有關(guān)高中數學(xué)說(shuō)課稿(集錦8篇)
作為一名教學(xué)工作者,就難以避免地要準備說(shuō)課稿,說(shuō)課稿有助于提高教師理論素養和駕馭教材的能力。那么什么樣的說(shuō)課稿才是好的呢?以下是小編收集整理的有關(guān)高中數學(xué)說(shuō)課稿,僅供參考,希望能夠幫助到大家。
有關(guān)高中數學(xué)說(shuō)課稿1
尊敬的各位專(zhuān)家、評委:
下午好!
我的抽簽序號是___,今天我說(shuō)課的課題是《______》第__課時(shí)。 我嘗試利用新課標的理念來(lái)指導教學(xué),對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評價(jià)分析四方面來(lái)談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設計,敬請各位專(zhuān)家、評委批評指正。
一、教材分析
。ㄒ唬┑匚慌c作用
數列是高中數學(xué)重要內容之一,它不僅有著(zhù)廣泛的實(shí)際應用,而且起著(zhù)承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學(xué)習數列也為進(jìn)一步學(xué)習數列的極限等內容做好準備。而等差數列是在學(xué)生學(xué)習了數列的有關(guān)概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進(jìn)一步深入和拓廣。同時(shí)等差數列也為今后學(xué)習等比數列提供了學(xué)習對比的依據。
。ǘ⿲W(xué)情分析
。1)學(xué)生已熟練掌握_________________。
。2)學(xué)生的知識經(jīng)驗較豐富,具備了教強的抽象思維能力和演繹推理能力。
。3)學(xué)生思維活潑,積極性高,已初步形成對數學(xué)問(wèn)題的合作探究能力。
。4) 學(xué)生層次參次不齊,個(gè)體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個(gè)密切聯(lián)系的有機整體,應該以獲得知識與技能的過(guò)程,同時(shí)成為學(xué)會(huì )學(xué)習和正確價(jià)值觀(guān)。這要求我們在教學(xué)中以知識技能的培養為主線(xiàn),透情感態(tài)度與價(jià)值觀(guān),并把這兩者充分體現在教學(xué)過(guò)程中,新課標指出教學(xué)的主體是學(xué)生,因此目標的制定和設計必須從學(xué)生的角度出發(fā),根據__在教材內容中的地位與作用,結合學(xué)情分析,本節課教學(xué)應實(shí)現如下教學(xué)目標:
。ㄒ唬┙虒W(xué)目標
。1)知識與技能
使學(xué)生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
。2)過(guò)程與方法
引導學(xué)生通過(guò)觀(guān)察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
。3)情感態(tài)度與價(jià)值觀(guān)
在函數單調性的學(xué)習過(guò)程中,使學(xué)生體驗數學(xué)的科學(xué)價(jià)值和應用價(jià)值,培養學(xué)生善于觀(guān)察、勇于探索的良好習慣和嚴謹的科學(xué)態(tài)度。
。ǘ┲攸c(diǎn)難點(diǎn)
本節課的教學(xué)重點(diǎn)是________,教學(xué)難點(diǎn)是_________。
三、教法、學(xué)法分析
。ㄒ唬┙谭
基于本節課的內容特點(diǎn)和高二學(xué)生的年齡特征,按照臨沂市高中數學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來(lái)完成教學(xué),為了實(shí)現本節課的教學(xué)目標,在教法上我采取了:
1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)學(xué)生求知欲,調動(dòng)學(xué)生主體參與的積極性.
2、在形成概念的過(guò)程中,緊扣概念中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,正確地形成概念.
3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并順利地完成書(shū)面表達.
。ǘ⿲W(xué)法在學(xué)法上我重視了: 1、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的質(zhì)的飛躍。 2、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和分析解決問(wèn)題的能力。
四、教學(xué)過(guò)程分析
。ㄒ唬┙虒W(xué)過(guò)程設計
教學(xué)是一個(gè)教師的“導”,學(xué)生的“學(xué)”以及教學(xué)過(guò)程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發(fā)、誘導、激勵、評價(jià)等為學(xué)生的學(xué)習搭建支架,把學(xué)習的任務(wù)轉移給學(xué)生,學(xué)生就是接受任務(wù),探究問(wèn)題、完成任務(wù)。如果在教學(xué)過(guò)程中把“教與學(xué)”完美的結合也就是以“問(wèn)題”為核心,通過(guò)對知識的發(fā)生、發(fā)展和運用過(guò)程的演繹、解釋和探究來(lái)組織和推動(dòng)教學(xué)。
。1)創(chuàng )設情境,提出問(wèn)題。 新課標指出:“應該讓學(xué)生在具體生動(dòng)的情境中學(xué)習數學(xué)”。在本節課的教學(xué)中,從我們熟悉的生活情境中提出問(wèn)題,問(wèn)題的
設計改變了傳統目的明確的設計方式,給學(xué)生最大的思考空間,充分體現學(xué)生主體地位。
。2)引導探究,建構概念。 數學(xué)概念的形成來(lái)自解決實(shí)際問(wèn)題和數學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習活動(dòng)中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷“數學(xué)化”、“再創(chuàng )造”的活動(dòng)過(guò)程.
。3)自我嘗試,初步應用。 有效的數學(xué)學(xué)習過(guò)程,不能單純的模仿與記憶,數學(xué)思想的領(lǐng)悟和學(xué)習過(guò)程更是如此。讓學(xué)生在解題過(guò)程中親身經(jīng)歷和實(shí)踐體驗,師生互動(dòng)學(xué)習,生生合作交流,共同探究.
。4)當堂訓練,鞏固深化。 通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識識的再次深化。
。5)小結歸納,回顧反思。 小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。我設計了三個(gè)問(wèn)題:(1)通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識?(2)通過(guò)本節課的學(xué)習,你最大的體驗是什么?(3)通過(guò)本節課的學(xué)習,你掌握了哪些技能?
。ǘ┳鳂I(yè)設計
作業(yè)分為必做題和選做題,必做題對本節課學(xué)生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習氛圍的形成.
我設計了以下作業(yè): (1)必做題 (2)選做題
。ㄈ┌鍟(shū)設計 板書(shū)要基本體現整堂課的內容與方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。
五、評價(jià)分析
學(xué)生學(xué)習的結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對____是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。 謝謝!
有關(guān)高中數學(xué)說(shuō)課稿2
各位評委老師,大家好!
我是本科數學(xué)**號選手,今天我要進(jìn)行說(shuō)課的課題是高中數學(xué)必修一第一章第三節第一課時(shí)《函數單調性與最大(。┲怠罚ǹ梢栽谶@時(shí)候板書(shū)課題,以緩解緊張)。我將從教材分析;教學(xué)目標分析;教法、學(xué)法;教學(xué)過(guò)程;教學(xué)評價(jià)五個(gè)方面來(lái)陳述我對本節課的設計方案。懇請在座的專(zhuān)家評委批評指正。
一、教材分析
1、 教材的地位和作用
。1)本節課主要對函數單調性的學(xué)習;
。2)它是在學(xué)習函數概念的基礎上進(jìn)行學(xué)習的,同時(shí)又為基本初等函數的學(xué)習奠定了基礎,所以他在教材中起著(zhù)承前啟后的重要作用;(可以看看這一課題的前后章節來(lái)寫(xiě))
。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題
。ǜ鶕唧w的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問(wèn)題就刪掉)
2、 教材重、難點(diǎn)
重點(diǎn):函數單調性的定義
難點(diǎn):函數單調性的證明
重難點(diǎn)突破:在學(xué)生已有知識的基礎上,通過(guò)認真觀(guān)察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現重難點(diǎn)突破。(這個(gè)必須要有)
3.學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節總是創(chuàng )設恰當的問(wèn)題情境,引導學(xué)生積極思考,培養他們的邏輯思維能力。從學(xué)生的認知結構來(lái)看,他們只能根據函數的圖象觀(guān)察出“隨著(zhù)自變量的增大函數值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數圖象的直觀(guān)性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統性、嚴謹性,在教學(xué)中注意加強.
二、教學(xué)目標
知識目標:
。1)函數單調性的定義
。2)函數單調性的證明
能力目標:
培養學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復雜,由特殊到一般的化歸思想
情感目標:
培養學(xué)生勇于探索的精神和善于合作的意識
。ㄟ@樣的教學(xué)目標設計更注重教學(xué)過(guò)程和情感體驗,立足教學(xué)目標多元化)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無(wú)定法”,只有方法得當才會(huì )有效。新課程標準之處教師是教學(xué)的組織者、引導者、合作者,在教學(xué)過(guò)程要充分調動(dòng)學(xué)生的積極性、主動(dòng)性。本著(zhù)這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價(jià)法
2、學(xué)法分析
“授人以魚(yú),不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的`主題,在學(xué)習過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀(guān)察發(fā)現法、合作交流法、歸納總結法。
。ㄇ叭糠钟脮r(shí)控制在三分鐘以?xún),可適當刪減)
四、教學(xué)過(guò)程
1、以舊引新,導入新知
通過(guò)課前小研究讓學(xué)生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀(guān)察函數圖象的特點(diǎn),總結歸納。通過(guò)課上小組討論歸納,引導學(xué)生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線(xiàn)上升的,而二次函數f(x)=x^2的圖像是一個(gè)曲線(xiàn),在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來(lái)更自然)
2、創(chuàng )設問(wèn)題,探索新知
緊接著(zhù)提出問(wèn)題,你能用二次函數f(x)=x^2表達式來(lái)描述函數在(-∞,0)的圖像?教師總結,并板書(shū),揭示函數單調性的定義,并注意強調可以利用作差法來(lái)判斷這個(gè)函數的單調性。
讓學(xué)生模仿剛才的表述法來(lái)描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規范學(xué)生的數學(xué)用語(yǔ)。
讓學(xué)生自主學(xué)習函數單調區間的定義,為接下來(lái)例題學(xué)習打好基礎。
3、 例題講解,學(xué)以致用
例1主要是對函數單調區間的鞏固運用,通過(guò)觀(guān)察函數定義在(—5,5)的圖像來(lái)找出函數的單調區間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評來(lái)糾正答案,檢查學(xué)生對函數單調區間的掌握。強調單調區間一般寫(xiě)成半開(kāi)半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習效果。
例2是將函數單調性運用到其他領(lǐng)域,通過(guò)函數單調性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對例題進(jìn)行證明,以規范總結證明步驟。一設二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過(guò)自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學(xué)習了函數單調性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養學(xué)生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學(xué)生學(xué)習不同的數學(xué),我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2
6、板書(shū)設計
我力求簡(jiǎn)潔明了地概括本節課的學(xué)習要點(diǎn),讓學(xué)生一目了然。
。ㄟ@部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說(shuō)明學(xué)生的活動(dòng))
五、教學(xué)評價(jià)
本節課是在學(xué)生已有知識的基礎上學(xué)習的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評、互評,讓內部動(dòng)機和外界刺激協(xié)調作用,促進(jìn)其數學(xué)素養不斷提高。
有關(guān)高中數學(xué)說(shuō)課稿3
一、說(shuō)教材:
1、教材的地位與作用
導數是微積分的核心概念之一,它為研究函數提供了有效的方法.在前面幾節課里學(xué)生對導數的概念已經(jīng)有了充分的認識,本節課教材從形的角度即割線(xiàn)入手,用形象直觀(guān)的“逼近”方法定義了切線(xiàn),獲得導數的幾何意義,更有利于學(xué)生理解導數概念的本質(zhì)內涵.這節課可以利用幾何畫(huà)板進(jìn)行動(dòng)畫(huà)演示,讓學(xué)生通過(guò)觀(guān)察、思考、發(fā)現、思維、運用形成完整概念.通過(guò)本節的學(xué)習,可以幫助學(xué)生更好的體會(huì )導數是研究函數的單調性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內容。
2、教學(xué)的重點(diǎn)、難點(diǎn)、關(guān)鍵
教學(xué)重點(diǎn):導數的幾何意義、切線(xiàn)方程的求法以及“數形結合,逼近”的思想方法。
教學(xué)難點(diǎn):理解導數的幾何意義的本質(zhì)內涵
1)從割線(xiàn)到切線(xiàn)的過(guò)程中采用的逼近方法;
2)理解導數的概念,將多方面的意義聯(lián)系起來(lái),例如,導數反映了函數f(x)在點(diǎn)x附近的變化快慢,導數是曲線(xiàn)上某點(diǎn)切線(xiàn)的斜率,等等.
二、說(shuō)教學(xué)目標:
根據新課程標準的要求、學(xué)生的認知水平,確定教學(xué)目標如下:
1、知識與技能:
通過(guò)實(shí)驗探求理解導數的幾何意義,理解曲線(xiàn)在一點(diǎn)的切線(xiàn)的概念,會(huì )求簡(jiǎn)單函數在某點(diǎn)的切線(xiàn)方程。
過(guò)程與方法:
經(jīng)歷切線(xiàn)定義的形成過(guò)程,培養學(xué)生分析、抽象、概括等思維能力;體會(huì )導數的思想及內涵,完善對切線(xiàn)的認識和理解
通過(guò)逼近、數形結合思想的具體運用,使學(xué)生達到思維方式的遷移,了解科學(xué)的思維方法。
3、情感態(tài)度與價(jià)值觀(guān):
滲透逼近、數形結合、以直代曲等數學(xué)思想,激發(fā)學(xué)生學(xué)習興趣,引導學(xué)生領(lǐng)悟特殊與一般、有限與無(wú)限,量變與質(zhì)變的辯證關(guān)系,感受數學(xué)的統一美,意識到數學(xué)的應用價(jià)值
三、說(shuō)教法與學(xué)法
對于直線(xiàn)來(lái)說(shuō)它的導數就是它的斜率,學(xué)生會(huì )很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過(guò)了圓錐曲線(xiàn),學(xué)生對曲線(xiàn)的切線(xiàn)的概念也有了一些認識,基于以上學(xué)情分析,我確定下列教法:
教法:從圓的切線(xiàn)的定義引入本課,再引導學(xué)生討論一般曲線(xiàn)的切線(xiàn)的定義,通過(guò)幾何畫(huà)板的動(dòng)畫(huà)演示,得出曲線(xiàn)的切線(xiàn)的“逼近”法的定義.同樣通過(guò)幾何畫(huà)板的實(shí)驗觀(guān)察得到導數的幾何意義和直觀(guān)感知“逼近”的數學(xué)思想.因此,我采用實(shí)驗觀(guān)察法、探究性研究教學(xué)和信息技術(shù)輔助教學(xué)法相結合,以突出重點(diǎn)和突破難點(diǎn);
學(xué)法:為了發(fā)揮學(xué)生的主觀(guān)能動(dòng)性,提高學(xué)生的綜合能力,本節課采取了
自主、合作、探究的學(xué)習方法。
教具:幾何畫(huà)板、幻燈片
四、說(shuō)教學(xué)程序
1.創(chuàng )設情境
學(xué)生活動(dòng)——問(wèn)題系列
問(wèn)題1平面幾何中我們是怎樣判斷直線(xiàn)是否是圓的割線(xiàn)或切線(xiàn)的呢?
問(wèn)題2如圖直線(xiàn)l是曲線(xiàn)C的切線(xiàn)嗎?
(1)與(2)與還有直線(xiàn)與雙曲線(xiàn)的位置關(guān)系
問(wèn)題3那么對于一般的曲線(xiàn),切線(xiàn)該如何定義呢?
【設計意圖】:通過(guò)類(lèi)比構建認知沖突。
學(xué)生活動(dòng)——復習回顧
導數的定義
【設計意圖】:從理論和知識基礎兩方面為本節課作鋪墊。
2.探索求知
學(xué)生活動(dòng)——試驗探究
問(wèn)一;求導數的步驟是怎樣的?
第一步:求平均變化率;第二步:當趨近于0時(shí),平均變化率無(wú)限趨近于的常數就是。
【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。
問(wèn)二;你能借助圖像說(shuō)說(shuō)平均變化率表示什么嗎?請在函數圖像中畫(huà)出來(lái)。
【設計意圖】:通過(guò)學(xué)生動(dòng)手實(shí)踐得到平均變化率表示割線(xiàn)PQ的斜率。
問(wèn)三;在的過(guò)程中,你能描述一下割線(xiàn)PQ的變化情況嗎?請在圖像中畫(huà)出來(lái)。
【設計意圖】:分別從“數”和“形”的角度描述的過(guò)程情況。從數的角度看,,Q();從形的角度看,的過(guò)程中,Q點(diǎn)向P點(diǎn)無(wú)限趨近,割線(xiàn)PQ趨近于確定的位置,這個(gè)位置的直線(xiàn)叫做曲線(xiàn)在處的切線(xiàn)。
探究一:學(xué)生通過(guò)幾何畫(huà)板的演示觀(guān)察割線(xiàn)的變化趨勢,教師引導給出一般曲線(xiàn)的切線(xiàn)定義。
【設計意圖】:借助多媒體教學(xué)手段引導學(xué)生發(fā)現導數的幾何意義,使問(wèn)題變得直觀(guān),易于突破難點(diǎn);學(xué)生在過(guò)程中,可以體會(huì )逼近的思想方法。能夠同時(shí)從數與形兩個(gè)角度強化學(xué)生對導數概念的理解。
問(wèn)四;你能從上述過(guò)程中概括出函數在處的導數的幾何意義嗎?
【設計意圖】:引導學(xué)生發(fā)現并說(shuō)出:,割線(xiàn)PQ切線(xiàn)PT,所以割線(xiàn)
PQ的斜率切線(xiàn)PT的斜率。因此,=切線(xiàn)PT的斜率。
五、教學(xué)評價(jià)
1、通過(guò)學(xué)生參加活動(dòng)是否積極主動(dòng),能否與他人合作探索,對學(xué)生的學(xué)習過(guò)程評價(jià);
2、通過(guò)學(xué)生對方法的選擇,對學(xué)生的學(xué)習能力評價(jià);
3、通過(guò)練習、課后作業(yè),對學(xué)生的學(xué)習效果評價(jià).
4、教學(xué)中,學(xué)生以研究者的身份學(xué)習,在問(wèn)題解決的過(guò)程中,通過(guò)自身的體驗對知識的認識從模糊到清晰,從直觀(guān)感悟到精確掌握;
5、本節課設計目標力求使學(xué)生體會(huì )微積分的基本思想,感受近似與精確的統一,運動(dòng)和靜止的統一,感受量變到質(zhì)變的轉化。希望利用這節課滲透辨證法的思想精髓.
有關(guān)高中數學(xué)說(shuō)課稿4
各位評委老師好:今天我說(shuō)課的題目是
是必修章第節的內容,我將以新課程標準的理念指導本節課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過(guò)程,教學(xué)評價(jià)四個(gè)方面加以說(shuō)明。
一、 教材分析
是在學(xué)習了基礎上進(jìn)一步研究 并為后面學(xué)習 做準備,在整個(gè)
高中數學(xué)中起著(zhù)承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標
1、 知識能力目標:使學(xué)生理解掌握
2、 過(guò)程方法目標:通過(guò)觀(guān)察歸納抽象概括使學(xué)生構建領(lǐng)悟 數學(xué)思想,培養 能力
3、 情感態(tài)度價(jià)值觀(guān)目標:通過(guò)學(xué)習體驗數學(xué)的科學(xué)價(jià)值和應用價(jià)值,培養善于
觀(guān)察勇于思考的學(xué)習習慣和嚴謹 的科學(xué)態(tài)度
根據教學(xué)目標、本節特點(diǎn)和學(xué)生實(shí)際情況本節重點(diǎn)是 ,由于學(xué)生對 缺少感性認識,所以本節課的重點(diǎn)是
二、教法學(xué)法
根據教師主導地位和學(xué)生主體地位相統一的規律,我采用引導發(fā)現法為本節課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來(lái)尋求解決問(wèn)題的方法。
三、 教學(xué)過(guò)程
四、 教學(xué)程序及設想
1、由……引入:
把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。 在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
對于本題:……
2、由實(shí)例得出本課新的知識點(diǎn)是:……
3、講解例題。
我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓練。
課后練習……
使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
5、總結結論,強化認識。
知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。
6、變式延伸,進(jìn)行重構。
重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
五、教學(xué)評價(jià)
學(xué)生學(xué)習的學(xué)習結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià),教師應
當高度重視學(xué)生學(xué)習過(guò)程中的參與度、自信心、團隊精神合作意識數學(xué)能力的發(fā)現,以及學(xué)習的興趣和成就感。
有關(guān)高中數學(xué)說(shuō)課稿5
一、地位作用
數列是高中數學(xué)重要的內容之一,等比數列是在學(xué)習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個(gè)高中數學(xué)內容中數列與已學(xué)過(guò)的函數及后面的數列極限有密切聯(lián)系,它也是培養學(xué)生數學(xué)能力的良好題材,它可以培養學(xué)生的觀(guān)察、分析、歸納、猜想及綜合解決問(wèn)題的能力。
基于此,設計本節的數學(xué)思路上:
利用類(lèi)比的思想,聯(lián)系等差數列的概念及通項公式的學(xué)習方法,采取自學(xué)、引導、歸納、猜想、類(lèi)比總結的教學(xué)思路,充分發(fā)揮學(xué)生主觀(guān)能動(dòng)性,調動(dòng)學(xué)生的主體地位,充分體現教為主導、學(xué)為主體、練為主線(xiàn)的教學(xué)思想。
二、教學(xué)目標
知識目標:1)理解等比數列的概念
2)掌握等比數列的通項公式
3)并能用公式解決一些實(shí)際問(wèn)題
能力目標:培養學(xué)生觀(guān)察能力及發(fā)現意識,培養學(xué)生運用類(lèi)比思想、解決分析問(wèn)題的能力。
三、教學(xué)重點(diǎn)
1)等比數列概念的理解與掌握關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)
2)等比數列的通項公式的推導及應用
四、教學(xué)難點(diǎn)
“等比”的理解及利用通項公式解決一些問(wèn)題。
五、教學(xué)過(guò)程設計
。ㄒ唬╊A習自學(xué)環(huán)節。(8分鐘)
首先讓學(xué)生重新閱讀課本105頁(yè)國際象棋發(fā)明者的故事,并出示預習提綱,要求學(xué)生閱讀課本P122至P123例1上面。
回答下列問(wèn)題
1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數列的定義。
2)觀(guān)察以下幾個(gè)數列,回答下面問(wèn)題:
1,,,,……
。1,-2,-4,-8……
1,2,-4,8……
。1,-1,-1,-1,……
1,0,1,0……
、儆心膸讉(gè)是等比數列?若是公比是什么?
、诠萹為什么不能等于零?首項能為零嗎?
、酃萹=1時(shí)是什么數列?
、躴>0時(shí)數列遞增嗎?q<0時(shí)遞減嗎?
3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?
4)等比數列通項公式與函數關(guān)系怎樣?
。ǘw納主導與總結環(huán)節(15分鐘)
這一環(huán)節主要是通過(guò)學(xué)生回答為主體,教師引導總結為主線(xiàn)解決本節兩個(gè)重點(diǎn)內容。
通過(guò)回答問(wèn)題(1)(2)給出等比數列的定義并強調以下幾點(diǎn):①定義關(guān)鍵字“第二項起”“常數”;
、谝龑W(xué)生用數學(xué)語(yǔ)言表達定義:=q(n≥2);③q=1時(shí)為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類(lèi)討論的思想。
、躴>0時(shí)等比數列單調性不定,q<0為擺動(dòng)數列,類(lèi)比等差數列d>0為遞增數列,d<0為遞減數列。
通過(guò)回答問(wèn)題(3)回憶等差數列的推導方法,比較兩個(gè)數列定義的不同,引導推出等比數列通項公式。
法一:歸納法,學(xué)會(huì )從特殊到一般的方法,并從次數中發(fā)現規律,培養觀(guān)察力。
法二:迭乘法,聯(lián)系等差數列“迭加法”,培養學(xué)生類(lèi)比能力及新舊知識轉化能力。
有關(guān)高中數學(xué)說(shuō)課稿6
一、教材分析:
1、教材的地位與作用:
線(xiàn)性規劃是運籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著(zhù)廣泛的應用。本節內容是在學(xué)習了不等式、直線(xiàn)方程的基礎上,利用不等式和直線(xiàn)方程的有關(guān)知識展開(kāi)的,它是對二元一次不等式的深化和再認識、再理解。通過(guò)這一部分的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,體驗數形結合和轉化的思想方法,培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。
2、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):畫(huà)可行域;在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。
難點(diǎn):在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。
二、目標分析:
在新課標讓學(xué)生經(jīng)歷“學(xué)數學(xué)、做數學(xué)、用數學(xué)”的理念指導下,本節課的教學(xué)目標分設為知識目標、能力目標和情感目標。
知識目標:
1、了解線(xiàn)性規劃的意義,了解線(xiàn)性約束條件、線(xiàn)性目標函數、可行解、可行
域和最優(yōu)解等概念;
2、理解線(xiàn)性規劃問(wèn)題的圖解法;
3、會(huì )利用圖解法求線(xiàn)性目標函數的最優(yōu)解.
能力目標:
1、在應用圖解法解題的過(guò)程中培養學(xué)生的觀(guān)察能力、理解能力。
2、在變式訓練的過(guò)程中,培養學(xué)生的分析能力、探索能力。
3、在對具體事例的感性認識上升到對線(xiàn)性規劃的理性認識過(guò)程中,培養學(xué)生運用數形結合思想解題的能力和化歸能力。
情感目標:
1、讓學(xué)生體驗數學(xué)來(lái)源于生活,服務(wù)于生活,體驗數學(xué)在建設節約型社會(huì )中的作用,品嘗學(xué)習數學(xué)的樂(lè )趣。
2、讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索與創(chuàng )造,培養學(xué)生勤于思考、勇于探索的精神;
3、讓學(xué)生學(xué)會(huì )用運動(dòng)觀(guān)點(diǎn)觀(guān)察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。
三、過(guò)程分析:
數學(xué)教學(xué)是數學(xué)活動(dòng)的教學(xué)。因此,我將整個(gè)教學(xué)過(guò)程分為以下六個(gè)教學(xué)環(huán)節:1、創(chuàng )設情境,提出問(wèn)題;2、分析問(wèn)題,形成概念;3、反思過(guò)程,提煉方法;4、變式演練,深入探究;5、運用新知,解決問(wèn)題;6、歸納總結,鞏固提高。
1、創(chuàng )設情境,提出問(wèn)題:
在課堂教學(xué)的開(kāi)始,我以一組生動(dòng)的動(dòng)畫(huà)(配圖片)描述出在神奇的數學(xué)王國里,有一種算法廣泛應用于工農業(yè)、軍事、交通運輸、決策管理與規劃等領(lǐng)域,應用它已節約了億萬(wàn)財富,還被列為20世紀對科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習情境。
有關(guān)高中數學(xué)說(shuō)課稿7
開(kāi)始:各位專(zhuān)家領(lǐng)導, 好!
今天我將要為大家講的課題是
首先,我對本節教材進(jìn)行一些分析
一、教材結構與內容簡(jiǎn)析
本節內容在全書(shū)及章節的地位:《 》是高中數學(xué)新教材第 冊( )第 章第 節。在此之前,學(xué)生已學(xué)習了
,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是 部分,因此,在 中,占據 的地位。
數學(xué)思想方法分析:作為一名數學(xué)老師,不僅要傳授給學(xué)生數學(xué)知識,更重要的是傳授給學(xué)生數學(xué)思想、數學(xué)意識,因此本節課在教學(xué)中力圖向學(xué)生:
二、 教學(xué)目標
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:
1 基礎知識目標:
2 能力訓練目標:
3 創(chuàng )新素質(zhì)目標:
4 個(gè)性品質(zhì)目標:
三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
本著(zhù)課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn): 通過(guò) 突出重點(diǎn)
難點(diǎn): 通過(guò) 突破難點(diǎn)
關(guān)鍵:
下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊?/p>
四、 教法
數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生
“知其然”而且要使學(xué)生“知其所以然”,
我們在以師生既為主體,又為客體的原則下,展現獲取知識和方法的思維過(guò)程;诒竟澱n的特點(diǎn):
,應著(zhù)重采用 的教學(xué)方法。即:
五、 學(xué)法
我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。
1、理論:
2、實(shí)踐:
3、能力:
最后我來(lái)具體談一談這一堂課的教學(xué)過(guò)程:
六、 教學(xué)程序及設想
1、由 引入:
把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。
在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。
對于本題:
2、由實(shí)例得出本課新的知識點(diǎn)是:
3、講解例題。
我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓練。
課后練習
使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。
5、總結結論,強化認識。
知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。
6、變式延伸,進(jìn)行重構。
重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
7、板書(shū)。
8、布置作業(yè)。
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。
結束:說(shuō)課是教師面對同行和其它聽(tīng)眾口頭講述具體課題的教學(xué)設想及其根據的新的教學(xué)研究形式。以上,我僅從說(shuō)教材,說(shuō)學(xué)情,說(shuō)教法,說(shuō)學(xué)法,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說(shuō)課對我們大家仍是新事物,今后我也將進(jìn)一步說(shuō)好課,并希望各位專(zhuān)家領(lǐng)導對本堂說(shuō)課提出寶貴意見(jiàn)。
注意時(shí)間掌握
六、注意靈活導入新知識點(diǎn)。
電腦課件
使用投影
根據時(shí)間進(jìn)行增刪
有關(guān)高中數學(xué)說(shuō)課稿8
【教材分析】
1、本節教材的地位與作用
本節主要研究閉區間上的連續函數最大值和最小值的求法和實(shí)際應用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì )求某些函數的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有最大值和最小值”,以及會(huì )求可導函數的極值之后進(jìn)行學(xué)習的,學(xué)好這一節,學(xué)生將會(huì )求更多的函數的最值,運用本節知識可以解決科技、經(jīng)濟、社會(huì )中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問(wèn)題。這節課集中體現了數形結合、理論聯(lián)系實(shí)際等重要的數學(xué)思想方法,學(xué)好本節,對于進(jìn)一步完善學(xué)生的知識結構,培養學(xué)生用數學(xué)的意識都具有極為重要的意義。
2、教學(xué)重點(diǎn)
會(huì )求閉區間上連續開(kāi)區間上可導的函數的最值。
3、教學(xué)難點(diǎn)
高三年級學(xué)生雖然已經(jīng)具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優(yōu)化解題過(guò)程依據的理解會(huì )有較大的困難,所以這節課的難點(diǎn)是理解確定函數最值的方法。
4、教學(xué)關(guān)鍵
本節課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區間內全部可能的極值點(diǎn)。
【教學(xué)目標】
根據本節教材在高中數學(xué)知識體系中的地位和作用,結合學(xué)生已有的認知水平,制定本節如下的教學(xué)目標:
1、知識和技能目標
。1)理解函數的最值與極值的區別和聯(lián)系。
。2)進(jìn)一步明確閉區間[a,b]上的連續函數f(x),在[a,b]上必有最大、最小值。
。3)掌握用導數法求上述函數的最大值與最小值的方法和步驟。
2、過(guò)程和方法目標
。1)了解開(kāi)區間內的連續函數或閉區間上的不連續函數不一定有最大、最小值。
。2)理解閉區間上的連續函數最值存在的可能位置:極值點(diǎn)處或區間端點(diǎn)處。
。3)會(huì )求閉區間上連續,開(kāi)區間內可導的函數的最大、最小值。
3、情感和價(jià)值目標
。1)認識事物之間的的區別和聯(lián)系。
。2)培養學(xué)生觀(guān)察事物的能力,能夠自己發(fā)現問(wèn)題,分析問(wèn)題并最終解決問(wèn)題。
。3)提高學(xué)生的數學(xué)能力,培養學(xué)生的創(chuàng )新精神、實(shí)踐能力和理性精神。
【教法選擇】
根據皮亞杰的建構主義認識論,知識是個(gè)體在與環(huán)境相互作用的過(guò)程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。
本節課在幫助學(xué)生回顧肯定了閉區間上的連續函數一定存在最大值和最小值之后,引導學(xué)生通過(guò)觀(guān)察閉區間內的連續函數的幾個(gè)圖象,自己歸納、總結出函數最大值、最小值存在的可能位置,進(jìn)而探索出函數最大值、最小值求解的方法與步驟,并優(yōu)化解題過(guò)程,讓學(xué)生主動(dòng)地獲得知識,老師只是進(jìn)行適當的引導,而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節課主要選擇以合作探究式教學(xué)法組織教學(xué)。
【學(xué)法指導】
對于求函數的最值,高三學(xué)生已經(jīng)具備了良好的知識基礎,剩下的問(wèn)題就是有沒(méi)有一種更一般的方法,能運用于更多更復雜函數的求最值問(wèn)題?教學(xué)設計中注意激發(fā)起學(xué)生強烈的求知欲望,使得他們能積極主動(dòng)地觀(guān)察、分析、歸納,以形成認識,參與到課堂活動(dòng)中,充分發(fā)揮他們作為認知主體的作用。
【教學(xué)過(guò)程】
本節課的教學(xué),大致按照“創(chuàng )設情境,鋪墊導入——合作學(xué)習,探索新知——指導應用,鼓勵創(chuàng )新——歸納小結,反饋回授”四個(gè)環(huán)節進(jìn)行組織。
【高中數學(xué)說(shuō)課稿】相關(guān)文章:
高中數學(xué)經(jīng)典說(shuō)課稿11-25
高中數學(xué)的說(shuō)課稿11-04
高中數學(xué)說(shuō)課稿05-01
高中數學(xué)數列說(shuō)課稿11-20
高中數學(xué)向量說(shuō)課稿09-09
高中數學(xué)實(shí)驗說(shuō)課稿11-26
高中數學(xué)必修說(shuō)課稿11-25