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn)(1)函數單調性的概念;
。2)運用函數單調性的定義判斷一些函數的單調性.
教學(xué)難點(diǎn)(1)函數單調性的知識形成;
。2)利用函數圖象、單調性的定義判斷和證明函數的單調性.
二、教法分析與學(xué)法指導
本節課是一節較為抽象的數學(xué)概念課,因此,教法上要注意:
1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)了學(xué)生求知欲,調動(dòng)了學(xué)生主體參與的積極性.
2、在運用定義解題的過(guò)程中,緊扣定義中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類(lèi)問(wèn)題的解決.
3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用.具體體現在設問(wèn)、講評和規范書(shū)寫(xiě)等方面,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并成功地完成書(shū)面表達.
4、采用投影儀、多媒體等現代教學(xué)手段,增大教學(xué)容量和直觀(guān)性.
在學(xué)法上:
1、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和解決問(wèn)題的能力.
2、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的一個(gè)飛躍.
三、 教學(xué)過(guò)程
教學(xué) 環(huán)節 | 教 學(xué) 過(guò) 程 | 設 計 意 圖 |
問(wèn)題 情境 | (播放中央電視臺天氣預報的音樂(lè )) 滿(mǎn)足在定義域上的單調性的討論. 2、重視學(xué)生發(fā)現的過(guò)程.如:充分暴露學(xué)生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過(guò)程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認知結構升華、發(fā)現的過(guò)程. 3、重視學(xué)生的動(dòng)手實(shí)踐過(guò)程.通過(guò)對定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運用定義. 4、重視課堂問(wèn)題的設計.通過(guò)對問(wèn)題的設計,引導學(xué)生解決問(wèn)題. |
高中數學(xué)說(shuō)課稿 篇2
我說(shuō)課的內容是高中數學(xué)第二冊(上冊)第七章《直線(xiàn)和圓的方程》中的第六節“曲線(xiàn)和方程”的第一課時(shí),下面我的說(shuō)課將從以下幾個(gè)方面進(jìn)行闡述:
一、教材分析
教材的地位和作用
“曲線(xiàn)和方程”這節教材揭示了幾何中的形與代數中的數相統一的關(guān)系,為“作形判數”與“就數論形”的相互轉化開(kāi)辟了途徑,這正體現了解析幾何這門(mén)課的基本思想,對全部解析幾何教學(xué)有著(zhù)深遠的影響。學(xué)生只有透徹理解了曲線(xiàn)和方程的意義,才算是尋得了解析幾何學(xué)習的入門(mén)之徑。如果以為學(xué)生不真正領(lǐng)悟曲線(xiàn)和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說(shuō)是一種“舍本逐題”的偏見(jiàn),應該認識到這節“曲線(xiàn)和方程”的開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!
根據以上分析,確立教學(xué)重點(diǎn)是:“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;難點(diǎn)是:怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程。
二、教學(xué)目標
根據教學(xué)大綱的要求以及本教材的地位和作用,結合高二學(xué)生的認知特點(diǎn)確定教學(xué)目標如下:
知識目標:
1、了解曲線(xiàn)上的點(diǎn)與方程的解之間的一一對應關(guān)系;
2、初步領(lǐng)會(huì )“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;
3、學(xué)會(huì )根據已有的情景資料找規律,進(jìn)而分析、判斷、歸納結論;
4、強化“形”與“數”一致并相互轉化的思想方法。
能力目標:
1、通過(guò)直線(xiàn)方程的引入,加強學(xué)生對方程的解和曲線(xiàn)上的點(diǎn)的一一對應關(guān)系的認識;
2、在形成曲線(xiàn)和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀(guān)察、分析、討論等數學(xué)活動(dòng)過(guò)程,探索出結論,并能有條理的闡述自己的觀(guān)點(diǎn);
3、能用所學(xué)知識理解新的概念,并能運用概念解決實(shí)際問(wèn)題,從中體會(huì )轉化化歸的思想方法,提高思維品質(zhì),發(fā)展應用意識。
情感目標:
1、通過(guò)概念的引入,讓學(xué)生感受從特殊到一般的認知規律;
2、通過(guò)反例辨析和問(wèn)題解決,培養合作交流、獨立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng )新的科學(xué)精神。
三、重難點(diǎn)突破
“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念是本節的重點(diǎn),這是由于本節課是由直觀(guān)表象上升到抽象概念的過(guò)程,學(xué)生容易對定義中為什么要規定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線(xiàn)、拋物線(xiàn)等實(shí)際模型,積累了感性認識的基礎,所以可用舉反例的方法來(lái)解決困惑,通過(guò)反例揭示“兩者缺一”與直覺(jué)的矛盾,從而又促使學(xué)生對概念表述的嚴密性進(jìn)行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來(lái)解釋曲線(xiàn)和方程的對應關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程是本節的難點(diǎn)。因為學(xué)生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線(xiàn)建立方程的時(shí)候,不驗證方程的解為坐標的點(diǎn)在曲線(xiàn)上,就斷然得出所求的是曲線(xiàn)方程。這種現象在高考中也屢見(jiàn)不鮮。為了突破難點(diǎn),本節課設計了三種層次的問(wèn)題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線(xiàn)的方程。通過(guò)這些例題讓學(xué)生再一次體會(huì )“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標系后平面內的點(diǎn)和有序實(shí)數對之間建立了一一對應關(guān)系,已有了用方程(有時(shí)以函數式的形式出現)表示曲線(xiàn)的感性認識(特別是二元一次方程表示直線(xiàn)),現在要進(jìn)一步研究平面內的曲線(xiàn)和含有兩個(gè)變數的方程之間的關(guān)系,是由直觀(guān)表象上升到抽象概念的過(guò)程,對學(xué)生有相當大的難度。學(xué)生在學(xué)習時(shí)容易產(chǎn)生的問(wèn)題是,不理解“曲線(xiàn)上的點(diǎn)的坐標都是方程的解”和“以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)”這兩句話(huà)在揭示“曲線(xiàn)和方程”關(guān)系時(shí)各自所起的作用。本節課的教學(xué)目標也只能是初步領(lǐng)會(huì ),要求學(xué)生能答出曲線(xiàn)和方程間必須滿(mǎn)足兩個(gè)關(guān)系時(shí)才能稱(chēng)作“曲線(xiàn)的方程”和“方程的曲線(xiàn)”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區別。
高中數學(xué)說(shuō)課稿 篇3
各位評委、各位老師:大家好!
我叫李長(cháng)杉,來(lái)自甘肅省嘉峪關(guān)市第一中學(xué)。今天我說(shuō)課的課題是《一元二次不等式的解法》(第一課時(shí))。下面我將圍繞本節課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個(gè)問(wèn)題,從教材內容分析、教法學(xué)法分析、教學(xué)過(guò)程分析和課堂意外預案等幾個(gè)方面逐一加以分析和說(shuō)明。
一。教材內容分析:
1.本節課內容在整個(gè)教材中的地位和作用。
概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學(xué)習過(guò)的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線(xiàn)形規劃、直線(xiàn)與圓錐曲線(xiàn)以及導數等內容密切相關(guān)。許多問(wèn)題的解決都會(huì )借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數學(xué)教學(xué)中具有很強的基礎性,體現出很大的工具作用。
2.教學(xué)目標定位。
根據教學(xué)大綱要求、高考考試大綱說(shuō)明、新課程標準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個(gè)層面的教學(xué)目標。第一層面是面向全體學(xué)生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系。第二層面是能力目標,培養學(xué)生運用數形結合與等價(jià)轉化等數學(xué)思想方法解決問(wèn)題的能力,提高運算和作圖能力。第三層面是德育目標,通過(guò)對解不等式過(guò)程中等與不等對立統一關(guān)系的認識,向學(xué)生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學(xué)生自主探究,交流討論,培養學(xué)生的合作意識和創(chuàng )新精神。
3.教學(xué)重點(diǎn)、難點(diǎn)確定。
本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數三者的關(guān)系。
二。教法學(xué)法分析:
數學(xué)是發(fā)展學(xué)生思維、培養學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導下學(xué)會(huì )學(xué)習、樂(lè )于學(xué)習,感受數學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習中培養堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現課堂教學(xué)中"教師為主導,學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節課的教學(xué)過(guò)程中,我將緊緊圍繞教師組織——啟發(fā)引導,學(xué)生探究——交流發(fā)現,組織開(kāi)展教學(xué)活動(dòng)。我設計了①創(chuàng )設情景——引入新課,②交流探究——發(fā)現規律,③啟發(fā)引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節,在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節。
三。教學(xué)過(guò)程分析:
1.創(chuàng )設情景——引入新課。我們常說(shuō)"興趣是最好的老師",長(cháng)期以來(lái),學(xué)生對學(xué)習數學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習的情感體驗,教學(xué)應該充分考慮學(xué)生的情感和需要,想方設法讓學(xué)生在學(xué)習中樹(shù)立信心,感受學(xué)習的樂(lè )趣。根據教材內容的安排,我以學(xué)生熟悉的畫(huà)一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個(gè)練習題組,一方面讓學(xué)生總結復習已有知識,為后面學(xué)習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè )體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節課的新授內容。對于本題,引導學(xué)生,利用上面解練習題組1的方法,畫(huà)出二次函數圖象來(lái)解答。二次函數是初中數學(xué)的重要內容,本題又給出了函數圖象上許多點(diǎn),相信學(xué)生畫(huà)出圖象應該不成問(wèn)題,只要教師適當點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習中。
2.探究交流——發(fā)現規律。從特殊到一般是我們發(fā)現問(wèn)題、尋求規律、揭示問(wèn)題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數圖象,求解應該不會(huì )有太大的問(wèn)題。在這個(gè)過(guò)程中,教師要啟發(fā)引導學(xué)生注意對比兩題的異同,組織引導學(xué)生展開(kāi)交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫(huà)圖求解。然后達成共識,如果二次項系數為負數時(shí),先做等價(jià)轉化,把二次項系數化為正數再解,課本19頁(yè)例3、例4作為題組(二),繼續讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個(gè)不等實(shí)根,例3對應方程有兩相等實(shí)根,例4對應方程無(wú)實(shí)根)。兩個(gè)題組的練習之后,可以尋求解二次不等式的一般規律。
3.啟發(fā)引導——形成結論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導學(xué)生將特殊、具體題目的結論做一般化總結,與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程 ax2+bx+c=0 的根。③根據①后的二次不等式的符號寫(xiě)出解集即可,必要時(shí)也可以結合圖象寫(xiě)解集。這樣我們就得到了二次不等式的另外一種解法(可稱(chēng)為"三步曲"法)。
4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習,完成課本21頁(yè)練習1-4題。本環(huán)節請不同層次的學(xué)生在黑板上書(shū)寫(xiě)解題過(guò)程,之后師生共同糾正問(wèn)題,規范解題過(guò)程的書(shū)寫(xiě)。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應關(guān)注學(xué)生的個(gè)體差異。體現分類(lèi)推進(jìn),分層教學(xué)的原則。為此,我又設計了一個(gè)提高練習題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
四。課堂意外預案:
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵學(xué)生勇于提出問(wèn)題,培養學(xué)生思維的批評性。在課堂上學(xué)生往往會(huì )提出讓老師感到"意外"的問(wèn)題,我在平時(shí)的教學(xué)中重視對"課堂意外預案"的探索和思考,備課時(shí)盡量設想課堂中可能會(huì )出現的各種情況,做到有備無(wú)患,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地。結合以往經(jīng)驗,在本節課,我提出兩個(gè)"意外預案".
1.學(xué)生在做課本練習1(x+2)(x-3)>0 時(shí),可能會(huì )問(wèn)到轉化為不等式組{ 或{ 求解對不對。學(xué)生提出的問(wèn)題,想法非常好,應給予肯定和鼓勵,這與下節簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉化法,不在本節課之列。
2.根據以往的經(jīng)驗,在解(x-1)(x+2)>1一類(lèi)的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會(huì )出現將不等式轉化為不等式組{ 來(lái)求解的錯誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現問(wèn)題并給予糾正,指出上面的轉化不是等價(jià)轉化。
以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專(zhuān)家、各位同仁批評指正。謝謝大家!
高中數學(xué)說(shuō)課稿 篇4
一、教材分析
1、教材地位和作用
二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時(shí)它也是空間中線(xiàn)線(xiàn)、線(xiàn)面、面面垂直關(guān)系的一個(gè)匯集點(diǎn)。搞好本節課的學(xué)習,對學(xué)生系統地掌握直線(xiàn)和平面的知識乃至于創(chuàng )新能力的培養都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運用。
2、教學(xué)目標
根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標:
認知目標:
。1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運用它們解決實(shí)際問(wèn)題。
。2)進(jìn)一步培養學(xué)生把空間問(wèn)題轉化為平面問(wèn)題的化歸思想。
能力目標:以培養學(xué)生的創(chuàng )新能力和動(dòng)手能力為重點(diǎn)。
(1)突出對類(lèi)比、直覺(jué)、發(fā)散等探索性思維的培養,從而提高學(xué)生的創(chuàng )新能力。
。2)通過(guò)對圖形的觀(guān)察、分析、比較和操作來(lái)強化學(xué)生的動(dòng)手操作能力。
教育目標:
(1)使學(xué)生認識到數學(xué)知識來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,從而增強學(xué)生應用數學(xué)的意識。
(2)通過(guò)揭示線(xiàn)線(xiàn)、線(xiàn)面、面面之間的內在聯(lián)系,進(jìn)一步培養學(xué)生聯(lián)系的辯證唯物主義觀(guān)點(diǎn)。
3、本節課教學(xué)的重、難點(diǎn)是兩個(gè)過(guò)程的教學(xué):
。1)二面角的平面角概念的形成過(guò)程。
。2)尋找二面角的平面角的方法的發(fā)現過(guò)程。
其理由如下:
。1)現行教材省略了概念的形成過(guò)程和方法的發(fā)現過(guò)程,沒(méi)有反映出科學(xué)認識產(chǎn)生的辯證過(guò)程,與學(xué)生的認知規律相悖,給學(xué)生的學(xué)習造成了很大的困難,非常不利于學(xué)生創(chuàng )新能力、獨立思考能力以及動(dòng)手能力的培養。
。2)現代認知學(xué)認為,揭示知識的形成過(guò)程,對學(xué)生學(xué)習新知識是十分必要的。同時(shí)通過(guò)展現知識的發(fā)生、發(fā)展過(guò)程,給學(xué)生思考、探索、發(fā)現和創(chuàng )新提供了最大的空間,可以使學(xué)生在整個(gè)教學(xué)過(guò)程中始終處于積極的思維狀態(tài),進(jìn)而培養他們獨立思考和大膽求索的精神,這樣才能全面落實(shí)本節課的教學(xué)目標。
二、指導思想和教學(xué)方法
在設計本教學(xué)時(shí),主要貫徹了以下兩個(gè)思想:
1、樹(shù)立以學(xué)生發(fā)展為本的思想。通過(guò)構建以學(xué)習者為中心、有利于學(xué)生主體精神、創(chuàng )新能力健康發(fā)展的寬松的教學(xué)環(huán)境,提供學(xué)生自主探索和動(dòng)手操作的機會(huì ),鼓勵他們創(chuàng )新思考,親身參與概念和方法的形成過(guò)程。2、堅持協(xié)同創(chuàng )新原則。把教材創(chuàng )新、教法創(chuàng )新以及學(xué)法創(chuàng )新有機地統一起來(lái),因為只有教師創(chuàng )新地教,學(xué)生創(chuàng )新地學(xué),才能營(yíng)建一個(gè)有利于創(chuàng )新能力培養的良好環(huán)境。
首先是教材創(chuàng )新。
。1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類(lèi)比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開(kāi)放的、探索性的發(fā)現過(guò)程。
。2)在引入定義之后,例題講解之前,引導學(xué)生發(fā)現尋找二面角的平面角的方法,為例題做好鋪墊。
。3)重新編排例題。
其次是教法創(chuàng )新。采用多種創(chuàng )新的教學(xué)方法,包括問(wèn)題解決法、類(lèi)比發(fā)現法、研究發(fā)現法等教學(xué)方法。
這組教學(xué)方法的特點(diǎn)是教師通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生逐步發(fā)現知識的形成過(guò)程,使教學(xué)活動(dòng)真正建立在學(xué)生自主活動(dòng)和探索的基礎上,著(zhù)力培養學(xué)生的創(chuàng )新能力。
這組教學(xué)方法使得學(xué)生在解決問(wèn)題的過(guò)程中學(xué)數學(xué),用數學(xué),不僅強調動(dòng)腦思考,而且強調動(dòng)手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過(guò)學(xué)生全面、多樣的主體實(shí)踐活動(dòng),促進(jìn)他們獨立思考能力、動(dòng)手能力等多方面素質(zhì)的整體發(fā)展。
教學(xué)手段的現代化有利于提高課堂效益,有利于創(chuàng )新人才的培養,根據本節課的教學(xué)需要,確定利用《幾何畫(huà)板》制作課件來(lái)輔助教學(xué);此外,為加強直觀(guān)教學(xué),教師可預先做好一些模型。
最后是學(xué)法創(chuàng )新。意在指導學(xué)生會(huì )創(chuàng )新地學(xué)。
1、樂(lè )學(xué):在整個(gè)學(xué)習過(guò)程中學(xué)生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng )新意識,全身心地投入到學(xué)習中去,成為學(xué)習的主人。
2、學(xué)會(huì ):在掌握基礎知識的同時(shí),學(xué)生要注意領(lǐng)會(huì )化歸、類(lèi)比聯(lián)想等數學(xué)思想方法的運用,學(xué)會(huì )建立完善的認知結構。
3、會(huì )學(xué):通過(guò)自已親身參與,學(xué)生要領(lǐng)會(huì )復習類(lèi)比和深入研究這兩種知識創(chuàng )新的方法,從而既學(xué)到知識,又學(xué)會(huì )創(chuàng )新。
三、程序安排
。ㄒ唬、二面角
1、揭示概念產(chǎn)生背景。
心理學(xué)研究表明,當學(xué)生明確數學(xué)概念的學(xué)習目的和意義時(shí),就會(huì )對概念的學(xué)習產(chǎn)生濃厚的興趣。創(chuàng )設問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng )新意識,營(yíng)造了創(chuàng )新思維的氛圍。
問(wèn)題情境1、我們是如何定量研究?jì)善叫衅矫娴南鄬ξ恢玫模?/p>
問(wèn)題情境2、立幾中常用距離和角來(lái)定量描述兩個(gè)元素之間的相對位置,為什么不引入兩平行平面所成的角?
問(wèn)題情境3、我們應如何定量研究?jì)蓚(gè)相交平面之間的相對位置呢?
通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認知結構,為知識的創(chuàng )新做好了準備;同時(shí)也讓學(xué)生領(lǐng)會(huì )到,二面角這一概念的產(chǎn)生是因為研究?jì)上嘟黄矫娴南鄬ξ恢玫男枰,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動(dòng)的展開(kāi)。
2、展現概念形成過(guò)程。
高中數學(xué)說(shuō)課稿 篇5
一、 說(shuō)教材
。ㄒ唬┙滩牡牡匚缓妥饔
本節內容著(zhù)重介紹了三角形的三種特殊線(xiàn)段,已學(xué)過(guò)的過(guò)直線(xiàn)外一點(diǎn)作已知直線(xiàn)的垂線(xiàn)、線(xiàn)段的中點(diǎn)、角的平分線(xiàn)等知識是學(xué)習本節新知識的基礎,其中三角形的高學(xué)生從小學(xué)起已開(kāi)始接觸,教材從學(xué)生已有認知出發(fā),從高入手,利用圖形,給高作了具體定義,使學(xué)生了解三角形的高為線(xiàn)段,進(jìn)而引出三角形的另外幾種特殊線(xiàn)段——中線(xiàn)、角平分線(xiàn)。通過(guò)本節內容學(xué)習,可使學(xué)生掌握三角形的高、中線(xiàn)、角平分線(xiàn)與垂線(xiàn)、角平分線(xiàn)的聯(lián)系與區別。通過(guò)學(xué)習作圖、觀(guān)察與探究,會(huì )發(fā)現三角形的三條高所在的直線(xiàn)、三條角平分線(xiàn)、三條中線(xiàn)都各自交于一點(diǎn),這為以后三角形的內心、重心等知識的學(xué)習打下一定的基礎,另外,本節內容也是日后學(xué)習等腰三角形等特殊三角形的墊腳石。故學(xué)好本節內容是十分必要的。因此,對三角的高、中線(xiàn)、角平分線(xiàn)定義的理解及畫(huà)法的掌握是本節教學(xué)的重點(diǎn),而三角形的高由于三角形的形狀改變而使其位置呈現多樣性,學(xué)生難以掌握,故在各類(lèi)三角形中作出它們是本課的難點(diǎn)。
。ǘ┙虒W(xué)目標分析
本節課的教學(xué)設計力圖體現“尊重學(xué)生,注重發(fā)展”的教學(xué)理念,著(zhù)重培養和發(fā)展學(xué)生基本作圖能力、語(yǔ)言表達能力、觀(guān)察能力等,根據這一目的確定本節教學(xué)目標為:
1、理解三角形的高、中線(xiàn)、角平分線(xiàn)的概念
2、能正確作出一個(gè)三角形的高、中線(xiàn)、角平分線(xiàn)
3、通過(guò)觀(guān)察、探究、畫(huà)一畫(huà)、折一折與描述等數學(xué)活動(dòng),感受數學(xué)語(yǔ)言的準確性,提高觀(guān)察能力,語(yǔ)言表達能力,發(fā)展推理能力。
重點(diǎn):掌握三角形的高、中線(xiàn)、角平分線(xiàn)的概念,并能在具體三角形中畫(huà)出它們
難點(diǎn):在各種三角形中作出它們的高
二、 說(shuō)教法
1、情境創(chuàng )設法 :利用張師傅如何將一塊三角形的地分成面積相等的兩塊三角形地創(chuàng )設問(wèn)題情境,并引導學(xué)生去簡(jiǎn)單分析思路,目的使數學(xué)能密切聯(lián)系實(shí)際體現知識的形成和應用過(guò)程。以實(shí)際問(wèn)題為出發(fā)點(diǎn)和歸宿,更能貼近學(xué)生生活,以激發(fā)學(xué)生對學(xué)習本節內容的求知欲,培養他們運用所學(xué)知識解決問(wèn)題的.能力。
2、加強學(xué)生學(xué)習的主動(dòng)性與探究性 在課堂中要充分調動(dòng)學(xué)生自主學(xué)習的潛能,讓他們自由探究中發(fā)現,從而發(fā)展他們的創(chuàng )新能力,讓他們感受到成功的喜悅。學(xué)生在畫(huà)一畫(huà)、折一折、何三個(gè)探究活動(dòng)中體驗數學(xué)知識的形成過(guò)程。當學(xué)生在探究過(guò)程中遇到困難時(shí),才取消組建的交流與合作,充分發(fā)揮學(xué)生的團隊作用,以更好地激發(fā)學(xué)生的積極思維,得到更大的收獲。
3、運用多媒體等作為教輔工具,增強學(xué)生的直觀(guān)感受,掃除學(xué)生從形象思維難以跨越到抽象思維的障礙,突出重點(diǎn),突破難點(diǎn)。
三、說(shuō)學(xué)法
1、本節重點(diǎn)是三角形的三種重要線(xiàn)段,難點(diǎn)是對三角形的角平分線(xiàn)、中線(xiàn)、高的準確理解、作圖與正確運用,而突破難點(diǎn)的關(guān)鍵是運用好數形結合的數學(xué)思想從畫(huà)圖入手,從大量的活動(dòng)入手獲得三種線(xiàn)段的直觀(guān)形象,進(jìn)一步架起數與形之間的橋梁,加強知識間的相互聯(lián)系。
2、小組討論、合作探究,既可讓學(xué)生互相啟發(fā),互相促進(jìn),積極交流,表達思想又可促進(jìn)數學(xué)思考,擴大和加深對問(wèn)題的認識,本節課中我讓學(xué)生以小組進(jìn)行探究,歸納圖形特征,做到仔細觀(guān)察,大膽探索,勇于發(fā)現,抽象概括。讓學(xué)生通過(guò)探索活動(dòng)來(lái)發(fā)現結論,經(jīng)歷知識的“再發(fā)現”過(guò)程,從而改變學(xué)生學(xué)習的方式,發(fā)展創(chuàng )新思維能力。
四、說(shuō)教學(xué)過(guò)程:
1、創(chuàng )設問(wèn)題情境,引出新知: 從生活實(shí)例引出新問(wèn)題,調動(dòng)學(xué)生學(xué)習積極性
2、預習檢查:以題組的形勢
考點(diǎn)1:三角形的高
1.如圖7.1.2-1,在△ABC中,BC邊上的高是________;在△AFC中,CF邊上的高是________;在△ABE中,AB邊上的高是_________.
2.如圖7.1.2-2,△ABC的三條高AD、BE、CF相交于點(diǎn)H,則△ABH的三條高是_______,這三條高交于________.BD是△________、△________、△________的高.
3.如圖7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,則下面說(shuō)話(huà)中錯誤的是( )
A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高
7.1.2《三角形的高、中線(xiàn)、角平分線(xiàn)》說(shuō)課稿
圖7.1.2-1 圖7.1.2-2 圖7.1.2-3
4.如果一個(gè)三角形的三條高的交點(diǎn)恰是三角形的一個(gè)頂點(diǎn),那么這個(gè)三角形是( )
A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定
5.三角形的三條高的交點(diǎn)一定在( )
A.三角形內部 B.三角形的外部 C.三角形的內部或外部 D.以上答案都不對
考點(diǎn)2:三角形的中線(xiàn)與角平分線(xiàn)
6.如圖7.1.2-5所示:(1)AD⊥BC,垂足為D,則AD是________的高,∠________=∠________=90°.
。2)AE平分∠BAC,交BC于E點(diǎn),則AE叫做△ABC的________,∠________=∠________=7.1.2《三角形的高、中線(xiàn)、角平分線(xiàn)》說(shuō)課稿∠________.
。3)若AF=FC,則△ABC的中線(xiàn)是________,S△ABF=________.
。4)若BG=GH=HF,則AG是________的中線(xiàn),AH是________的中線(xiàn).
圖7.1.2-5 圖7.1.2-6 圖7.1.2-7
7.如圖7.1.2-6,DE∥BC,CD是∠ACB的平分線(xiàn),∠ACB=60°,那么∠EDC=______度.
8.如圖7.1.2-7,BD=DC,∠ABN=7.1.2《三角形的高、中線(xiàn)、角平分線(xiàn)》說(shuō)課稿∠ABC,則AD是△ABC的________線(xiàn),BN是△ABC的________,
ND是△BNC的________線(xiàn).
9.下列判斷中,正確的個(gè)數為( )
。1)D是△ABC中BC邊上的一個(gè)點(diǎn),且BD=CD,則AD是△ABC的中線(xiàn)
。2)D是△ABC中BC邊上的一個(gè)點(diǎn),且∠ADC=90°,則AD是△ABC的高
。3)D是△ABC中BC邊上的一個(gè)點(diǎn),且∠BAD=7.1.2《三角形的高、中線(xiàn)、角平分線(xiàn)》說(shuō)課稿∠BAC,則AD是△ABC的角平分線(xiàn)
。4)三角形的中線(xiàn)、高、角平分線(xiàn)都是線(xiàn)段
A.1 B.2 C.3 D.4
3、探究活動(dòng)1:探究三角形的高,師提出問(wèn)題,生獨立解答,教師關(guān)注學(xué)生對高和邊的對應關(guān)系是否明確,并結合圖形引出三角形高的定義,并且利用圖形,讓生用語(yǔ)言描述,師加以修正,目的發(fā)展學(xué)生的觀(guān)察力與語(yǔ)言表述能力。在此基礎上讓學(xué)生明確三角形的高是一條線(xiàn)段。為了培養學(xué)生的繪圖能力,讓小組之間合作完成銳角三角形、直角三角形、鈍角三角形各邊上的高。小組交流,歸納三角形高的特點(diǎn),再讓他們敘述小組所探究的結論,師加以適當修正與鼓勵。
在活動(dòng)中,師應重點(diǎn)關(guān)注:
、賹W(xué)生能否多方位的加以探究
、趯W(xué)生能否用流利的語(yǔ)言描述自己的發(fā)現
、蹖W(xué)生能否對不同的觀(guān)點(diǎn)進(jìn)行質(zhì)疑,感受數學(xué)結論的正確性。之后設計的是鞏固性練習,通過(guò)學(xué)生練習,對三角形高的的有關(guān)知識加以鞏固,讓學(xué)生從運用所學(xué)知識解決問(wèn)題的過(guò)程,獲得成功的體驗,從而激發(fā)他們學(xué)習的積極性。
3、探究活動(dòng)2 : 探究三角形的中線(xiàn):學(xué)生在畫(huà)一畫(huà)中體會(huì )三角形中線(xiàn)的定義,培養學(xué)生動(dòng)腦、動(dòng)手能力,語(yǔ)言表達能力。
4、探究活動(dòng)3:探究三角形的角平分線(xiàn)。首先讓學(xué)生折一折,在動(dòng)手操作中體會(huì )折痕是否平分三角形的內角,之后分小組折疊銳角三角形、直角三角形、鈍角三角形的角平分線(xiàn),小組交流,歸納三角形角平分線(xiàn)的特點(diǎn),再讓他們敘述小組所探究的結論,師加以適當修正與鼓勵。從而很好的培養了學(xué)生的動(dòng)手操作和探究能力。
5、練習鞏固,深化拓展
先以搶答形式解決問(wèn)題1、問(wèn)題2,讓學(xué)生利用所學(xué)知識,進(jìn)一步鞏固三角形的高、中線(xiàn)、角平分線(xiàn)的有關(guān)概念,提高學(xué)生獨立解決問(wèn)題的能力。拓展練習是一個(gè)綜合性題目,一方面引導學(xué)生從復雜圖形中抽取基本圖形,從而加強學(xué)生對概念的掌握,進(jìn)一步發(fā)展學(xué)生的思維,拓展能力,運用以增強直觀(guān)性。
6、感悟與收獲:進(jìn)一步提升學(xué)生對知識點(diǎn)理解。
7、作業(yè)布置:讓學(xué)生運用數學(xué)知識解決生活實(shí)例,是讓學(xué)生感受數學(xué)和生活的聯(lián)系及數學(xué)在生活中的重要性,充分體現數學(xué)于生活又還原于生活。
高中數學(xué)說(shuō)課稿 篇6
一.說(shuō)教材
1.1 教材結構與內容簡(jiǎn)析
本節課為《江蘇省中等職業(yè)學(xué)校試用教材數學(xué)(第二冊)》5.6函數圖象的定位作圖法的第一課時(shí),主要內容為基本函數 與一般函數 間的圖象平移變換規律。
函數圖象的平移,既是前階段函數性質(zhì)及具體函數研究的延續和深化,也是后階段定位作圖法以至解析幾何中移軸化簡(jiǎn)的基礎和滲透,在教材中起著(zhù)重要的承上啟下作用。更為重要的是,這段內容還蘊涵著(zhù)重要的數學(xué)思想方法,如化歸思想、映射與對應思想、換元方法等。
1.2 教學(xué)目標
1.2.1知識目標
、、給定平移前后函數解析式,能熟練敘述相應的平移變換,正確掌握平移方向與 、 符號的關(guān)系。
、、能較熟練地化簡(jiǎn)較復雜的函數解析式,找出對應的基本函數模型(如一次函數,反比例函數、指數函數等)。
、、初步學(xué)會(huì )應用平移變換規律研究較復雜的函數的具體性質(zhì)(如值域、單調性等)。
1.2.2能力目標
、、在數學(xué)實(shí)驗平臺上,能自主探究,改變相應參數和函數解析式,觀(guān)察相應圖象變化,經(jīng)歷命題探索發(fā)現的過(guò)程,提高觀(guān)察、歸納、概括能力。
、、結合學(xué)習中發(fā)現的問(wèn)題,學(xué)會(huì )借助于數學(xué)軟件等工具研究、探索和解決問(wèn)題,學(xué)會(huì )數學(xué)
地解決問(wèn)題。
、、滲透數學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習,發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺(jué)等)。
1.2.3情感目標
培養學(xué)生積極參與、合作交流的主體意識,在知識的探索和發(fā)現的過(guò)程中,使學(xué)生感受數學(xué)學(xué)習的意義,改善學(xué)生的數學(xué)學(xué)習信念(態(tài)度、興趣等)。
1.3 教材重點(diǎn)和難點(diǎn)處理思路
重點(diǎn):函數圖象的平移變換規律及應用
難點(diǎn):經(jīng)歷數學(xué)實(shí)驗方法探索平移對函數解析式的影響及如何利用平移變換規律化簡(jiǎn)函數解析式、研究復雜函數
教材在這段內容的處理上,注重直觀(guān)性背景,注重學(xué)生豐富感性知識的獲得,淡化形式化的邏輯推導和形式化的結果即平移公式。實(shí)際教學(xué)中,我們發(fā)現如果學(xué)生不經(jīng)受足夠的親身體驗而簡(jiǎn)單的記住結論的話(huà),往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說(shuō)明這段內容不能采取簡(jiǎn)單的“告訴”方式,須讓學(xué)生自主發(fā)現命題、發(fā)現規律,讓他們“知其然,更要知其所以然!
為了突出重點(diǎn)、突破難點(diǎn),在教學(xué)中采取了以下策略:
、、從學(xué)生已有知識出發(fā),精心設計一些適合學(xué)生學(xué)力的數學(xué)實(shí)驗平臺,分層次逐步引導學(xué)生觀(guān)察圖象的平移方向與函數解析式中 、 符號的關(guān)系,抽象、歸納出平移變換規律。 ⑵、創(chuàng )設情境,引發(fā)學(xué)生認知沖突,激發(fā)學(xué)生求知欲,能借助于數學(xué)軟件多角度積極探求錯誤原因,使學(xué)生認識到形如 的函數須提取 前的系數化為 的形式,從而真正認識解析式形式化的特點(diǎn)。
、、數學(xué)實(shí)驗采取小組合作研究共同完成簡(jiǎn)單實(shí)驗報告的形式,通過(guò)學(xué)生的自主探究、合作交流,從而實(shí)現對平移變換規律知識的建構。
二.說(shuō)教法
針對職高一年級學(xué)生的認知特點(diǎn)和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎上,本節課我主要采取以實(shí)驗發(fā)現法為主,以討論法、練習法為輔的教學(xué)方法,引導學(xué)生通過(guò)實(shí)驗手段,從直觀(guān)、想象到發(fā)現、猜想,親歷數學(xué)知識建構過(guò)程,體驗數學(xué)發(fā)現的喜悅。
本節課的設計一方面重視學(xué)生數學(xué)學(xué)習過(guò)程是活動(dòng)的過(guò)程,因此不是按照已形式化了的現成的數學(xué)規則去操作數學(xué),而是采取數學(xué)實(shí)驗的方式,使學(xué)生有機會(huì )經(jīng)受足夠的親身體驗,親歷知識的自主建構過(guò)程;使學(xué)生學(xué)會(huì )從具體情境中提取適當的概念,從觀(guān)察到的實(shí)例中進(jìn)行概括,進(jìn)行合理的數學(xué)猜想與數學(xué)驗證,并作更高層次的數學(xué)概括與抽象;從而學(xué)會(huì )數學(xué)地思考。
另一方面,注重創(chuàng )設機會(huì )使學(xué)生有機會(huì )看到數學(xué)的全貌,體會(huì )數學(xué)的全過(guò)程。整堂課的設計圍繞研究較復雜函數的性質(zhì)展開(kāi),以問(wèn)題“函數 的性質(zhì)如何”為主線(xiàn),既讓學(xué)生清楚研究函數圖象平移的必要性,明確學(xué)習目標,又讓學(xué)生初步學(xué)會(huì )如何應用規律解決問(wèn)題,體會(huì )知識的價(jià)值,增強求知欲。
總之,本節課采用數學(xué)實(shí)驗發(fā)現教學(xué),學(xué)生采取小組合作的形式自主探究;利用實(shí)物投影進(jìn)行集體交流,及時(shí)反饋相關(guān)信息。
三.說(shuō)學(xué)法
“學(xué)之道在于悟,教之道在于度!睂W(xué)生是學(xué)習的主體,教師在教學(xué)過(guò)程中須將學(xué)習的主動(dòng)權交給學(xué)生。
美國某大學(xué)有一句名言:“讓我聽(tīng)見(jiàn)的,我會(huì )忘記;讓我看見(jiàn)的,我就領(lǐng)會(huì )了;讓我做過(guò)的,我就理解了!蓖ㄟ^(guò)學(xué)生的自主實(shí)驗,在探索新知的經(jīng)歷和獲得新知的體驗的基礎之上,真正正確掌握平移方向。
教師的“教”不僅要讓學(xué)生“學(xué)會(huì )知識”,更主要的是要讓學(xué)生“會(huì )學(xué)知識”。正如荷蘭數學(xué)教育家弗賴(lài)登塔爾所指出,“數學(xué)知識既不是教出來(lái)的,也不是學(xué)出來(lái)的,而是研究出來(lái)的!北竟澱n的教學(xué)中創(chuàng )設利于學(xué)生發(fā)現數學(xué)的實(shí)驗情境,讓學(xué)生自主地“做數學(xué)”,將傳統意義下的“學(xué)習”數學(xué)改變?yōu)椤把芯俊睌祵W(xué)。從而,使傳授知識與培養能力融為一體,在轉變學(xué)習方式的同時(shí)學(xué)會(huì )數學(xué)地思考。
四.說(shuō)程序
4.1創(chuàng )設情境,引入課題
在簡(jiǎn)要回顧前面研究的具體函數(指數函數、冪函數、三角函數等)性質(zhì)后,提出問(wèn)題“如何研究 的性質(zhì)?”
引導學(xué)生討論后,總結出兩種思路,即:思路1、通過(guò)描點(diǎn)法作出函數的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問(wèn)題化歸為 的問(wèn)題,借助于基本函數 的性質(zhì)解決新問(wèn)題。
從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數 與 間的聯(lián)系。
4.2數學(xué)實(shí)驗,自主探索
這一環(huán)節主要分兩階段。
1、嘗試初探
引例、函數 與 圖象間的關(guān)系
這一階段主要由教師講解,學(xué)生觀(guān)察發(fā)現,意在突出兩函數圖象形狀相同、位置不同,后者可以由前者平移得到。
講解時(shí),利用幾何畫(huà)板的度量功能,給出兩個(gè)對應點(diǎn)的坐標,易于學(xué)生發(fā)現點(diǎn)的坐標關(guān)系,并給出相應的輔助線(xiàn),一方面便于學(xué)生發(fā)現規律,另一方面也是為后面定位作圖法的學(xué)習作好鋪墊。
2、實(shí)驗發(fā)現
本階段由學(xué)生以小組合作探索的形式完成,通過(guò)填寫(xiě)實(shí)驗報告的形式完成探索規律的任務(wù)。 實(shí)驗1、試改變實(shí)驗平臺1中的參數 、 ,觀(guān)察由 的圖象到 的變換現象,依照給出的樣例填寫(xiě)下表,并總結其中的平移變換規律。
函數 解析式平移變換規律12向左平移2個(gè)單位,向上平移1個(gè)單位 實(shí)驗結論
【有關(guān)高中數學(xué)說(shuō)課稿范文匯總6篇】相關(guān)文章:
有關(guān)高中數學(xué)說(shuō)課稿范文匯總九篇08-13
有關(guān)高中數學(xué)說(shuō)課稿范文匯總5篇08-11
有關(guān)高中數學(xué)說(shuō)課稿范文匯總五篇08-11
有關(guān)高中數學(xué)說(shuō)課稿范文匯總六篇08-09
有關(guān)高中數學(xué)說(shuō)課稿匯總五篇07-18
有關(guān)高中數學(xué)說(shuō)課稿范文匯總七篇08-18
有關(guān)高中數學(xué)說(shuō)課稿范文5篇07-23