激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频

高中數學(xué)說(shuō)課稿

時(shí)間:2022-11-21 17:38:39 高中說(shuō)課稿 我要投稿

高中數學(xué)說(shuō)課稿(精選15篇)

  在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,很有必要精心設計一份說(shuō)課稿,說(shuō)課稿有助于提高教師理論素養和駕馭教材的能力。怎么樣才能寫(xiě)出優(yōu)秀的說(shuō)課稿呢?下面是小編收集整理的高中數學(xué)說(shuō)課稿,僅供參考,大家一起來(lái)看看吧。

高中數學(xué)說(shuō)課稿(精選15篇)

高中數學(xué)說(shuō)課稿1

  大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。

  一、教材分析

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生發(fā)現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學(xué)生會(huì )運用正弦定理解決兩類(lèi)基本的解三角形問(wèn)題。

  能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習的興趣。

  教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。

  二、教法

  根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

  三、學(xué)法

  指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  (一)創(chuàng )設情境(3分鐘)

  “興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。

  (二)猜想—推理—證明(15分鐘)

  激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。 提問(wèn):那結論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  (三)總結--應用(3分鐘)

  1.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  2.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

  (四)講解例題(8分鐘)

  1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中

  一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

  (五)課堂練習(8分鐘)

  1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

  2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。

  (六)小結反思(3分鐘)

  1.它表述了三角形的邊與對角的正弦值的關(guān)系。

  2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。

  3.會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  五、教學(xué)反思

  從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。

高中數學(xué)說(shuō)課稿2

  一、教學(xué)內容分析

  圓錐曲線(xiàn)的定義反映了圓錐曲線(xiàn)的本質(zhì)屬性,它是無(wú)數次實(shí)踐后的高度抽象.恰當地利用定義解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習了橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義及標準方程、幾何性質(zhì)后,再一次強調定義,學(xué)會(huì )利用圓錐曲線(xiàn)定義來(lái)熟練的解題”。

  二、學(xué)生學(xué)習情況分析

  我所任教班級的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學(xué)語(yǔ)言的表達能力也略顯不足。

  三、設計思想

  由于這部分知識較為抽象,如果離開(kāi)感性認識,容易使學(xué)生陷入困境,降低學(xué)習熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導學(xué)生主動(dòng)發(fā)現問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現、獲取新知,提高教學(xué)效率.

  四、教學(xué)目標

  1.深刻理解并熟練掌握圓錐曲線(xiàn)的定義,能靈活應用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標、頂點(diǎn)坐標、焦距、離心率、準線(xiàn)方程、漸近線(xiàn)、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線(xiàn)的方程。

  2.通過(guò)對練習,強化對圓錐曲線(xiàn)定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對問(wèn)題的不斷引申,精心設問(wèn),引導學(xué)生學(xué)習解題的一般方法。

  3.借助多媒體輔助教學(xué),激發(fā)學(xué)習數學(xué)的興趣.

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1.對圓錐曲線(xiàn)定義的理解

  2.利用圓錐曲線(xiàn)的定義求“最值”

  3.“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線(xiàn)定義解題

  六、教學(xué)過(guò)程設計

  【設計思路】

  (一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題

  一上課,我就直截了當地給出——

  例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿(mǎn)足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線(xiàn) (C)線(xiàn)段 (D)不存在

  (2)已知動(dòng)點(diǎn) M(x,y)滿(mǎn)足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線(xiàn) (C)拋物線(xiàn) (D)兩條相交直線(xiàn)

  【設計意圖】

  定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習和研究數學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習之后,學(xué)生們對圓錐曲線(xiàn)的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節課首先要弄清楚的問(wèn)題。

  為了加深學(xué)生對圓錐曲線(xiàn)定義理解,我以圓錐曲線(xiàn)的定義的運用為主線(xiàn),精心準備了兩道練習題。

  【學(xué)情預設】

  估計多數學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線(xiàn)的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著(zhù)說(shuō)出:若想答案是其他選項的話(huà),條件要怎么改?這對于已學(xué)完圓錐曲線(xiàn)這部分知識的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費一番周折—— 如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著(zhù)他的思路,先對原等式做變形:(x1)2(y2)2

  5這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5

  入手,考慮通過(guò)適當的變形,轉化為學(xué)生們熟知的兩個(gè)距離公式。

  在對學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線(xiàn)的中心坐標是 ,實(shí)軸長(cháng)為 ,焦距為 。以深化對概念的理解。

  (二)理解定義、解決問(wèn)題

  例2 (1)已知動(dòng)圓A過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

  七、教學(xué)反思

  1.本課將借助于“XXX”,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運用“多媒體課件”輔助教學(xué),節省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結合的教學(xué)優(yōu)勢。

  2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學(xué)生思維能力,使學(xué)生從學(xué)會(huì )一個(gè)問(wèn)題的求解到掌握一類(lèi)問(wèn)題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類(lèi)問(wèn)題的解法;將學(xué)生容易混淆的兩類(lèi)求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運動(dòng)量并不會(huì )小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿(mǎn)足教學(xué)目標的例題與練習、靈活把握課堂教學(xué)節奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養學(xué)生的創(chuàng )新意識,自己首先必須更新觀(guān)念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機會(huì ),能夠使學(xué)生在學(xué)習新知識的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗,于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數學(xué)思維能力。

高中數學(xué)說(shuō)課稿3

  我擔任高職單招輔導班的數學(xué)科教學(xué),可以說(shuō)每節課都是復習課。今天,我說(shuō)的是復習課這種課型。內容是《函數》這一章中的“反函數”這一節。

  一、教材分析:

  反函數這一節在《函數》這章中是一個(gè)難點(diǎn),篇幅不多(課時(shí)少),在高考考綱中的要求也比較簡(jiǎn)單。但我個(gè)人這樣認為,復習課應盡量把與本節內容相關(guān)的新舊知識系統地串在一起,所以在備課時(shí)要找一條能把知識點(diǎn)連在一起的線(xiàn)索。這線(xiàn)索就是函數的三要素:

 。ㄒ唬┙虒W(xué)目標:

 、偈箤W(xué)生掌握反函數的概念并能求出簡(jiǎn)單函數的反函數(考綱要求)。

 、诨榉春瘮档膬蓚(gè)函數具有的性質(zhì),以及這些性質(zhì)在解題中的運用。

 、弁ㄟ^(guò)知識的系統性,培養學(xué)生的逆向思維能力和邏輯思維能力。

 。ǘ┲攸c(diǎn)、難點(diǎn):

 、僦攸c(diǎn):使學(xué)生能求出簡(jiǎn)單函數的反函數。

 、陔y點(diǎn):反函數概念的理解。

  二、教學(xué)方法:

  整節課采用傳統的講解法。

  首先要認識反函數應先有函數的概念這知識,用例子來(lái)說(shuō)明反函數的求法以及讓學(xué)生來(lái)完成一題沒(méi)有反函數的函數,從而得出一個(gè)不滿(mǎn)足函數定義的關(guān)系式,通過(guò)分析來(lái)得到一個(gè)函數具有反函數的條件。這里是用“欲擒故縱”的手法,加深對概念的理解,也是突破難點(diǎn)的關(guān)鍵。

  三、學(xué)生學(xué)習方法:

  學(xué)生認識了反函數的求法(步驟),在老師的引導下得出三個(gè)結論,并運用這些結論來(lái)解題。希望能達到提高學(xué)生性質(zhì)的解題能力和思維能力的目標。

  四、教學(xué)過(guò)程:

 。ㄒ唬毓剩汉瘮档母拍、三要素

 。ǘ┬抡n:例1:求y=2x+1的反函數

  解:

  即(x∈R)

  注意步驟,新關(guān)系式滿(mǎn)足從R到R是一個(gè)函數關(guān)系式。

  互這反函數的特點(diǎn):

 、龠\算互逆;②順序倒置

  例2:y=x2(x∈R)用y的代數表示x

  得x=這x不是y的函數,不滿(mǎn)足函數定義

  若對,y=x2的定義域改為x≥0

  可得x=,即y=(x≥0)

  當逆對應滿(mǎn)足函數定義,原函數才存在反函數。

  得到結論①互為反函數的定義域、值域交換

  即

  分別在同一坐標上畫(huà)出以上互為反函數的圖象

  得到結論②圖象關(guān)于y=x對稱(chēng)

 、蹎握{性一致

 。ㄈ┚毩

  1、求的反函數,并求出反函數的值域。

  2、函數的圖象關(guān)于對稱(chēng),求a的值。

  講評:略。

 。ㄋ模┬〗Y:

 。ㄎ澹┎贾米鳂I(yè):

高中數學(xué)說(shuō)課稿4

  一、說(shuō)課分析

  1.《指數函數》在教材中的地位、作用和特點(diǎn)

  《指數函數》是人教版高中數學(xué)(必修)第一冊第二章“函數”的第六節內容,是在學(xué)習了《指數》一節內容之后編排的。通過(guò)本節課的學(xué)習,既可以對指數和函數的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習對數、對數函數尤其是利用互為反函數的圖象間的關(guān)系來(lái)研究對數函數的性質(zhì)打下堅實(shí)的概念和圖象基礎,又因為《指數函數》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學(xué)習基礎,所以《指數函數》不僅是本章《函數》的重點(diǎn)內容,也是高中學(xué)段的主要研究?jì)热葜,有?zhù)不可替代的重要作用。

  此外,《指數函數》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著(zhù)緊密的聯(lián)系,尤其體現在細胞、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習這部分知識還有著(zhù)廣泛的現實(shí)意義。本節內容的特點(diǎn)之一是概念性強,特點(diǎn)之二是凸顯了數學(xué)圖形在研究函數性質(zhì)時(shí)的重要作用。

  2.教學(xué)目標、重點(diǎn)和難點(diǎn)

  通過(guò)初中學(xué)段的學(xué)習和高中對集合、函數等知識的系統學(xué)習,學(xué)生對函數和圖象的關(guān)系已經(jīng)構建了一定的認知結構,主要體現在三個(gè)方面:

  知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡(jiǎn)單的函數概念和性質(zhì)已有了初步認識,能夠從初中運動(dòng)變化的角度認識函數初步轉化到從集合與對應的觀(guān)點(diǎn)來(lái)認識函數。

  技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質(zhì)做好準備。

  素質(zhì)維度:由觀(guān)察到抽象的數學(xué)活動(dòng)過(guò)程已有一定的體會(huì ),已初步了解了數形結合的思想。

  鑒于對學(xué)生已有的知識基礎和認知能力的分析,根據《教學(xué)大綱》的要求,我確定本節課的教學(xué)目標、教學(xué)重點(diǎn)和難點(diǎn)如下:

  (1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質(zhì);③能初步利用指數函數的概念解決實(shí)際問(wèn)題;

  (2)技能目標:①滲透數形結合的基本數學(xué)思想方法②培養學(xué)生觀(guān)察、聯(lián)想、類(lèi)比、猜測、歸納的能力;

  (3)情感目標:①體驗從特殊到一般的學(xué)習規律,認識事物之間的普遍聯(lián)系與相互轉化,培養學(xué)生用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題②通過(guò)教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會(huì )數學(xué)科學(xué)的應用價(jià)值。

  (4)教學(xué)重點(diǎn):指數函數的圖象和性質(zhì)。

  (5)教學(xué)難點(diǎn):指數函數的圖象性質(zhì)與底數a的關(guān)系。

  突破難點(diǎn)的關(guān)鍵:尋找新知生長(cháng)點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數形結合來(lái)掃清障礙。

  二、說(shuō)課設計

  由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過(guò)這一節課的教學(xué)達到不僅使學(xué)生初步理解并能簡(jiǎn)單應用指數函數的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數圖象性質(zhì)的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學(xué)生學(xué)習能力的目的,我根據自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結合起來(lái),主要突出了幾個(gè)方面:

  1.創(chuàng )設問(wèn)題情景.按照指數函數的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調動(dòng)學(xué)生的學(xué)習興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

  2.強化“指數函數”概念.引導學(xué)生結合指數的有關(guān)概念來(lái)歸納出指數函數的定義,并向學(xué)生指出指數函數的形式特點(diǎn),請學(xué)生思考對于底數a是否需要限制,如不限制會(huì )有什么問(wèn)題出現,這樣避免了學(xué)生對于底數a范圍分類(lèi)的不清楚,也為研究指數函數的圖象做了“分類(lèi)討論”的鋪墊。

  3.突出圖象的作用.在數學(xué)學(xué)習過(guò)程中,圖形始終使我們需要借助的重要輔助手段。一位數學(xué)家曾經(jīng)說(shuō)過(guò)“數離形時(shí)少直觀(guān),形離數時(shí)難入微”,而在研究指數函數的性質(zhì)時(shí),更是直接由圖象觀(guān)察得出性質(zhì),因此圖象發(fā)揮了主要的作用。

  4.注意數學(xué)與生活和實(shí)踐的聯(lián)系.數學(xué)的本質(zhì)是來(lái)源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關(guān)的生活問(wèn)題,力圖使學(xué)生了解到數學(xué)的基礎學(xué)科作用,培養學(xué)生的數學(xué)應用意識。

  三、學(xué)法指導

  本節課是在學(xué)習完“指數”的概念和運算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個(gè)方面做了嘗試:

  1.再現原有認知結構。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數的概念,幫助學(xué)生再現原有認知結構,為理解指數函數的概念做好準備。

  2.領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法。在借助圖象研究指數函數的性質(zhì)時(shí)會(huì )遇到分類(lèi)討論、數形結合等基本數學(xué)思想方法,這些方法將會(huì )貫穿整個(gè)高中的數學(xué)學(xué)習。

  3.在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導入、指數函數的性質(zhì)研究、例題與訓練、課內小節等教學(xué)環(huán)節中都安排了學(xué)生的討論、分組、交流等活動(dòng),讓學(xué)生變被動(dòng)的接受和記憶知識為在合作學(xué)習的樂(lè )趣中主動(dòng)地建構新知識的框架和體系,從而完成知識的內化過(guò)程。

  4.注意學(xué)習過(guò)程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應用、拓展的過(guò)程中按照先易后難的順序層層遞進(jìn),讓學(xué)生感到有挑戰、有收獲,跳一跳,夠得著(zhù),不同難度的題目設計將盡可能照顧到課堂學(xué)生的個(gè)體差異。

  四、程序設計

  在設計本節課的教學(xué)過(guò)程中,本著(zhù)遵循學(xué)生的認知規律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程的原則,我設計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現和認識指數函數的圖象和性質(zhì)。

  1.創(chuàng )設情景、導入新課

  教師活動(dòng):①用電腦展示兩個(gè)實(shí)例,第一個(gè)是計算機價(jià)格下降問(wèn)題,第二個(gè)是生物中細胞的例子,②將學(xué)生按奇數列、偶數列分組。

  學(xué)生活動(dòng):①分別寫(xiě)出計算機價(jià)格y與經(jīng)過(guò)月份x的關(guān)系式和細胞個(gè)數y與次數x的關(guān)系式,并互相交流;②回憶指數的概念;③歸納指數函數的概念;④分析出對指數函數底數討論的必要性以及分類(lèi)的方法。

  設計意圖:通過(guò)生活實(shí)例激發(fā)學(xué)生的學(xué)習動(dòng)機,,掃清由概念不清而造成的知識障礙,培養學(xué)生思維的主動(dòng)性,為突破難點(diǎn)做好準備;

  2.啟發(fā)誘導、探求新知

  教師活動(dòng):①給出兩個(gè)簡(jiǎn)單的指數函數并要求學(xué)生畫(huà)它們的圖象②在準備好的小黑板上規范地畫(huà)出這兩個(gè)指數函數的圖象③板書(shū)指數函數的性質(zhì)。

  學(xué)生活動(dòng):①畫(huà)出兩個(gè)簡(jiǎn)單的指數函數圖象②交流、討論③歸納出研究函數性質(zhì)涉及的方面④總結出指數函數的性質(zhì)。

  設計意圖:讓學(xué)生動(dòng)手作簡(jiǎn)單的指數函數的圖象對深刻理解本節課的內容有著(zhù)一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進(jìn)一步規范學(xué)生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學(xué)生就會(huì )很自然的通過(guò)觀(guān)察圖象總結出指數函數的性質(zhì),同時(shí)對于底數的討論也就變得順理成章。

  3.鞏固新知、反饋回授

  教師活動(dòng):①板書(shū)例1②板書(shū)例2第一問(wèn)③介紹有關(guān)考古的拓展知識。

高中數學(xué)說(shuō)課稿5

  【一】教學(xué)背景分析

  1。教材結構分析

  《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。

  2。學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。

  根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:

  3。教學(xué)目標

 。1) 知識目標:①掌握圓的標準方程;

 、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;

 、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。

 。2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;

 、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;

 、墼鰪妼W(xué)生用數學(xué)的意識。

 。3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;

 、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。

  根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4。 教學(xué)重點(diǎn)與難點(diǎn)

 。1)重點(diǎn):圓的標準方程的求法及其應用。

 。2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;

 、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。

  為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1。教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。

  2。學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:

  【三】教學(xué)過(guò)程與設計

  整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:

  創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

  反饋訓練 形成方法 小結反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。

  首先:縱向敘述教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情境——啟迪思維

  問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?

  通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

  通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。

 。ǘ┥钊胩骄俊@得新知

  問(wèn)題二 1。根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2。如果圓心在,半徑為時(shí)又如何呢?

  好學(xué)教育:

  這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。

  得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。

 。ㄈ⿷门e例——鞏固提高

  I。直接應用 內化新知

  問(wèn)題三 1。寫(xiě)出下列各圓的標準方程:

 。1)圓心在原點(diǎn),半徑為3;

 。2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。

  2。寫(xiě)出圓的圓心坐標和半徑。

  我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。

  II。靈活應用 提升能力

  問(wèn)題四 1。求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。

  2。求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。

  3。已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。

  你能歸納出具有一般性的結論嗎?

  已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?

  我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮。

  III。實(shí)際應用 回歸自然

  問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。

  好學(xué)教育:

  我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。

 。ㄋ模┓答佊柧殹纬煞椒

  問(wèn)題六 1。求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。

  2。求圓過(guò)點(diǎn)的切線(xiàn)方程。

  3。求圓過(guò)點(diǎn)的切線(xiàn)方程。

  接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。

 。ㄎ澹┬〗Y反思——拓展引申

  1。課堂小結

  把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。

 、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。

  2。分層作業(yè)

 。ˋ)鞏固型作業(yè):教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。

  3。激發(fā)新疑

  問(wèn)題七 1。把圓的標準方程展開(kāi)后是什么形式?

  2。方程表示什么圖形?

  在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。

  以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計

 。ㄒ唬┩怀鲋攸c(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  好學(xué)教育:

  求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。

 。ǘ⿲W(xué)生主體 教師主導 探究主線(xiàn)

  本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。

 。ㄈ┡囵B思維 提升能力 激勵創(chuàng )新

  為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。

高中數學(xué)說(shuō)課稿6

  一、教學(xué)背景分析

 。ㄒ唬┙滩牡匚环治觯骸稒E圓及其標準方程》是繼學(xué)習圓以后運用“曲線(xiàn)與方程”思想解決二次曲線(xiàn)問(wèn)題的又一實(shí)例,從知識上說(shuō),本節課是對坐標法研究幾何問(wèn)題的又一次實(shí)際運用,同時(shí)也是進(jìn)一步研究橢圓幾何性質(zhì)的基礎;從方法上說(shuō),它為進(jìn)一步研究雙曲線(xiàn)、拋物線(xiàn)提供了基本模式和理論基礎,因此本節課起到了承上啟下的重要作用.

 。ǘ┲攸c(diǎn)、難點(diǎn)分析:本節課的重點(diǎn)是橢圓的定義及其標準方程,標準方程的推導是本節課的難點(diǎn),要突破這一難點(diǎn),關(guān)鍵是引導學(xué)生正確選擇去根式的策略.

 。ㄈ⿲W(xué)情分析:在學(xué)習本節課前,學(xué)生已經(jīng)學(xué)習了直線(xiàn)與圓的方程,對曲線(xiàn)和方程的思想方法有了一些了解和運用的經(jīng)驗,對坐標法研究幾何問(wèn)題也有了初步的認識,因此,學(xué)生已經(jīng)具備探究有關(guān)點(diǎn)的軌跡問(wèn)題的知識基礎和學(xué)習能力,但由于學(xué)生學(xué)習解析幾何時(shí)間還不長(cháng)、學(xué)習程度也較淺,并且還受到高二這一年齡段學(xué)習心理和認知結構的影響,在學(xué)習過(guò)程中難免會(huì )有些困難.如:由于學(xué)生對運用坐標法解決幾何問(wèn)題掌握還不夠,因此從研究圓到橢圓,學(xué)生思維上會(huì )存在障礙.

  二、教學(xué)目標設計

 。ㄒ唬┲R目標:掌握橢圓的定義及其標準方程;會(huì )根據條件寫(xiě)出橢圓的標準方程;通過(guò)對橢圓標準方程的探求,再次熟悉求曲線(xiàn)方程的一般方法.

 。ǘ┠芰δ繕耍簩W(xué)生通過(guò)動(dòng)手畫(huà)橢圓、分組討論探究橢圓定義、推導橢圓標準方程等過(guò)程,提高動(dòng)手能力、合作學(xué)習能力和運用知識解決實(shí)際問(wèn)題的能力.

 。ㄈ┣楦心繕耍涸谛纬芍R、提高能力的過(guò)程中,激發(fā)學(xué)生學(xué)習數學(xué)的興趣,提高學(xué)生的審美情趣,培養學(xué)生勇于探索、敢于創(chuàng )新的精神.

  三、教法學(xué)法設計

 。ㄒ唬┙虒W(xué)方法設計:為了更好地培養學(xué)生自主學(xué)習能力,提高學(xué)生的綜合素質(zhì),我主要采用探究式教學(xué)方法.一方面我通過(guò)設置情境、問(wèn)題誘導充分發(fā)揮主導作用;另一方面學(xué)生通過(guò)對我提供的素材進(jìn)行直觀(guān)觀(guān)察→動(dòng)手操作→討論探究→歸納抽象→總結規律的過(guò)程充分體現主體地位.

  使用多媒體輔助教學(xué)與自制教具相結合的設計方案,實(shí)現多媒體快捷、形象、大容量的優(yōu)勢與自制教具直觀(guān)、實(shí)用的優(yōu)勢的結合,既突出了知識的產(chǎn)生過(guò)程,又增加了課堂的趣味性.

  1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過(guò)程;

  2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;

  3.通過(guò)對橢圓概念的引入教學(xué),培養學(xué)生的觀(guān)察能力和探索能力;

  4.通過(guò)橢圓的標準方程的推導,使學(xué)生進(jìn)一步掌握求曲線(xiàn)方程的一般方法,并滲透數形結合和等價(jià)轉化的思想方法,提高運用坐標法解決幾何問(wèn)題的能力;

  5.通過(guò)讓學(xué)生大膽探索橢圓的定義和標準方程,激發(fā)學(xué)生學(xué)習數學(xué)的積極性,培養學(xué)生的學(xué)習興趣和創(chuàng )新意識.

  四、教學(xué)建議

  教材分析

  1.知識結構

  2.重點(diǎn)難點(diǎn)分析

  重點(diǎn)是橢圓的定義及橢圓標準方程的兩種形式.難點(diǎn)是橢圓標準方程的建立和推導.關(guān)鍵是掌握建立坐標系與根式化簡(jiǎn)的方法.

  橢圓及其標準方程這一節教材整體來(lái)看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線(xiàn)這一章所要研究的三種圓錐曲線(xiàn)中首先遇到的,所以教材把對橢圓的研究放在了重點(diǎn),在雙曲線(xiàn)和拋物線(xiàn)的教學(xué)中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學(xué)好橢圓對于學(xué)生學(xué)好圓錐曲線(xiàn)是非常重要的.

 。1)對于橢圓的定義的理解,要抓住橢圓上的點(diǎn)所要滿(mǎn)足的條件,即橢圓上點(diǎn)的幾何性質(zhì),可以對比圓的定義來(lái)理解.

  另外要注意到定義中對“常數”的限定即常數要大于.這樣規定是為了避免出現兩種特殊情況,即:“當常數等于時(shí)軌跡是一條線(xiàn)段;當常數小于時(shí)無(wú)軌跡”.這樣有利于集中精力進(jìn)一步研究橢圓的標準方程和幾何性質(zhì).但講解橢圓的定義時(shí)注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性.

 。2)根據橢圓的定義求標準方程,應注意下面幾點(diǎn):

 、偾(xiàn)的方程依賴(lài)于坐標系,建立適當的坐標系,是求曲線(xiàn)方程首先應該注意的地方.應讓學(xué)生觀(guān)察橢圓的圖形或根據橢圓的定義進(jìn)行推理,發(fā)現橢圓有兩條互相垂直的對稱(chēng)軸,以這兩條對稱(chēng)軸作為坐標系的兩軸,不但可以使方程的推導過(guò)程變得簡(jiǎn)單,而且也可以使最終得出的方程形式整齊和簡(jiǎn)潔.

 、谠O橢圓的焦距為,橢圓上任一點(diǎn)到兩個(gè)焦點(diǎn)的距離為,令,這些措施,都是為了簡(jiǎn)化推導過(guò)程和最后得到的方程形式整齊、簡(jiǎn)潔,要讓學(xué)生認真領(lǐng)會(huì ).

 、墼诜匠痰耐茖н^(guò)程中遇到了無(wú)理方程的化簡(jiǎn),這既是我們今后在求軌跡方程時(shí)經(jīng)常遇到的問(wèn)題,又是學(xué)生的難點(diǎn).要注意說(shuō)明這類(lèi)方程的化簡(jiǎn)方法:①方程中只有一個(gè)根式時(shí),需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個(gè)根式時(shí),需將它們分別放在方程的兩側,并使其中一側只有一項.

 、芙炭茣(shū)上對橢圓標準方程的推導,實(shí)際上只給出了“橢圓上點(diǎn)的坐標都適合方程“而沒(méi)有證明,”方程的解為坐標的點(diǎn)都在橢圓上”.這實(shí)際上是方程的同解變形問(wèn)題,難度較大,對同學(xué)們不作要求.

 。3)兩種標準方程的橢圓異同點(diǎn)

  中心在原點(diǎn)、焦點(diǎn)分別在軸上,軸上的橢圓標準方程分別為:,.它們的相同點(diǎn)是:形狀相同、大小相同,都有,.不同點(diǎn)是:兩種橢圓相對于坐標系的位置不同,它們的焦點(diǎn)坐標也不同.

  橢圓的焦點(diǎn)在軸上標準方程中項的分母較大;

  橢圓的焦點(diǎn)在軸上標準方程中項的分母較大.

  另外,形如中,只要,,同號,就是橢圓方程,它可以化為.

 。4)教科書(shū)上通過(guò)例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個(gè)作用:第一是教給學(xué)生利用中間變量求點(diǎn)的軌跡的方法;第二是向學(xué)生說(shuō)明,如果求得的點(diǎn)的軌跡的方程形式與橢圓的標準方程相同,那么這個(gè)軌跡是橢圓;第三是使學(xué)生知道,一個(gè)圓按某一個(gè)方向作伸縮變換可以得到橢圓.

高中數學(xué)說(shuō)課稿7

  大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。

  一 教材分析

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的內容,推證正弦定理及簡(jiǎn)單運用正弦定理與三角形的內角和定理解斜三角形的兩類(lèi)問(wèn)題。

  能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習的興趣。

教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。

  二 教法

  根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當的提示和指導。突破難點(diǎn)的方法:抓住學(xué)生的能力線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過(guò)例題和練習來(lái)突破難點(diǎn)

  三 學(xué)法:

  指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四 教學(xué)過(guò)程

  第一:創(chuàng )設情景,大概用2分鐘

  第二:實(shí)踐探究,形成概念,大約用25分鐘

  第三:應用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng )設情境,布疑激趣

  “興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。

 。ǘ┨綄ぬ乩,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。

  2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

  3.讓學(xué)生總結實(shí)驗結果,得出猜想:

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。

 。ㄈ┻壿嬐评,證明猜想

  1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明

 。ㄋ模w納總結,簡(jiǎn)單應用

  1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。

  2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  3.運用正弦定理求解本節課引引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

 。ㄎ澹┲v解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

高中數學(xué)說(shuō)課稿8

  一、教材地位與作用

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識非常重要。

  二、學(xué)情分析

  作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數,特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問(wèn)題,就比較困難。

  教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。

  根據我的教學(xué)內容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標

  教學(xué)目標分析:

  知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。

  能力目標:探索正弦定理的證明過(guò)程,用歸納法得出結論。

  情感目標:通過(guò)推導得出正弦定理,讓學(xué)生感受數學(xué)公式的整潔對稱(chēng)美和數學(xué)的實(shí)際應用價(jià)值。

  三、教法學(xué)法分析

  教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

  學(xué)法:指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,動(dòng)手嘗試相結合,增強學(xué)生由特殊到一般的數學(xué)思維能力,鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  (一)創(chuàng )設情境,布疑激趣

  “興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。

  (二)探尋特例,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。

  2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

  3.讓學(xué)生總結實(shí)驗結果,得出猜想:

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。

  (三)邏輯推理,證明猜想

  1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明。

  (四)歸納總結,簡(jiǎn)單應用

  1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。

  2.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  3.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

  (五)講解例題,鞏固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

  (六)課堂練習,提高鞏固

  1.在△ABC中,已知下列條件,解三角形。

  (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。

  (七)小結反思,提高認識

  通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會(huì )?

  1.用向量證明了正弦定

  理,體現了數形結合的數學(xué)思想。

  2.它表述了三角形的邊與對角的正弦值的關(guān)系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。

  (從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。)

  (八)任務(wù)后延,自主探究

  如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現正弦定理不適用了,那么自然過(guò)渡到下一節內容,余弦定理。布置作業(yè),預習下一節內容。

高中數學(xué)說(shuō)課稿9

  尊敬的各位專(zhuān)家、評委:

  大家好!

  我是盧龍縣木井中學(xué)數學(xué)教師xx,我今天說(shuō)課的題目是:人教A版普通高中課程標準實(shí)驗教科書(shū) 數學(xué)必修5第一章第一節的第一課時(shí)《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個(gè)方面說(shuō)明我的設計和構思。

  一、教材分析

  “解三角形”既是高中數學(xué)的基本內容,又有較強的應用性,在這次課程改革中,被保留下來(lái),并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問(wèn)題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數及向量知識的基礎上,通過(guò)對三角形邊角關(guān)系作量化探究,發(fā)現并掌握正弦定理(重要的解三角形工具),通過(guò)這一部分內容的學(xué)習,讓學(xué)生從“實(shí)際問(wèn)題”抽象成“數學(xué)問(wèn)題”的建模過(guò)程中,體驗 “觀(guān)察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問(wèn)題的過(guò)程中,感受數學(xué)的力量,進(jìn)一步培養學(xué)生對數學(xué)的學(xué)習興趣和“用數學(xué)”的意識。

  二、學(xué)情分析

  我所任教的學(xué)校是我縣一所農村普通中學(xué),大多數學(xué)生基礎薄弱,對“一些重要的數學(xué)思想和數學(xué)方法”的應用意識和技能還不高。但是,大多數學(xué)生對數學(xué)的興趣較高,比較喜歡數學(xué),尤其是象本節課這樣與實(shí)際生活聯(lián)系比較緊密的內容,相信學(xué)生能夠積極配合,有比較不錯的表現。

  三、教學(xué)目標

  1、知識和技能:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的內容,推證正弦定理及簡(jiǎn)單運用正弦定理解決一些簡(jiǎn)單的解三角形問(wèn)題。

  過(guò)程與方法:學(xué)生參與解題方案的探索,嘗試應用觀(guān)察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現實(shí)世界的一些數學(xué)模型進(jìn)行思考。

  情感、態(tài)度、價(jià)值觀(guān):培養學(xué)生合情合理探索數學(xué)規律的數學(xué)思想方法,通過(guò)平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯(lián)系來(lái)體現事物之間的普遍聯(lián)系與辯證統一。同時(shí),通過(guò)實(shí)際問(wèn)題的探討、解決,讓學(xué)生體驗學(xué)習成就感,增強數學(xué)學(xué)習興趣和主動(dòng)性,鍛煉探究精神。樹(shù)立“數學(xué)與我有關(guān),數學(xué)是有用的,我要用數學(xué),我能用數學(xué)”的理念。

  2、教學(xué)重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):正弦定理的發(fā)現與證明;正弦定理的簡(jiǎn)單應用。

  教學(xué)難點(diǎn):正弦定理證明及應用。

  四、教學(xué)方法與手段

  為了更好的達成上面的教學(xué)目標,促進(jìn)學(xué)習方式的轉變,本節課我準備采用“問(wèn)題教學(xué)法”,即由教師以問(wèn)題為主線(xiàn)組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來(lái)激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導學(xué)生采取自主探究與相互合作相結合的學(xué)習方式參與到問(wèn)題解決的過(guò)程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。

  五、教學(xué)過(guò)程

  為了很好地完成我所確定的教學(xué)目標,順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著(zhù)貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設計了這樣的教學(xué)過(guò)程:

  (一)創(chuàng )設情景,揭示課題

  問(wèn)題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì )不會(huì )想要知道:那遙不可及的月亮離我們究竟有多遠呢?

  1671年兩個(gè)法國天文學(xué)家首次測出了地月之間的距離大約為 385400km,你知道他們當時(shí)是怎樣測出這個(gè)距離的嗎?

  問(wèn)題2:在現在的高科技時(shí)代,要想知道某座山的高度,沒(méi)必要親自去量,只需水平飛行的飛機從山頂一過(guò)便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車(chē)的速度呢?要想解決這些問(wèn)題, 其實(shí)并不難,只要你學(xué)好本章內容即可掌握其原理。(板書(shū)課題《解三角形》)

  [設計說(shuō)明]引用教材本章引言,制造知識與問(wèn)題的沖突,激發(fā)學(xué)生學(xué)習本章知識的興趣。

  (二)特殊入手,發(fā)現規律

  問(wèn)題3:在初中,我們已經(jīng)學(xué)習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實(shí)力,請你根據初中知識,解決這樣一個(gè)問(wèn)題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達式表示出來(lái)嗎?

  引導啟發(fā)學(xué)生發(fā)現特殊情形下的正弦定理

  (三)類(lèi)比歸納,嚴格證明

  問(wèn)題4:本題屬于初中問(wèn)題,而且比較簡(jiǎn)單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫(xiě)成了銳角⊿ABC,其它沒(méi)有變,你說(shuō)這個(gè)結論還成立嗎?

  [設計說(shuō)明]此時(shí)放手讓學(xué)生自己完成,如果感覺(jué)自己解決有困難,學(xué)生也可以前后桌或同桌結組研究,鼓勵學(xué)生用不同的方法證明這個(gè)結論,在巡視的過(guò)程中讓不同方法的學(xué)生上黑板展示,如果沒(méi)有用向量的學(xué)生,教師引導提示學(xué)生能否用向量完成證明。

  問(wèn)題5:好根據剛才我們的研究,說(shuō)明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個(gè)結論仍然成立?我們光說(shuō)成立不行,必須有能力進(jìn)行嚴格的理論證明,你有這個(gè)能力嗎?下面我希望你能用實(shí)力告訴我,開(kāi)始。(啟發(fā)引導學(xué)生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)

  [設計說(shuō)明] 放手給學(xué)生實(shí)踐的機會(huì )和時(shí)間,使學(xué)生真正的參與到問(wèn)題解決的過(guò)程中去,讓學(xué)生在學(xué)數學(xué)的實(shí)踐中去感悟和提高數學(xué)的思維方法和思維習慣。同時(shí),考慮到有部分同學(xué)基礎較差,考個(gè)人或小組可能無(wú)法完成探究任務(wù),教師在學(xué)生動(dòng)手的同時(shí),通過(guò)巡查,讓提前證明出結論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進(jìn)性,鍛煉了上黑板同學(xué)的解題過(guò)程的書(shū)寫(xiě)規范性,同時(shí),也讓從無(wú)從下手的同學(xué)有個(gè)參考,不至于閑呆著(zhù)浪費時(shí)間。

  問(wèn)題6:由此,你能否得到一個(gè)更一般的結論?你能用比較精煉的語(yǔ)言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時(shí)板書(shū)課題并用紅色粉筆標示出正弦定理內容)

  教師講解:告訴大家,其實(shí)這個(gè)大名鼎鼎的正弦定理是由伊朗著(zhù)名的天文學(xué)家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個(gè)證明。也有說(shuō)正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說(shuō)在1000年以前,人們就發(fā)現了這個(gè)充滿(mǎn)著(zhù)數學(xué)美的結論,不能不說(shuō)也是人類(lèi)數學(xué)史上的一個(gè)奇跡。老師希望21世紀的你能在今后的學(xué)習中也研究出一個(gè)被后人景仰的某某定理來(lái),到那時(shí)我也就成了數學(xué)家的老師了。當然,老師的希望能否變成現實(shí),就要看大家的了。

  [設計說(shuō)明] 通過(guò)本段內容的講解,滲透一些數學(xué)史的內容,對學(xué)生不僅有數學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習科學(xué)文化知識的熱情。

  (四)強化理解,簡(jiǎn)單應用

  下面請大家看我們的教材2-3頁(yè)到例題1上邊,并自學(xué)解三角形定義。

  [設計說(shuō)明] 讓學(xué)生看看書(shū),放慢節奏,有利于學(xué)生消化和吸收剛才的內容,同時(shí)教師可以利用這段時(shí)間對個(gè)別學(xué)困生進(jìn)行輔導,以減少掉隊的同學(xué)數量,同時(shí)培養學(xué)生養成自覺(jué)看書(shū)的好習慣。

  我們學(xué)習了正弦定理之后,你覺(jué)得它有什么應用?在三角形中他能解決那些問(wèn)題呢? 我們先小試牛刀,來(lái)一個(gè)簡(jiǎn)單的問(wèn)題:

  問(wèn)題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

  (本題簡(jiǎn)單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習本上完成,同學(xué)可以小聲音討論,完成后教師根據學(xué)生實(shí)踐中發(fā)現的問(wèn)題給予必要的講評)

  [設計說(shuō)明] 充分給學(xué)生自己動(dòng)手的時(shí)間和機會(huì ),由于本題是唯一解,為將來(lái)學(xué)生感悟什么情況下三角形有唯一解創(chuàng )造條件。

  強化練習

  讓全體同學(xué)限時(shí)完成教材4頁(yè)練習第一題,找兩位同學(xué)上黑板。

  問(wèn)題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

  [設計說(shuō)明]例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時(shí),引導學(xué)生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學(xué)有余力的同學(xué)鼓勵他們自學(xué)探究與發(fā)現教材8頁(yè)得內容:《解三角形的進(jìn)一步討論》

  (五)小結歸納,深化拓展

  1、正弦定理

  2、正弦定理的證明方法

  3、正弦定理的應用

  4、涉及的數學(xué)思想和方法。

  [設計說(shuō)明] 師生共同總結本節課的收獲的同時(shí),引導學(xué)生學(xué)會(huì )自己總結,讓學(xué)生進(jìn)一步回顧和體會(huì )知識的形成、發(fā)展、完善的過(guò)程。

  (六)布置作業(yè),鞏固提高

  1、教材10頁(yè)習題1.1A組第1題。

  2、學(xué)有余力的同學(xué)探究10頁(yè)B組第1題,體會(huì )正弦定理的其他證明方法。

  證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC

  [設計說(shuō)明] 對不同水平的學(xué)生設計不同梯度的作業(yè),尊重學(xué)生的個(gè)性差異,有利于因材施教的教學(xué)原則的貫徹。

高中數學(xué)說(shuō)課稿10

  一、教材分析:

  1、教材的地位與作用:

  線(xiàn)性規劃是運籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著(zhù)廣泛的應用。本節內容是在學(xué)習了不等式、直線(xiàn)方程的基礎上,利用不等式和直線(xiàn)方程的有關(guān)知識展開(kāi)的,它是對二元一次不等式的深化和再認識、再理解。通過(guò)這一部分的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,體驗數形結合和轉化的思想方法,培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):畫(huà)可行域;在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。

  難點(diǎn):在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。

  二、目標分析:

  在新課標讓學(xué)生經(jīng)歷“學(xué)數學(xué)、做數學(xué)、用數學(xué)”的理念指導下,本節課的教學(xué)目標分設為知識目標、能力目標和情感目標。

  知識目標:

  1、了解線(xiàn)性規劃的意義,了解線(xiàn)性約束條件、線(xiàn)性目標函數、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線(xiàn)性規劃問(wèn)題的圖解法;

  3、會(huì )利用圖解法求線(xiàn)性目標函數的最優(yōu)解.

  能力目標:

  1、在應用圖解法解題的過(guò)程中培養學(xué)生的觀(guān)察能力、理解能力。

  2、在變式訓練的過(guò)程中,培養學(xué)生的分析能力、探索能力。

  3、在對具體事例的感性認識上升到對線(xiàn)性規劃的理性認識過(guò)程中,培養學(xué)生運用數形結合思想解題的能力和化歸能力。

  情感目標:

  1、讓學(xué)生體驗數學(xué)來(lái)源于生活,服務(wù)于生活,體驗數學(xué)在建設節約型社會(huì )中的作用,品嘗學(xué)習數學(xué)的樂(lè )趣。

  2、讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索與創(chuàng )造,培養學(xué)生勤于思考、勇于探索的精神;

  3、讓學(xué)生學(xué)會(huì )用運動(dòng)觀(guān)點(diǎn)觀(guān)察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。

  三、過(guò)程分析:

  數學(xué)教學(xué)是數學(xué)活動(dòng)的教學(xué)。因此,我將整個(gè)教學(xué)過(guò)程分為以下六個(gè)教學(xué)環(huán)節:1、創(chuàng )設情境,提出問(wèn)題;2、分析問(wèn)題,形成概念;3、反思過(guò)程,提煉方法;4、變式演練,深入探究;5、運用新知,解決問(wèn)題;6、歸納總結,鞏固提高。

  1、創(chuàng )設情境,提出問(wèn)題:

  在課堂教學(xué)的開(kāi)始,我以一組生動(dòng)的動(dòng)畫(huà)(配圖片)描述出在神奇的數學(xué)王國里,有一種算法廣泛應用于工農業(yè)、軍事、交通運輸、決策管理與規劃等領(lǐng)域,應用它已節約了億萬(wàn)財富,還被列為20世紀對科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習情境。

高中數學(xué)說(shuō)課稿11

  一、教材分析:

  1.教材所處的地位和作用:

  本節內容在全書(shū)和章節中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數學(xué)教材數學(xué)2第一章空間幾何體3節內容。在此之前學(xué)生已學(xué)習了空間幾何體的結構、三視圖和直觀(guān)圖為基礎,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是在空間幾何中,占據重要的地位。以及為其他學(xué)科和今后的學(xué)習打下基礎。

  2.教育教學(xué)目標:

  根據上述教材分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:

  知識與能力:

 。1)了解柱體、錐體、臺體的表面積.

 。2)能用公式求柱體、錐體、臺體的表面積。

 。3)培養學(xué)生空間想象能力和思維能力

  過(guò)程與方法:

  讓學(xué)生經(jīng)歷幾何體的表面積的實(shí)際求法,感知幾何體的形狀,培養學(xué)生對數學(xué)問(wèn)題的轉化化歸能力。

  情感、態(tài)度與價(jià)值觀(guān):

  通過(guò)學(xué)習,是學(xué)生感受到幾何體表面積的求解過(guò)程,激發(fā)學(xué)生探索、創(chuàng )新意識,增強學(xué)習積極性。

  3.重點(diǎn),難點(diǎn)以及確定依據:

  本著(zhù)新課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):柱,錐,臺的表面積公式的推導

  教學(xué)難點(diǎn):柱,錐,臺展開(kāi)圖與空間幾何體的轉化

  二、教法分析

  1.教學(xué)手段:

  如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現教學(xué)目標。在教學(xué)過(guò)程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟澱n的特點(diǎn):應著(zhù)重采用合作探究、小組討論的教學(xué)方法。

  2.教學(xué)方法及其理論依據:堅持“以學(xué)生為主體,以教師為主導”的原則,根據學(xué)生的心理發(fā)展規律,采用學(xué)生參與程度高的探究式討論教學(xué)法。在學(xué)生親自動(dòng)手去給出各種幾何體的表面積的計算方法,特別注重不同解決問(wèn)題的方法,提問(wèn)不同層次的學(xué)生,面向全體,使基礎差的學(xué)生也能有表現機會(huì ),培養其自信心,激發(fā)其學(xué)習熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎上得到發(fā)展。啟發(fā)學(xué)生從書(shū)本知識回到社會(huì )實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數學(xué)知識,學(xué)習基礎性的知識和技能,在教學(xué)中積極培養學(xué)生學(xué)習興趣和動(dòng)機,明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。

  三.學(xué)情分析

  我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。

 。1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習方式,定能激發(fā)學(xué)生興趣,有效地培養學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

 。2)動(dòng)機和興趣上:明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力

  最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:

  四、教學(xué)過(guò)程分析

 。1)由一段動(dòng)畫(huà)視頻引入:豐富生動(dòng)的吸引學(xué)生的注意力,調動(dòng)學(xué)生學(xué)習積極性

 。2)由引入得出本課新的所要探討的問(wèn)題——幾何體的表面積的計算。

 。3)探究問(wèn)題。完全將主動(dòng)權教給學(xué)生,讓學(xué)生主動(dòng)去探究,得到解決問(wèn)題的思路,鍛煉學(xué)生動(dòng)手能力,解決實(shí)際問(wèn)題能力。

 。4)總結結論,強化認識。知識性的內容小結,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐步培養學(xué)生良好的.個(gè)性品質(zhì)目標。

 。5)例題及練習,見(jiàn)學(xué)案。

 。6)布置作業(yè)。

  針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,

 。7)小結。讓學(xué)生總結本節課的收獲。老師適時(shí)總結歸納。

高中數學(xué)說(shuō)課稿12

  1.教材分析

  1-1教學(xué)內容及包含的知識點(diǎn)

  (1)本課內容是高中數學(xué)第二冊第七章第三節《兩條直線(xiàn)的位置關(guān)系》的最后一個(gè)內容

  (2)包含知識點(diǎn):點(diǎn)到直線(xiàn)的距離公式和兩平行線(xiàn)的距離公式

  1-2教材所處地位、作用和前后聯(lián)系

  本節課是兩條直線(xiàn)位置關(guān)系的最后一個(gè)內容,在此之前,有對兩線(xiàn)位置關(guān)系的定性刻畫(huà):平行、垂直,以及對相交兩線(xiàn)的定量刻畫(huà):夾角、交點(diǎn)。在此之后,有圓錐曲線(xiàn)方程,因而本節既是對前面兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)的復習,又是為后面計算點(diǎn)線(xiàn)距離(在直線(xiàn)和圓錐曲線(xiàn)構成的組合圖形中)提供一套工具。

  可見(jiàn),本課有承前啟后的作用。

  1-3教學(xué)大綱要求

  掌握點(diǎn)到直線(xiàn)的距離公式

  1-4高考大綱要求及在高考中的顯示形式

  掌握點(diǎn)到直線(xiàn)的距離公式。在近年的高考中,通常以直線(xiàn)和圓錐曲線(xiàn)構成的組合圖形為背景,判斷直線(xiàn)和圓錐曲線(xiàn)的位置或構成三角形求高,涉及絕對值,直線(xiàn)垂直,最小值等。

  1-5教學(xué)目標及確定依據

  教學(xué)目標

  (1)掌握點(diǎn)到直線(xiàn)的距離的概念、公式及公式的推導過(guò)程,能用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。

  (2)培養學(xué)生探究性思維方法和由特殊到一般的研究能力。

  (3)認識事物之間相互聯(lián)系、互相轉化的辯證法思想,培養學(xué)生轉化知識的能力。

  (4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。

  確定依據:

  中華人民共和國教育部制定的《全日制普通高級中學(xué)數學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說(shuō)明》(20xx年)

  1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

 。1)重點(diǎn):點(diǎn)到直線(xiàn)的距離公式

  確定依據:由本節在教材中的地位確定

 。2)難點(diǎn):點(diǎn)到直線(xiàn)的距離公式的推導

  確定依據:根據定義進(jìn)行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現。

  分析“嘗試性題組”解題思路可突破難點(diǎn)

 。3)關(guān)鍵:實(shí)現兩個(gè)轉化。一是將點(diǎn)線(xiàn)距離轉化為定點(diǎn)到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點(diǎn)的距離。

  2.教法

  2-1發(fā)現法:本節課為了培養學(xué)生探究性思維目標,在教學(xué)過(guò)程中,使老師的主導性和學(xué)生的主體性有機結合,使學(xué)生能夠愉快地自覺(jué)學(xué)習,通過(guò)學(xué)生自己練習“嘗試性題組”,引導、啟發(fā)學(xué)生分析、發(fā)現、比較、論證等,從而形成完整的數學(xué)模型。

  確定依據:

  (1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習原則,最佳動(dòng)機原則,階段漸進(jìn)性原則。

  (2)事物之間相互聯(lián)系,相互轉化的辯證法思想。

  2-2教具:多媒體和黑板等傳統教具

  3.學(xué)法

  3-1發(fā)現法:豐富學(xué)生的數學(xué)活動(dòng),學(xué)生經(jīng)過(guò)練習、觀(guān)察、分析、探索等步驟,自己發(fā)現解決問(wèn)題的方法,比較論證后得到一般性結論,形成完整的數學(xué)模型,再運用所得理論和方法去解決問(wèn)題。

  一句話(huà):還課堂以生命力,還學(xué)生以活力。

  3-2學(xué)情:

 。1)知識能力狀況,本節為兩線(xiàn)位置關(guān)系的最后一個(gè)內容,在這之前學(xué)生已經(jīng)系統的學(xué)習了直線(xiàn)方程的各種形式,有對兩線(xiàn)位置關(guān)系的定性認識和對兩線(xiàn)相交的定量認識,為本節推證公式涉及到直線(xiàn)方程、兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)作好了知識儲備。同時(shí)學(xué)生對解析幾何的實(shí)質(zhì)中,用坐標系溝通直線(xiàn)與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。

 。2)心理特點(diǎn):又見(jiàn)“點(diǎn)到直線(xiàn)的距離”(初中已學(xué)習定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢(xún)動(dòng)機由此而生。

 。3)生活經(jīng)驗:數學(xué)源于生活,生活中的點(diǎn)線(xiàn)距隨處可見(jiàn),怎樣將實(shí)際問(wèn)題數學(xué)化,是每個(gè)追求成長(cháng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數學(xué)活動(dòng)能夠讓他們真正參與,體驗過(guò)程,錘煉意志,培養能力。

  3-3學(xué)具:直尺、三角板

  3. 教學(xué)程序

  時(shí),此時(shí)又怎樣求點(diǎn)A到直線(xiàn)

  的距離呢?

  生: 定性回答

  點(diǎn)明課題,使學(xué)生明確學(xué)習目標。

  創(chuàng )設“不憤不啟,不悱不發(fā)”的學(xué)習情景。

  練習

  比較

  發(fā)現

  歸納

  討論

  的距離為d

  (1) A(2,4),

 。簒 = 3, d=_____

  (2) A(2,4),

 。簓 = 3,d=_____

  (3) A(2,4),

 。簒 – y = 0,d=_____

  嘗試性題組告訴學(xué)生下手不難,還負責特例檢驗,從而增強學(xué)生參與的信心。

  請三個(gè)同學(xué)上黑板板演

  師: 請這三位同學(xué)分別說(shuō)說(shuō)自己的解題思路。

  生: 回答

  教學(xué)機智:應沉淀為三種思路:一,根據定義轉化為定點(diǎn)到垂足的距離;二,利用等積法轉化為直角三角形中三個(gè)頂點(diǎn)之間的距離;三,利用直角三角形中的邊角關(guān)系。

  視回答的情況,老師進(jìn)行肯定、修正或補充提問(wèn):“還有其他不同的思路嗎”。

  說(shuō)解題思路,一是讓學(xué)生清晰有條理的表達自己的思考過(guò)程,二是其求解過(guò)程提示了證明的途徑(根據定義或畫(huà)坐標線(xiàn)時(shí)正好交出一個(gè)直角三角形)

  師:很好,剛才我們解決了定點(diǎn)到特殊直線(xiàn)的距離問(wèn)題,那么,點(diǎn)P(x0,y0)到一般直線(xiàn)

 。篈x+By+C=0(A,B≠0)的距離又怎樣求?

  教學(xué)機智:如學(xué)生反應不大,則補充提問(wèn):上面三個(gè)題的解題思路對這個(gè)問(wèn)題有啟示嗎?

  生:方案一:根據定義

  方案二:根據等積法

  方案三: ......

  設置此問(wèn),一是使學(xué)生的認知由特殊向一般轉化,發(fā)現可能的方法,二是讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索和創(chuàng )造,感受數學(xué)的生機和樂(lè )趣。

  師生一起進(jìn)行比較,鎖定方案二進(jìn)行推證。

  “師生共作”體現新型師生觀(guān),且//時(shí),又怎樣求這兩線(xiàn)的距離?

  生:計算得線(xiàn)線(xiàn)距離公式

  師:板書(shū)點(diǎn)到直線(xiàn)的距離公式,兩平行線(xiàn)間距離公式

  “沒(méi)有新知識,新知識均是舊知識的組合”,創(chuàng )設此問(wèn)可發(fā)揮學(xué)生的創(chuàng )造性,增加學(xué)生的成就感。

  反思小結

  經(jīng)驗共享

 。 分 鐘)

  師: 通過(guò)以上的學(xué)習,你有哪些收獲?(知識,能力,情感)。有哪些疑問(wèn)?誰(shuí)能答這些疑問(wèn)?

  生: 討論,回答。

  對本節課用到的技能,數學(xué)思維方法等進(jìn)行小結,使學(xué)生對本節知識有一個(gè)整體的認識。

  共同進(jìn)步,各取所長(cháng)。

  練習

 。ㄎ 分 鐘)

  P53 練習 1, 2,3

  熟練的用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。

  再度延伸

 。ㄒ 分 鐘)

  探索其他推導方法

  “帶著(zhù)問(wèn)題進(jìn)課堂,帶著(zhù)更多的問(wèn)題出課堂”,讓學(xué)生真正學(xué)會(huì )學(xué)習。

  4. 教學(xué)評價(jià)

  學(xué)生完成反思性學(xué)習報告,書(shū)寫(xiě)要求:

  (1) 整理知識結構

  (2) 總結所學(xué)到的基本知識,技能和數學(xué)思想方法

  (3) 總結在學(xué)習過(guò)程中的經(jīng)驗,發(fā)明發(fā)現,學(xué)習障礙等,說(shuō)明產(chǎn)生障礙的原因

  (4) 談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。

  作用:

  (1) 通過(guò)反思使學(xué)生對所學(xué)知識系統化。反思的過(guò)程實(shí)際上是學(xué)生思維內化,知識深化和認知牢固化的一個(gè)心理活動(dòng)過(guò)程。

  (2) 報告的寫(xiě)作本身就是一種創(chuàng )造性活動(dòng)。

  (3) 及時(shí)了解學(xué)生學(xué)習過(guò)程中的知識缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿(mǎn)意度和效果,以便作出及時(shí)調整,及時(shí)進(jìn)行補償性教學(xué)。

  5. 板書(shū)設計

  (略)

  6. 教學(xué)的反思總結

  心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。

高中數學(xué)說(shuō)課稿13

  各位老師,大家好!

  我是08數學(xué)本科(2)班的xx,我今天說(shuō)課的題目是集合的含義與表示.下面我先對教材進(jìn)行分析.

  一、教材分析

  集合的含義與表示是選自高中新課標A版教材必修1第一章第一節內容。在此之前,學(xué)生已經(jīng)接觸過(guò)集合的一些相關(guān)概念,如自然數的集合、有理數的集合.集合是一個(gè)基礎性概念,是數學(xué)以至所有科學(xué)的基礎,應用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現,在高考中具有不可忽視的地位.本節內容能夠培養學(xué)生的探索精神和數學(xué)素養.

  二、教學(xué)目標

  根據上述對教材的分析,我確定本節課的教學(xué)目標為 1. 知識與技能目標 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數集.培養學(xué)生的抽象思維能力、分析能力、判斷能力.

  2. 過(guò)程與方法目標

  應用自然語(yǔ)言與集合語(yǔ)言描述不同的具體問(wèn)題,與學(xué)生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.

  3. 情感態(tài)度價(jià)值觀(guān)目標

  使得學(xué)生感受數學(xué)的簡(jiǎn)潔美與和諧統一美. 培養學(xué)生正確的、高尚的、唯物的價(jià)值觀(guān).培養學(xué)生獨立思考、敢于創(chuàng )新、勇于探索的科學(xué)精神,激發(fā)同學(xué)們學(xué)習數學(xué)的興趣. 三、重點(diǎn)和難點(diǎn)

  重點(diǎn):根據上述對教材的分析,確定的教學(xué)目標,我確定本節課的教學(xué)重點(diǎn)為:集合的含義,集合的表示方法.

  難點(diǎn):考慮到學(xué)生已有的知識基礎與認知能力,我認為教學(xué)難點(diǎn)是集合的表示方法. 關(guān)鍵:學(xué)好本節課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學(xué)方法 1.學(xué)情分析

 。1)生理特點(diǎn):高中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步走向理論型發(fā)展,觀(guān)察能力、記憶能力和想象能力也隨之迅速發(fā)展.

 。2)心理特點(diǎn):高中學(xué)生雖有好奇,好表現的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說(shuō)教.

 。3)認知障礙:有的學(xué)生遺忘了學(xué)過(guò)的知識,有的學(xué)生想象能力與歸納能力較差. 2.教法學(xué)法

  根據上面的分析,從高中生的心理特點(diǎn)和認知水平出發(fā),結合學(xué)生的實(shí)際情況與認知障礙,按照突出重點(diǎn),突破難點(diǎn),本節課采用學(xué)生廣泛參與,師生共同探討的啟發(fā)式教學(xué)法. 五、教學(xué)過(guò)程(用描述性語(yǔ)言,不要具體化。

  根據以上分析,我對本節課的教學(xué)過(guò)程作如下安排:

  1.引入課題

  先引導學(xué)生回顧自然數的集合,有理數的集合,再提出問(wèn)題:集合的含義是什么呢? 2.新課講解

 。1)分析自然數的集合,有理數的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.

 。2)根據上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見(jiàn)的數集.

 。3)為了化解教學(xué)難點(diǎn),我將結合具體的例子,講解列舉法與描述法.

 。4)為了加強學(xué)生對集合的含義的理解,我將與學(xué)生一起歸納出集合的元素的特征. (5)為了提高學(xué)生解決實(shí)際問(wèn)題的能力,我將講解三個(gè)不同題型、不同難度的例題. 3.課堂練習

  為了使得學(xué)生掌握等差數列的定義與通項公式,提高解題技能,我將在課堂上布置3道不同類(lèi)型、不同難度的練習題.

  4.歸納小結

  完成以上的教學(xué)內容后,我將組織學(xué)生對本節課的內容做一個(gè)總結,強調重點(diǎn). 5.布置作業(yè)

  為了鞏固所學(xué)知識,激發(fā)學(xué)生的求知欲,我將布置3道不同類(lèi)型、不同難度的作業(yè)題. 六、板書(shū)設計

  結合中學(xué)黑板的特點(diǎn),我將如下板書(shū)本節教學(xué)內容: 集合的含義與表示 實(shí)例 1. 2. 3. 集合的含義 常見(jiàn)數集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習 作業(yè) 各位老師,以上只是我的一種預設方案,但課堂千變萬(wàn)化,我將根據實(shí)際情況靈活掌握,隨機發(fā)揮.本說(shuō)課一定存在諸多不足,懇請各位老師提出寶貴意見(jiàn),謝謝! 1.1.2集合間的基本關(guān)系

  數學(xué)必修1第一章第二節第1小節《集合間的基本關(guān)系》說(shuō)課稿.

  一 、教學(xué)內容分析

  集合概念及其理論是近代數學(xué)的基石,集合語(yǔ)言是現代數學(xué)的基本語(yǔ)言,通過(guò)學(xué)習、使用集合語(yǔ)言,有利于學(xué)生簡(jiǎn)潔、準確地表達數學(xué)內容,高中課程只將集合作為一種語(yǔ)言來(lái)學(xué)

  習,學(xué)生將學(xué)會(huì )使用最基本的集合語(yǔ)言表示有關(guān)的數學(xué)對象,發(fā)展運用數學(xué)語(yǔ)言進(jìn)行交流的能力.

  本章集合的初步知識是學(xué)生學(xué)習、掌握和使用數學(xué)語(yǔ)言的基礎,是高中數學(xué)學(xué)習的出發(fā)點(diǎn)。本小節內容是在學(xué)習了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎上,進(jìn)一步學(xué)習集合與集合之間的關(guān)系,同時(shí)也是下一節學(xué)習集合之間的運算的基礎,因此本小節起著(zhù)承上啟下的重要作用.

  本節課的教學(xué)重視過(guò)程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過(guò)問(wèn)題情境的設置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數學(xué)思維。

  二、學(xué)情分析

  本節課是學(xué)生進(jìn)入高中學(xué)習的第3節數學(xué)課,也是學(xué)生正式學(xué)習集合語(yǔ)言的第3節課。由于一切對于學(xué)生來(lái)說(shuō)都是新的,所以學(xué)生的學(xué)習興趣相對來(lái)說(shuō)比較濃厚,有利于學(xué)習活動(dòng)的展開(kāi)。而集合對于學(xué)生來(lái)說(shuō)既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數軸求簡(jiǎn)單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語(yǔ)言來(lái)描述集合之間的關(guān)系。而從具體的實(shí)例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學(xué)生是一個(gè)挑戰。

  根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標和教學(xué)重、難點(diǎn)如下:

  三、教學(xué)目標: 知識與技能目標:

 。1)理解集合之間包含和相等的含義; (2)能識別給定集合的子集;

 。3)能使用Venn圖表達集合之間的包含關(guān)系 過(guò)程與方法目標:

 。1)通過(guò)復習元素與集合之間的關(guān)系,對照實(shí)數的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;

 。2)初步經(jīng)歷使用最基本的集合語(yǔ)言表示有關(guān)的數學(xué)對象的過(guò)程,體會(huì )集合語(yǔ)言,發(fā)展運用數學(xué)語(yǔ)言進(jìn)行交流的能力;

  情感、態(tài)度、價(jià)值觀(guān)目標:

 。1)了解集合的包含、相等關(guān)系的含義,感受集合語(yǔ)言在描述客觀(guān)現實(shí)和數學(xué)問(wèn)題中的意義;

 。2)探索利用直觀(guān)圖示(Venn圖)理解抽象概念,體會(huì )數形結合的思想。

  四、本節課教學(xué)的重、難點(diǎn):

  重點(diǎn):(1)幫助學(xué)生由具體到抽象地認識集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點(diǎn):集合關(guān)系與其特征性質(zhì)之間的關(guān)系 五、教學(xué)過(guò)程設計

  1.新課的引入——設置問(wèn)題情境,激發(fā)學(xué)習興趣

  我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習方式。那我們來(lái)思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當學(xué)生感興趣時(shí);當學(xué)生智力遭遇到挑戰時(shí);當學(xué)生能自主地參與探索和創(chuàng )新時(shí);當學(xué)生能夠學(xué)以致用時(shí);當學(xué)生得到鼓勵與信任時(shí),他們學(xué)得最好。數學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上,這樣才能讓學(xué)生體驗到成就感,保持積極的興奮狀態(tài)。而集合的語(yǔ)言對于學(xué)生來(lái)說(shuō)是陌生的,雖然比較容易理解,但是由于概念多,符號多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長(cháng)時(shí)間興趣盎然地投入到集合關(guān)系的學(xué)習中呢?我在整個(gè)教學(xué)過(guò)程中層層設問(wèn),不斷地向學(xué)生提出挑戰,以激發(fā)學(xué)生的學(xué)習興趣。在引入的環(huán)節,我設計了下面的問(wèn)題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數與數之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問(wèn)題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎上提出這一節課我們來(lái)共同探討集合之間的基本關(guān)系。(板書(shū)課題)

  2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問(wèn)題情境1的探究:

  具體實(shí)例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};

  此環(huán)節設置了三個(gè)具體實(shí)例,包含了有限集、無(wú)限集、數集(包括不等式)、圖形的集合。第一個(gè)例子為有限集數集,最為簡(jiǎn)單直觀(guān),對學(xué)生初步認識子集,理解子集的概念很有幫助;第二個(gè)例子是圖形集合且是無(wú)限集,需要通過(guò)探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個(gè)例子是無(wú)限數集,基于學(xué)生初中階段已經(jīng)學(xué)習了用數軸表示不等式的解集,啟發(fā)學(xué)生可以通過(guò)數形結合的方式來(lái)研究集合之間的關(guān)系,從而引出Venn圖。對第一個(gè)例子,借助多媒體演示動(dòng)畫(huà),幫助學(xué)生體會(huì )“任意”性。使學(xué)生在經(jīng)歷直觀(guān)感知、觀(guān)察發(fā)現的基礎上建構子集的概念,并且我在教學(xué)的過(guò)程中特別注重讓學(xué)生說(shuō),借此來(lái)學(xué)習運用集合語(yǔ)言進(jìn)行交流,對于學(xué)生的創(chuàng )新意識和創(chuàng )新結果我都給予積極的評價(jià)。

  3、概念的剖析

 。1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,

 。2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。

  這里引入了許多新的符號,對初學(xué)者來(lái)說(shuō)容易混淆,是一個(gè)易錯點(diǎn),因此我在這里設置了一個(gè)填空小練習:

  0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1

  并引導學(xué)生類(lèi)比數與數之間的“≤”“≥”符號來(lái)記憶“?”“?”符號。

  4、概念的深化——集合的相等與真子集

  問(wèn)題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個(gè)元素,它與集合A之間又可能是什么關(guān)系呢?

高中數學(xué)說(shuō)課稿14

  一.說(shuō)教材

  1.本節課主要內容是線(xiàn)性規劃的意義以及線(xiàn)性約束條件、線(xiàn)性目標函數、可行域、可行解、最優(yōu)解等概念,根據約束條件建立線(xiàn)性目標函數。應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。

  2.地位作用:線(xiàn)性規劃是數學(xué)規劃中理論較完整、方法較成熟、應用較廣泛的一個(gè)分支,它可以解決科學(xué)研究、工程設計、經(jīng)濟管理等許多方面的實(shí)際問(wèn)題。簡(jiǎn)單的線(xiàn)性規劃是在學(xué)習了直線(xiàn)方程的基礎上,介紹直線(xiàn)方程的一個(gè)簡(jiǎn)單應用。通過(guò)這部分內容的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,以培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。

  3.教學(xué)目標

  (1)知識與技能:了解線(xiàn)性規劃的意義以及線(xiàn)性約束條件、線(xiàn)性目標函數、可行域、可行解、最優(yōu)解等概念,能根據約束條件建立線(xiàn)性目標函數。

  了解并初步應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。

  (2)過(guò)程與方法:提高學(xué)生數學(xué)地提出、分析和解決問(wèn)題的能力,發(fā)展學(xué)生數學(xué)應用意識,力求對現實(shí)世界中蘊含的一些數學(xué)模式進(jìn)行思考和作出判斷。

  (3)情感、態(tài)度與價(jià)值觀(guān):體會(huì )數形結合、等價(jià)轉化等數學(xué)思想,逐步認識數學(xué)的應用價(jià)值,提高學(xué)習數學(xué)的興趣,樹(shù)立學(xué)好數學(xué)的自信心。

  4.重點(diǎn)與難點(diǎn)

  重點(diǎn):理解和用好圖解法

  難點(diǎn):如何用圖解法尋找線(xiàn)性規劃的最優(yōu)解。

  二.說(shuō)教學(xué)方法

  教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法:

  (1)啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納。這能充分調動(dòng)學(xué)生的主動(dòng)性和積極性。

  (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動(dòng)”的方法。這有利于學(xué)生對知識進(jìn)行主動(dòng)建構;有利于突出重點(diǎn)、解決難點(diǎn);也有利于發(fā)揮學(xué)生的創(chuàng )造性。

  (3)體現“等價(jià)轉化”、“數形結合”的思想方法。這樣可發(fā)揮學(xué)生的主觀(guān)能動(dòng)性,有利于提高學(xué)生的各種能力。

  三.說(shuō)學(xué)法指導

  教給學(xué)生方法比教給學(xué)生知識更重要,本節課注重調動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導:觀(guān)察分析、聯(lián)想轉化、動(dòng)手實(shí)驗、練習鞏固。

  (1)觀(guān)察分析:通過(guò)引例讓學(xué)生觀(guān)察化舊知為新知,造成學(xué)生認知沖突。

  (2)聯(lián)想轉化:學(xué)生通過(guò)分析、探索、得出解決問(wèn)題的方法。

  (3)動(dòng)手實(shí)驗:通過(guò)作圖、實(shí)驗、從而得出一般解題步驟。

  (4)練習鞏固:讓學(xué)生知道數學(xué)重在運用,從而檢驗知識的應用情況,找出未掌握的內容及其差距。

  四.說(shuō)教學(xué)程序

  1、導入課題: 由一個(gè)不等式組表示平面區域轉化為在此平面區域內一二元一次數的最值問(wèn)題,造成學(xué)生認知沖突。

  3、導學(xué)達標之一:創(chuàng )設情境、形成概念

  通過(guò)引例的問(wèn)題讓學(xué)生探索解決新問(wèn)題的方法。

  (設計意圖:利用已經(jīng)學(xué)過(guò)的知識逐步分析,學(xué)以致用,使學(xué)生經(jīng)歷數學(xué)知識的形成過(guò)程,從而提高學(xué)生數學(xué)的地提出、分析和解決問(wèn)題的能力。)

  然后老師逐步引導,動(dòng)手實(shí)驗,化抽象為直觀(guān)。從而得到解決此類(lèi)問(wèn)題的方法,并對比引例給出相關(guān)概念:線(xiàn)性約束條件、目標函數、線(xiàn)性目標函數、線(xiàn)性規劃、可行解、可行域、最優(yōu)解。并能根據引例提煉線(xiàn)性規劃問(wèn)題的解法——圖解法。

  (設計意圖:引導學(xué)生觀(guān)察和分析問(wèn)題,激發(fā)學(xué)生的探索欲望,從而培養學(xué)生的解決問(wèn)題和總結歸納的能力。)

  4.導學(xué)達標之二:針對問(wèn)題、舉例講解、形成技能

  例一:課本61頁(yè)例3

  (創(chuàng )設意境:,練習是使學(xué)生明白數學(xué)來(lái)源于實(shí)際又運用于實(shí)際,同時(shí)使學(xué)生進(jìn)初步應用線(xiàn)性規劃的圖解法解決一些實(shí)際問(wèn)題。)

  6.鞏固目標:

  練習一:學(xué)生做課堂練習P64例4

  (叫學(xué)生提出解決問(wèn)題的方法,并用多媒體展示,并根據問(wèn)題的實(shí)際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點(diǎn)最優(yōu)解的一種求法。)

  練習二:為了賺大錢(qián),老張最近承包了一家具廠(chǎng),可老張卻悶悶不樂(lè ),原來(lái)家具廠(chǎng)有方木料90m3,五合板600m2,老張準備加工成書(shū)桌和書(shū)廚出售,他通過(guò)調查了解到:生產(chǎn)每張書(shū)桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個(gè)書(shū)櫥需要方木料0.2m3、五合板1m2,出售一張書(shū)桌可獲利潤80元,出售一個(gè)書(shū)櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問(wèn)題)

  (設計意圖:通過(guò)實(shí)際問(wèn)題,激發(fā)學(xué)生興趣,培養學(xué)生的數學(xué)應用意識,力求學(xué)生能夠對現實(shí)生活中蘊含的一些數學(xué)模式進(jìn)行思考和作出判斷。)

  7.歸納與小結:

  小結本課的主要學(xué)習內容是什么?(由師生共同來(lái)完成本課小結)

  (創(chuàng )設意境:讓學(xué)生參與小結,引導學(xué)生對所學(xué)知識進(jìn)行反思,有利于加強學(xué)生記憶和形成良好的數學(xué)思維習慣)

  8.布置作業(yè):

  P64. 2

  五.說(shuō)板書(shū)設計

  板書(shū)設計為表格式,這樣的板書(shū)簡(jiǎn)明清楚,重點(diǎn)突出,加深學(xué)生對重點(diǎn)知識的理解和掌握,同時(shí)便于記憶,有利于提高教學(xué)效果。

高中數學(xué)說(shuō)課稿15

  開(kāi)始:各位專(zhuān)家領(lǐng)導, 好!

  今天我將要為大家講的課題是

  首先,我對本節教材進(jìn)行一些分析

  一、教材結構與內容簡(jiǎn)析

  本節內容在全書(shū)及章節的地位:《 》是高中數學(xué)新教材第 冊( )第 章第 節。在此之前,學(xué)生已學(xué)習了

  ,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是 部分,因此,在 中,占據 的地位。

  數學(xué)思想方法分析:作為一名數學(xué)老師,不僅要傳授給學(xué)生數學(xué)知識,更重要的是傳授給學(xué)生數學(xué)思想、數學(xué)意識,因此本節課在教學(xué)中力圖向學(xué)生:

  二、 教學(xué)目標

  根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:

  1 基礎知識目標:

  2 能力訓練目標:

  3 創(chuàng )新素質(zhì)目標:

  4 個(gè)性品質(zhì)目標:

  三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

  本著(zhù)課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn): 通過(guò) 突出重點(diǎn)

  難點(diǎn): 通過(guò) 突破難點(diǎn)

  關(guān)鍵:

  下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊?/p>

  四、 教法

  數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生

  “知其然”而且要使學(xué)生“知其所以然”,

  我們在以師生既為主體,又為客體的原則下,展現獲取知識和方法的思維過(guò)程;诒竟澱n的特點(diǎn):

  ,應著(zhù)重采用 的教學(xué)方法。即:

  五、 學(xué)法

  我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。

  1、理論:

  2、實(shí)踐:

  3、能力:

  最后我來(lái)具體談一談這一堂課的教學(xué)過(guò)程:

  六、 教學(xué)程序及設想

  1、由 引入:

  把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。

  在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

  對于本題:

  2、由實(shí)例得出本課新的知識點(diǎn)是:

  3、講解例題。

  我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

  4、能力訓練。

  課后練習

  使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。

  5、總結結論,強化認識。

  知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。

  6、變式延伸,進(jìn)行重構。

  重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。

  7、板書(shū)。

  8、布置作業(yè)。

  針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。

  結束:說(shuō)課是教師面對同行和其它聽(tīng)眾口頭講述具體課題的教學(xué)設想及其根據的新的教學(xué)研究形式。以上,我僅從說(shuō)教材,說(shuō)學(xué)情,說(shuō)教法,說(shuō)學(xué)法,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說(shuō)課對我們大家仍是新事物,今后我也將進(jìn)一步說(shuō)好課,并希望各位專(zhuān)家領(lǐng)導對本堂說(shuō)課提出寶貴意見(jiàn)。

  注意時(shí)間掌握

  六、注意靈活導入新知識點(diǎn)。

  電腦課件

  使用投影

  根據時(shí)間進(jìn)行增刪

【高中數學(xué)說(shuō)課稿】相關(guān)文章:

高中數學(xué)的說(shuō)課稿11-04

高中數學(xué)經(jīng)典說(shuō)課稿范文06-24

高中數學(xué)集合說(shuō)課稿11-12

高中數學(xué)面試說(shuō)課稿11-18

高中數學(xué)《集合》說(shuō)課稿10-31

高中數學(xué)函數的說(shuō)課稿11-17

高中數學(xué)的說(shuō)課稿范文04-29

高中數學(xué)說(shuō)課稿05-01

高中數學(xué)說(shuō)課稿06-09

高中數學(xué)的優(yōu)秀說(shuō)課稿12-04

激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频