激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频

高中數學(xué)經(jīng)典說(shuō)課稿

時(shí)間:2022-11-25 19:22:35 高中說(shuō)課稿 我要投稿

高中數學(xué)經(jīng)典說(shuō)課稿

  作為一名教師,時(shí)常會(huì )需要準備好說(shuō)課稿,寫(xiě)說(shuō)課稿能有效幫助我們總結和提升講課技巧。那么什么樣的說(shuō)課稿才是好的呢?下面是小編為大家整理的高中數學(xué)經(jīng)典說(shuō)課稿,僅供參考,希望能夠幫助到大家。

高中數學(xué)經(jīng)典說(shuō)課稿

高中數學(xué)經(jīng)典說(shuō)課稿1

  一、說(shuō)教材:

  1. 地位及作用:

  “橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書(shū)的重點(diǎn)內容之一,也是歷年高考、會(huì )考的必考內容,是在學(xué)完求曲線(xiàn)方程的基礎上,進(jìn)一步研究橢圓的特性,以完成對圓錐曲線(xiàn)的全面研究,為今后的學(xué)習打好基礎,因此本節內容具有承前啟后的作用。

  2. 教學(xué)目標:

  根據《教學(xué)大綱》,《考試說(shuō)明》的要求,并根據教材的具體內容和學(xué)生的實(shí)際情況,確定本節課的教學(xué)目標:

 。1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。

 。2)能力目標:

 。╝)培養學(xué)生靈活應用知識的能力。

 。╞) 培養學(xué)生全面分析問(wèn)題和解決問(wèn)題的能力。

 。╟)培養學(xué)生快速準確的運算能力。

 。3)德育目標:培養學(xué)生數形結合思想,類(lèi)比、分類(lèi)討論的思想以及確立從感性到理性認識的辯證唯物主義觀(guān)點(diǎn)。

  3. 重點(diǎn)、難點(diǎn)和關(guān)鍵點(diǎn):

  因為橢圓的定義和標準方程是解決與橢圓有關(guān)問(wèn)題的重要依據,也是研究雙曲線(xiàn)和拋物線(xiàn)的基礎,因此,它是本節教材的重點(diǎn);由于學(xué)生推理歸納能力較低,在推導橢圓的標準方程時(shí)涉及到根式的兩次平方,并且運算也較繁,因此它是本節課的難點(diǎn);坐標系建立的好壞直接影響標準方程的推導和化簡(jiǎn),因此建立一個(gè)適當的直角坐標系是本節的關(guān)鍵。

  二、 說(shuō)教材處理

  為了完成本節課的教學(xué)目標,突出重點(diǎn)、分散難點(diǎn)、根據教材的內容和學(xué)生的實(shí)際情況,對教材做以下的處理:

  1.學(xué)生狀況分析及對策:

  2.教材內容的組織和安排:

  本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進(jìn),層層深入的原則組織和安排如下:

 。1)復習提問(wèn)(2)引入新課(3)新課講解(4)反饋練習(5)歸納總結(6)布置作業(yè)

  三、 說(shuō)教法和學(xué)法

  1.為了充分調動(dòng)學(xué)生學(xué)習的積極性,是學(xué)生變被動(dòng)學(xué)習為主動(dòng)而愉快的學(xué)習,引導學(xué)生自己動(dòng)手,讓學(xué)生的思維活動(dòng)在教師的引導下層層展開(kāi)。請學(xué)生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課采用“引導教學(xué)法”。

  2.利用電腦所畫(huà)圖形的動(dòng)態(tài)演示總結規律。同時(shí)利用電腦的動(dòng)態(tài)演示激發(fā)學(xué)生的學(xué)習興趣。

  四、 教學(xué)過(guò)程

  教學(xué)環(huán)節

  3.設a(-2,0),b(2,0),三角形abp周長(cháng)為10,動(dòng)點(diǎn)p軌跡方程。

  例1屬基礎,主要反饋學(xué)生掌握基本知識的程度。

  例2可強化基本技能訓練和基本知識的靈活運用。

  小結

  為使學(xué)生對本節內容有一個(gè)完整深刻的認識,教師引導學(xué)生從以下幾個(gè)方面進(jìn)行小結。

  1.橢圓的定義和標準方程及其應用。

  2.橢圓標準方程中a,b,c諸關(guān)系。

  3.求橢圓方程常用方法和基本思路。

  通過(guò)小結形成知識體系,加深對本節知識的理解培養學(xué)生的歸納總結能力,增強學(xué)生學(xué)好圓錐曲線(xiàn)的信心。

  布置作業(yè)

 。1) 77頁(yè)——78頁(yè) 1,2,3,79頁(yè) 11

 。2) 預習下節內容

  鞏固本節所學(xué)概念,強化基本技能訓練,培養學(xué)生良好的學(xué)習習慣和品質(zhì),發(fā)現和彌補教學(xué)中的遺漏和不足。

高中數學(xué)經(jīng)典說(shuō)課稿2

  一、說(shuō)教材

  1.內容分析:

  本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類(lèi)型函數,本節課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數的概念,并進(jìn)一步體會(huì )函數是刻畫(huà)變量之間關(guān)系的數學(xué)模型,從中體會(huì )函數的模型思想。因此本節課重點(diǎn)是理解和領(lǐng)悟反比例函數的概念,所滲透的數學(xué)思想方法有:類(lèi)比,轉化,建模。

  2.學(xué)情分析:

  對八年級學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對函數,正比例函數,一次函數的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數時(shí),還可能存在一些思維障礙,如學(xué)生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結出反比例函數的概念,因此,本節課的難點(diǎn)是理解和領(lǐng)悟反比例函數的概念。

  二、說(shuō)教學(xué)目標

  根據本人對《數學(xué)課程標準》的理解與分析,考慮學(xué)生已有的認知結構、心理特征,我把本課的目標定為:

  1、從現實(shí)的情境和已有的知識經(jīng)驗出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數概念的理解。

  2、經(jīng)歷抽象反比例函數概念的過(guò)程,領(lǐng)會(huì )反比例函數的意義,理解反比例函數的概念。

  三、說(shuō)教法

  本節課從知識結構呈現的角度看,為了實(shí)現教學(xué)目標,我建立了“創(chuàng )設情境→建立模型→解釋知識→應用知識”的學(xué)習模式,這種模式清晰地再現了知識的生成與發(fā)展的過(guò)程,也符合學(xué)生的認知規律。于是,從教學(xué)內容的性質(zhì)出發(fā),我設計了如下的課堂結構:創(chuàng )設出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現新知,把上述問(wèn)題進(jìn)行類(lèi)比,導出概念,獲得新知,最后總結評價(jià)、內化新知。

  四、說(shuō)學(xué)法

  我認為學(xué)生將實(shí)際問(wèn)題轉化成函數的能力是有限的,所以我借助多媒體輔助教學(xué),指導學(xué)生通過(guò)類(lèi)比、轉化、直觀(guān)形象的觀(guān)察與演示,親身經(jīng)歷函數模型的轉化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng )造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。

  好學(xué)教育:

  因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著(zhù)問(wèn)題的深入而跳躍。

高中數學(xué)經(jīng)典說(shuō)課稿3

  開(kāi)始:各位專(zhuān)家領(lǐng)導, 好!

  今天我將要為大家講的課題是

  首先,我對本節教材進(jìn)行一些分析

  一、教材結構與內容簡(jiǎn)析

  本節內容在全書(shū)及章節的地位:《 》是高中數學(xué)新教材第 冊( )第 章第 節。在此之前,學(xué)生已學(xué)習了

  ,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是 部分,因此,在 中,占據 的地位。

  數學(xué)思想方法分析:作為一名數學(xué)老師,不僅要傳授給學(xué)生數學(xué)知識,更重要的是傳授給學(xué)生數學(xué)思想、數學(xué)意識,因此本節課在教學(xué)中力圖向學(xué)生:

  二、 教學(xué)目標

  根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:

  1 基礎知識目標:

  2 能力訓練目標:

  3 創(chuàng )新素質(zhì)目標:

  4 個(gè)性品質(zhì)目標:

  三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

  本著(zhù)課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn): 通過(guò) 突出重點(diǎn)

  難點(diǎn): 通過(guò) 突破難點(diǎn)

  關(guān)鍵:

  下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊?/p>

  四、 教法

  數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生

  “知其然”而且要使學(xué)生“知其所以然”,

  我們在以師生既為主體,又為客體的原則下,展現獲取知識和方法的思維過(guò)程;诒竟澱n的特點(diǎn):

  ,應著(zhù)重采用 的教學(xué)方法。即:

  五、 學(xué)法

  我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。

  1、理論:

  2、實(shí)踐:

  3、能力:

  最后我來(lái)具體談一談這一堂課的教學(xué)過(guò)程:

  六、 教學(xué)程序及設想

  1、由 引入:

  把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。

  在實(shí)際情況下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

  對于本題:

  2、由實(shí)例得出本課新的知識點(diǎn)是:

  3、講解例題。

  我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

  4、能力訓練。

  課后練習

  使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。

  5、總結結論,強化認識。

  知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐漸培養學(xué)生的良好的個(gè)性品質(zhì)目標。

  6、變式延伸,進(jìn)行重構。

  重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。

  7、板書(shū)。

  8、布置作業(yè)。

  針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。

  結束:說(shuō)課是教師面對同行和其它聽(tīng)眾口頭講述具體課題的教學(xué)設想及其根據的新的教學(xué)研究形式。以上,我僅從說(shuō)教材,說(shuō)學(xué)情,說(shuō)教法,說(shuō)學(xué)法,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說(shuō)課對我們大家仍是新事物,今后我也將進(jìn)一步說(shuō)好課,并希望各位專(zhuān)家領(lǐng)導對本堂說(shuō)課提出寶貴意見(jiàn)。

  注意時(shí)間掌握

  六、注意靈活導入新知識點(diǎn)。

  電腦課件

  使用投影

  根據時(shí)間進(jìn)行增刪

高中數學(xué)經(jīng)典說(shuō)課稿4

  一、教材分析

  1!吨笖岛瘮怠吩诮滩闹械牡匚、作用和特點(diǎn)

  《指數函數》是人教版高中數學(xué)(必修)第一冊第二章“函數”的第六節內容,是在學(xué)習了《指數》一節內容之后編排的。通過(guò)本節課的學(xué)習,既可以對指數和函數的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習對數、對數函數尤其是利用互為反函數的圖象間的關(guān)系來(lái)研究對數函數的性質(zhì)打下堅實(shí)的概念和圖象基礎,又因為《指數函數》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學(xué)習基礎,所以《指數函數》不僅是本章《函數》的重點(diǎn)內容,也是高中學(xué)段的主要研究?jì)热葜,有?zhù)不可替代的重要作用。

  此外,《指數函數》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著(zhù)緊密的聯(lián)系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習這部分知識還有著(zhù)廣泛的現實(shí)意義。本節內容的特點(diǎn)之一是概念性強,特點(diǎn)之二是凸顯了數學(xué)圖形在研究函數性質(zhì)時(shí)的重要作用。

  2。教學(xué)目標、重點(diǎn)和難點(diǎn)

  通過(guò)初中學(xué)段的學(xué)習和高中對集合、函數等知識的系統學(xué)習,學(xué)生對函數和圖象的關(guān)系已經(jīng)構建了一定的認知結構,主要體現在三個(gè)方面:

  知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡(jiǎn)單的函數概念和性質(zhì)已有了初步認識,能夠從初中運動(dòng)變化的角度認識函數初步轉化到從集合與對應的觀(guān)點(diǎn)來(lái)認識函數。

  技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質(zhì)做好準備。

  素質(zhì)維度:由觀(guān)察到抽象的數學(xué)活動(dòng)過(guò)程已有一定的體會(huì ),已初步了解了數形結合的思想。

  鑒于對學(xué)生已有的知識基礎和認知能力的分析,根據《教學(xué)大綱》的要求,我確定本節課的教學(xué)目標、教學(xué)重點(diǎn)和難點(diǎn)如下:

 。1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質(zhì);③能初步利用指數函數的概念解決實(shí)際問(wèn)題;

 。2)技能目標:①滲透數形結合的基本數學(xué)思想方法②培養學(xué)生觀(guān)察、聯(lián)想、類(lèi)比、猜測、歸納的能力;

 。3)情感目標:①體驗從特殊到一般的學(xué)習規律,認識事物之間的普遍聯(lián)系與相互轉化,培養學(xué)生用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題②通過(guò)教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會(huì )數學(xué)科學(xué)的應用價(jià)值。

 。4)教學(xué)重點(diǎn):指數函數的圖象和性質(zhì)。

 。5)教學(xué)難點(diǎn):指數函數的圖象性質(zhì)與底數a的關(guān)系。

  突破難點(diǎn)的關(guān)鍵:尋找新知生長(cháng)點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數形結合來(lái)掃清障礙。

  二、教法設計

  由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過(guò)這一節課的教學(xué)達到不僅使學(xué)生初步理解并能簡(jiǎn)單應用指數函數的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數圖象性質(zhì)的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學(xué)生學(xué)習能力的目的,我根據自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結合起來(lái),主要突出了幾個(gè)方面:

  1。創(chuàng )設問(wèn)題情景。按照指數函數的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調動(dòng)學(xué)生的學(xué)習興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

  2。強化“指數函數”概念。引導學(xué)生結合指數的有關(guān)概念來(lái)歸納出指數函數的定義,并向學(xué)生指出指數函數的形式特點(diǎn),請學(xué)生思考對于底數a是否需要限制,如不限制會(huì )有什么問(wèn)題出現,這樣避免了學(xué)生對于底數a范圍分類(lèi)的不清楚,也為研究指數函數的圖象做了“分類(lèi)討論”的鋪墊。

  3。突出圖象的作用。在數學(xué)學(xué)習過(guò)程中,圖形始終使我們需要借助的重要輔助手段。一位數學(xué)家曾經(jīng)說(shuō)過(guò)“數離形時(shí)少直觀(guān),形離數時(shí)難入微”,而在研究指數函數的性質(zhì)時(shí),更是直接由圖象觀(guān)察得出性質(zhì),因此圖象發(fā)揮了主要的作用。

  4。注意數學(xué)與生活和實(shí)踐的聯(lián)系。數學(xué)的本質(zhì)是來(lái)源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關(guān)的生活問(wèn)題,力圖使學(xué)生了解到數學(xué)的基礎學(xué)科作用,培養學(xué)生的數學(xué)應用意識。

  三、學(xué)法指導

  本節課是在學(xué)習完“指數”的概念和運算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個(gè)方面做了嘗試:

  1。再現原有認知結構。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數的概念,幫助學(xué)生再現原有認知結構,為理解指數函數的概念做好準備。

  2。領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法。在借助圖象研究指數函數的性質(zhì)時(shí)會(huì )遇到分類(lèi)討論、數形結合等基本數學(xué)思想方法,這些方法將會(huì )貫穿整個(gè)高中的數學(xué)學(xué)習。

  3。在互相交流和自主探

高中數學(xué)經(jīng)典說(shuō)課稿5

  一、說(shuō)教材:

  1、地位、作用和特點(diǎn):

  《 》是高中數學(xué)課本第 冊( 修)的第 章“ ”的第 節內容,高中數學(xué)課本說(shuō)課稿。

  本節是在學(xué)習了 之后編排的。通過(guò)本節課的學(xué)習,既可以對 的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習 打下基礎,所以

  是本章的重要內容。此外,《 》的知識與我們日常生活、生產(chǎn)、科學(xué)研究 有著(zhù)密切的聯(lián)系,因此學(xué)習這部分有著(zhù)廣泛的現實(shí)意義。本節的特點(diǎn)之一是;

  特點(diǎn)之二是: 。

  教學(xué)目標:

  根據《教學(xué)大綱》的要求和學(xué)生已有的知識基礎和認知能力,確定以下教學(xué)目標:

 。1)知識目標:A、B、C

 。2)能力目標:A、B、C

 。3)德育目標:A、B

  教學(xué)的重點(diǎn)和難點(diǎn):

 。1)教學(xué)重點(diǎn):

 。2)教學(xué)難點(diǎn):

  二、說(shuō)教法:

  基于上面的教材分析,我根據自己對研究性學(xué)習“啟發(fā)式”教學(xué)模式和新課程改革的理論認識,結合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng )設問(wèn)題情景,充分調動(dòng)學(xué)生求知欲,并以此來(lái)激發(fā)學(xué)生的探究心理。二是運用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來(lái)統一組織運用于教學(xué)過(guò)程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內外的綜合。并且在整個(gè)教學(xué)設計盡量做到注意學(xué)生的心理特點(diǎn)和認知規律,觸發(fā)學(xué)生的思維,使教學(xué)過(guò)程真正成為學(xué)生的學(xué)習過(guò)程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數學(xué)思考方法(聯(lián)想法、類(lèi)比法、數形結合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習知識的過(guò)程中,領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法,培養學(xué)生的探索能力和創(chuàng )造性素質(zhì)。四是注意在探究問(wèn)題時(shí)留給學(xué)生充分的時(shí)間,以利于開(kāi)放學(xué)生的思維。當然這就應在處理教學(xué)內容時(shí)能夠做到葉老師所說(shuō)“教就是為了不教”。因此,擬對本節課設計如下教學(xué)程序:

  導入新課 新課教學(xué)

  反饋發(fā)展

  三、說(shuō)學(xué)法:

  學(xué)生學(xué)習的過(guò)程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運用知識和獲得學(xué)習能力的過(guò)程,因此,我覺(jué)得在教學(xué)中,指導學(xué)生學(xué)習時(shí),應盡量避免單純地、直露地向學(xué)生灌輸某種學(xué)習方法。有效的能被學(xué)生接受的學(xué)法指導應是滲透在教學(xué)過(guò)程中進(jìn)行的,是通過(guò)優(yōu)化教學(xué)程序來(lái)增強學(xué)法指導的目的性和實(shí)效性。在本節課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導。

  1、培養學(xué)生學(xué)會(huì )通過(guò)自學(xué)、觀(guān)察、實(shí)驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過(guò)程中分析、歸納、推理能力得到提高。

  本節教師通過(guò)列舉具體事例來(lái)進(jìn)行分析,歸納出 ,并依

  據此知識與具體事例結合、推導出 ,這正是一個(gè)分析和推理的全過(guò)程。

  2、讓學(xué)生親自經(jīng)歷運用科學(xué)方法探索的過(guò)程。 主要是努力創(chuàng )設應用科學(xué)方法探索、解決問(wèn)題情境,讓學(xué)生在探索中體會(huì )科學(xué)方法,如在講授 時(shí),可通過(guò)

  演示,創(chuàng )設探索 規律的情境,引導學(xué)生以可靠的事實(shí)為基礎,經(jīng)過(guò)抽象思維揭示內在規律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結合起來(lái)的特點(diǎn)。

  3、讓學(xué)生在探索性實(shí)驗中自己摸索方法,觀(guān)察和分析現象,從而發(fā)現“新”的問(wèn)題或探索出“新”的規律。從而培養學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng )造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀(guān)察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結和推廣。

  4、在指導學(xué)生解決問(wèn)題時(shí),引導學(xué)生通過(guò)比較、猜測、嘗試、質(zhì)疑、發(fā)現等探究環(huán)節選擇合適的概念、規律和解決問(wèn)題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導學(xué)生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學(xué)生養成認真分析過(guò)程、善于比較的好習慣,又有利于培養學(xué)生通過(guò)現象發(fā)掘知識內在本質(zhì)的能力。

  四、教學(xué)過(guò)程:

 。ㄒ唬、課題引入:

  教師創(chuàng )設問(wèn)題情景(創(chuàng )設情景:A、教師演示實(shí)驗。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例,教案《高中數學(xué)課本說(shuō)課稿》。C、講述數學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導學(xué)生提出接下去要研究的問(wèn)題。

 。ǘ、新課教學(xué):

  1、針對上面提出的問(wèn)題,設計學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過(guò)動(dòng)手探索有關(guān)的知識,并引導學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問(wèn)題。

  2、組織學(xué)生進(jìn)行新問(wèn)題的實(shí)驗方法設計—這時(shí)在設計上最好是有對比性、數學(xué)方法性的設計實(shí)驗,指導學(xué)生實(shí)驗、通過(guò)多媒體的輔助,顯示學(xué)生的實(shí)驗數據,模擬強化出實(shí)驗情況,由學(xué)生分析比較,歸納總結出知識的結構。

 。ㄈ、實(shí)施反饋:

  1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問(wèn)題,實(shí)現知識的升華、實(shí)現學(xué)生的再次創(chuàng )新。

  2、課后反饋,延續創(chuàng )新。通過(guò)課后練習,學(xué)生互改作業(yè),課后研實(shí)驗,實(shí)現課堂內外的綜合,實(shí)現創(chuàng )新精神的延續。

  五、板書(shū)設計:

  在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫(xiě)在左側,中間知識推導過(guò)程,右邊實(shí)例應用。

  六、說(shuō)課綜述:

  以上是我對《 》這節教材的認識和對教學(xué)過(guò)程的設計。在整個(gè)課堂中,我引導學(xué)生回顧前面學(xué)過(guò)的 知識,并把它運用到對

  的認識,使學(xué)生的認知活動(dòng)逐步深化,既掌握了知識,又學(xué)會(huì )了方法。

  總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學(xué)生為主體,以問(wèn)題為基礎,以能力、方法為主線(xiàn),有計劃培養學(xué)生的自學(xué)能力、觀(guān)察和實(shí)踐能力、思維能力、應用知識解決實(shí)際問(wèn)題的能力和創(chuàng )造能力為指導思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來(lái)激發(fā)學(xué)生的學(xué)習興趣,體現了對學(xué)生創(chuàng )新意識的培養。

高中數學(xué)經(jīng)典說(shuō)課稿6

  尊敬的各位評委、各位老師大家好!我說(shuō)課的題目是《直線(xiàn)的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書(shū)數學(xué)必修2(A版),是第三章直線(xiàn)與方程中的第2節的第一課時(shí)3.2.1直線(xiàn)的點(diǎn)斜式方程的內容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。

  一、教學(xué)背景的分析

  1.教材分析

  直線(xiàn)的方程是學(xué)生在初中學(xué)習了一次函數的概念和圖象及高中學(xué)習了直線(xiàn)的斜率后進(jìn)行研究的。直線(xiàn)的方程屬于解析幾何學(xué)的基礎知識,是研究解析幾何學(xué)的開(kāi)始,對后續研究?jì)蓷l直線(xiàn)的位置關(guān)系、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容,無(wú)論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內容之一!爸本(xiàn)的點(diǎn)斜式方程”可以說(shuō)是直線(xiàn)的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線(xiàn)作為常見(jiàn)的最簡(jiǎn)單的曲線(xiàn),在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。同時(shí)在這一節中利用坐標法來(lái)研究曲線(xiàn)的數形結合、幾何直觀(guān)等數學(xué)思想將貫穿于我們整個(gè)高中數學(xué)教學(xué)。

  2.學(xué)情分析

  我校的生源較差,學(xué)生的基礎和學(xué)習習慣都有待加強。又由于剛開(kāi)始學(xué)習解析幾何,第一次用坐標法來(lái)求曲線(xiàn)的方程,在學(xué)習過(guò)程中,會(huì )出現“數”與“形”相互轉化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面更有待加強。

  根據上述教材分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:

  3.教學(xué)目標

  (1)了解直線(xiàn)的方程的概念和直線(xiàn)的點(diǎn)斜式方程的推導過(guò)程及方法;

  (2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì )準確地使用直線(xiàn)的點(diǎn)斜式、斜截式方程 ;

  (3)從實(shí)例入手,通過(guò)類(lèi)比、推廣、特殊化等,使學(xué)生體會(huì )從特殊到一般再到特殊的認知規律;

  (4)提倡學(xué)生用舊知識解決新問(wèn)題,通過(guò)體會(huì )直線(xiàn)的斜截式方程與一次函數的關(guān)系等活動(dòng),培養學(xué)生主動(dòng)探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。

  4. 教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn): 直線(xiàn)點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應用。

  (2)難點(diǎn):直線(xiàn)的方程的概念,點(diǎn)斜式方程的推導及點(diǎn)斜式、斜截式方程的應用。

  二、教法學(xué)法分析

  1.教法分析:根據學(xué)情,為了能調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“實(shí)例引導的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數化,用代數的語(yǔ)言描述直線(xiàn)的幾何要素及其關(guān)系,進(jìn)而將直線(xiàn)的問(wèn)題轉化為直線(xiàn)方程的問(wèn)題,通過(guò)對直線(xiàn)的方程的研究,最終解決有關(guān)直線(xiàn)的一些簡(jiǎn)單的問(wèn)題。另外可以恰當的利用多媒體課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習興趣。

  2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結、質(zhì)疑、運用,體會(huì )學(xué)習數學(xué)的樂(lè )趣;通過(guò)推導直線(xiàn)的點(diǎn)斜式方程的學(xué)習,要了解用坐標法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線(xiàn),進(jìn)而可求出直線(xiàn)的點(diǎn)斜式方程,要能體會(huì )“形”與“數”的轉化思想。

  下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:

  三、教學(xué)過(guò)程的設計及實(shí)施

  整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節,學(xué)習或涉及四個(gè)概念:

  溫故知新,澄清概念----直線(xiàn)的方程

  深入探究,獲得新知--------點(diǎn)斜式

  拓展知識,再獲新知--------斜截式

  小結引申,思維延續--------兩點(diǎn)式

  平面上的點(diǎn)可以用坐標表示,直線(xiàn)的傾斜程度可以用斜率表示,那么平面上的直線(xiàn)如何表示呢?這就是本節要學(xué)習的內容。

  (一)溫故知新,澄清概念----直線(xiàn)的方程

  問(wèn)題一:畫(huà)出一次函數y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標有何關(guān)系?

  [學(xué)生活動(dòng)] 通過(guò)動(dòng)手畫(huà)圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。

  [教師活動(dòng)] 對于不同學(xué)生的表述進(jìn)行分析、歸納,用規范的語(yǔ)言對方程和直線(xiàn)的方程進(jìn)行描述。

  [設計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線(xiàn)的方程的概念,試圖做到“用學(xué)生已有的數學(xué)知識去學(xué)數學(xué)”,從而突破難點(diǎn)。通過(guò)對這個(gè)問(wèn)題的研究,一方面認識到以方程的解為坐標的點(diǎn)在直線(xiàn)上,另一方面認識到直線(xiàn)上的點(diǎn)的坐標滿(mǎn)足方程;從而使同學(xué)意識到直線(xiàn)可以由直線(xiàn)上任意一點(diǎn)P(x,y)的坐標x和y之間的等量關(guān)系來(lái)表示。

  問(wèn)題二:若直線(xiàn)經(jīng)過(guò)點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線(xiàn)l上。

  (1) 若點(diǎn)P在直線(xiàn)l上從A點(diǎn)開(kāi)始運動(dòng),橫坐標增加1時(shí),點(diǎn)P的坐標是 ;

  (2)畫(huà)出直線(xiàn)l,你能求出直線(xiàn)l的方程嗎?

  (3)若點(diǎn)P在直線(xiàn)l上運動(dòng),設P點(diǎn)的坐標為(x,y),你會(huì )有什么方法找到x,y滿(mǎn)足的關(guān)系式?

  [學(xué)生活動(dòng)]學(xué)生獨立思考5分鐘,必要的話(huà)可進(jìn)行分組討論、合作交流。

  [教師活動(dòng)]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導學(xué)生觀(guān)察發(fā)現,得到當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線(xiàn)的斜率恒等于-2,體會(huì )“動(dòng)中有靜”的思維策略。

  [設計意圖]復習斜率公式;待定系數法;初步體會(huì )坐標法。同時(shí)引導學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數學(xué)簡(jiǎn)潔的美感和嚴謹性。還要指出這樣的事實(shí):當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí),P的坐標(x,y)滿(mǎn)足方程2x+y-1=0.反過(guò)來(lái),以方程2x+y-1=0的解為坐標的點(diǎn)在直線(xiàn)l上。把學(xué)生的思維引到用坐標法研究直線(xiàn)的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。

  (二)深入探究,獲得新知----點(diǎn)斜式

  問(wèn)題三: ① 若直線(xiàn)l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線(xiàn)l的方程。

 、谥本(xiàn)的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線(xiàn)?

  [學(xué)生活動(dòng)] ①學(xué)生敘述,老師板書(shū),強調斜率公式與點(diǎn)斜式的區別。 ②指導學(xué)生用筆轉一轉不難發(fā)現,當直線(xiàn)l的傾斜角α=90°時(shí),斜率k不存在,當然不存在點(diǎn)斜式方程;討論k=0的'情況;觀(guān)察并總結點(diǎn)斜式方程的特征。

  [設計意圖] 由特殊到一般的學(xué)習思路,突破難點(diǎn),培養學(xué)生的歸納概括能力。通過(guò)對這個(gè)問(wèn)題的探究使學(xué)生獲得直線(xiàn)點(diǎn)斜式方程;由②知:當直線(xiàn)斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線(xiàn),培養思維的嚴謹性,這時(shí)直線(xiàn)l與y軸平行,它上面的每一點(diǎn)的橫坐標都等于x0,直線(xiàn)l的方程是:x=x0;通過(guò)學(xué)生的觀(guān)察討論總結,明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎練習,突破重難點(diǎn)。

  問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿(mǎn)足下列條件的直線(xiàn)的方程

  (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

  [練習]P95.1、2。

  [學(xué)生活動(dòng)]學(xué)生獨立完成并展示或敘述,老師點(diǎn)評。

  [設計意圖]充分用好教材的例題和習題,因為這些題都是專(zhuān)家精心編排的,充分體現必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節的教學(xué),指導下個(gè)環(huán)節的安排;突破重點(diǎn)內容后,進(jìn)入第三環(huán)節。

  (三)拓展知識,再獲新知----斜截式

  問(wèn)題五:(1)一條直線(xiàn)與y軸交于點(diǎn)(0,3),直線(xiàn)的斜率為2,求這條直線(xiàn)的方程。

  (2)若直線(xiàn)l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線(xiàn)l的方程。

  [學(xué)生活動(dòng)]學(xué)生獨立完成后口述,教師板書(shū)。

  [設計意圖] 由一般到特殊再到一般,培養學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強調截距不是距離。類(lèi)比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數的關(guān)系。通過(guò)下面的基礎練習,突破重點(diǎn)。

  [練習]P95.3。

  [設計意圖]充分用好教材習題,及時(shí)反饋本環(huán)節的教學(xué)情況,指導下個(gè)環(huán)節的安排。

  (四)小結引申,思維延續----兩點(diǎn)式

  課堂小結 1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線(xiàn)方程的方法:公式法、等斜率法、待定系數法。)

  2、哪些地方還沒(méi)有學(xué)好?

  問(wèn)題六:(1)直線(xiàn)l過(guò)(1,0)點(diǎn),且與直線(xiàn)平行,求直線(xiàn)l的方程。

  (2)直線(xiàn)l過(guò)點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線(xiàn)l的方程。

  [學(xué)生活動(dòng)]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。

  [教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話(huà),可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式;沒(méi)時(shí)間就布置分層作業(yè)。

  [設計意圖](1)小題與上一節的平行綜合,學(xué)生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機會(huì ),以及課后學(xué)習的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節課研究直線(xiàn)的兩點(diǎn)式方程作了重要的準備。

  分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.

  選做題:P100.A組:1.(4)(5)(6).

  [設計意圖]通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展。

  四、教學(xué)特點(diǎn)分析

  (一)實(shí)例引導。在字母運算、公式推導之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習知識的可能和興趣,關(guān)注學(xué)困生的成長(cháng)與發(fā)展。

  (二)啟發(fā)式教學(xué)。教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內容,如:1.直角坐標系內的所有直線(xiàn)都有點(diǎn)斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會(huì )求直線(xiàn)在軸上的截距嗎?4.觀(guān)察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話(huà)與交流活動(dòng)。

  (三)注重自主探究。設計問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區上,布設了由淺入深的學(xué)習環(huán)境突破重點(diǎn)、難點(diǎn),引導學(xué)生逐步發(fā)現知識的形成過(guò)程。設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng )造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。

高中數學(xué)經(jīng)典說(shuō)課稿7

  一、教材分析

  本節知識是必修五第一章《解三角形》的第一節資料,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,并且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。

  根據上述教材資料分析,研究到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的資料,推證正弦定理及簡(jiǎn)單運用正弦定理與三角形的內角和定理解斜三角形的兩類(lèi)問(wèn)題。

  本事目標:引導學(xué)生經(jīng)過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維本事,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,經(jīng)過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和進(jìn)取性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習的興趣。

  教學(xué)重點(diǎn):正弦定理的資料,正弦定理的證明及基本應用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)確定解的個(gè)數。

  二、教法

  根據教材的資料和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究資料,以生活實(shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,進(jìn)取探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當的提示和指導。突破難點(diǎn)的方法:抓住學(xué)生的本事線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過(guò)例題和練習來(lái)突破難點(diǎn)

  三、學(xué)法:

  指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、團體等多種解難釋疑的嘗試活動(dòng),將自我所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維本事,構成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  第一:創(chuàng )設情景,大概用2分鐘

  第二:實(shí)踐探究,構成概念,大約用25分鐘

  第三:應用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng )設情境,布疑激趣

  “興趣是最好的教師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不明白AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習的興趣,從而進(jìn)入今日的學(xué)習課題。

 。ǘ┨綄ぬ乩,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。

  2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

  3.讓學(xué)生總結實(shí)驗結果,得出猜想:

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。

 。ㄈ┻壿嬐评,證明猜想

  1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生經(jīng)過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明

 。ㄋ模w納總結,簡(jiǎn)單應用

  1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。

  2.正弦定理的資料,討論能夠解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  3.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自我參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

 。ㄎ澹┲v解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

 。┱n堂練習,提高鞏固

  1.在△ABC中,已知下列條件,解三角形.

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形.

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,教師巡視,及時(shí)發(fā)現問(wèn)題,并解答。

 。ㄆ撸┬〗Y反思,提高認識

  經(jīng)過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會(huì )?

  1.用向量證明了正弦定理,體現了數形結合的數學(xué)思想。

  2.它表述了三角形的邊與對角的正弦值的關(guān)系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。

 。◤膶(shí)際問(wèn)題出發(fā),經(jīng)過(guò)猜想、實(shí)驗、歸納等思維方法,最終得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅僅收獲著(zhù)結論,并且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生進(jìn)取性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。)

 。ò耍┤蝿(wù)后延,自主探究

  如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現正弦定理不適用了,那么自然過(guò)渡到下一節資料,余弦定理。布置作業(yè),預習下一節資料。

高中數學(xué)經(jīng)典說(shuō)課稿8

  高中數學(xué)第三冊(選修)Ⅱ第一章第2節第一課時(shí)

  一、教材分析

  教材的地位和作用

  期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學(xué)習期望將為今后學(xué)習概率統計知識做鋪墊。同時(shí),它在市場(chǎng)預測,經(jīng)濟統計,風(fēng)險與決策等領(lǐng)域有著(zhù)廣泛的應用,為今后學(xué)習數學(xué)及相關(guān)學(xué)科產(chǎn)生深遠的影響。

  教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):離散型隨機變量期望的概念及其實(shí)際含義。

  難點(diǎn):離散型隨機變量期望的實(shí)際應用。

  本課是一節概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對離散性隨機變量期望的概念的教學(xué)作為本節課的教學(xué)重點(diǎn)。此外,學(xué)生初次應用概念解決實(shí)際問(wèn)題也較為困難,故把其作為本節課的教學(xué)難點(diǎn)。

  二、教學(xué)目標

  [知識與技能目標]

  通過(guò)實(shí)例,讓學(xué)生理解離散型隨機變量期望的概念,了解其實(shí)際含義。

  會(huì )計算簡(jiǎn)單的離散型隨機變量的期望,并解決一些實(shí)際問(wèn)題。

  [過(guò)程與方法目標]

  經(jīng)歷概念的建構這一過(guò)程,讓學(xué)生進(jìn)一步體會(huì )從特殊到一般的思想,培養學(xué)生歸納、概括等合情推理能力。

  通過(guò)實(shí)際應用,培養學(xué)生把實(shí)際問(wèn)題抽象成數學(xué)問(wèn)題的能力和學(xué)以致用的數學(xué)應用意識。

  [情感與態(tài)度目標]

  通過(guò)創(chuàng )設情境激發(fā)學(xué)生學(xué)習數學(xué)的情感,培養其嚴謹治學(xué)的態(tài)度。在學(xué)生分析問(wèn)題、解決問(wèn)題的過(guò)程中培養其積極探索的精神,從而實(shí)現自我的價(jià)值。

  三、教法選擇

  引導發(fā)現法

  四、學(xué)法指導

  “授之以魚(yú),不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習中學(xué)會(huì )怎樣發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題。

  五、教學(xué)的基本流程設計

  高中數學(xué)第三冊《離散型隨機變量的期望》說(shuō)課教案。rar

高中數學(xué)經(jīng)典說(shuō)課稿9

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質(zhì)的第2小節。

  奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。所以,本節課起著(zhù)承上啟下的重要作用。

  2、學(xué)情分析

  從學(xué)生的認知基礎看,學(xué)生在初中已經(jīng)學(xué)習了軸對稱(chēng)圖形和中心對稱(chēng)圖形,并且有了必須數量的簡(jiǎn)單函數的儲備。同時(shí),剛剛學(xué)習了函數單調性,已經(jīng)積累了研究函數的基本方法與初步經(jīng)驗。

  從學(xué)生的思維發(fā)展看,高一學(xué)生思維本事正在由形象經(jīng)驗型向抽象理論型轉變,能夠用假設、推理來(lái)思考和解決問(wèn)題、

  3、教學(xué)目標

  基于以上對教材和學(xué)生的分析,以及新課標理念,我設計了這樣的教學(xué)目標:

  【知識與技能】

  1)能確定一些簡(jiǎn)單函數的奇偶性。

  2)能運用函數奇偶性的代數特征和幾何意義解決一些簡(jiǎn)單的問(wèn)題。

  【過(guò)程與方法】

  經(jīng)歷奇偶性概念的構成過(guò)程,提高觀(guān)察抽象本事以及從特殊到一般的歸納概括本事。

  【情感、態(tài)度與價(jià)值觀(guān)】

  經(jīng)過(guò)自主探索,體會(huì )數形結合的思想,感受數學(xué)的對稱(chēng)美。

  從課堂反應看,基本上到達了預期效果。

  4、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):函數奇偶性的概念和幾何意義。

  幾年的教學(xué)實(shí)踐證明,雖然函數奇偶性這一節知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現下頭的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了研究函數定義域的問(wèn)題。所以,在介紹奇、偶函數的定義時(shí),必須要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。所以,我把函數的奇偶性概念設計為本節課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強本節課重點(diǎn)問(wèn)題的講解。

  難點(diǎn):奇偶性概念的數學(xué)化提煉過(guò)程。

  由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數學(xué)化提煉過(guò)程設計為本節課的難點(diǎn)。

  二、教法與學(xué)法分析

  1、教法

  根據本節教材資料和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認知規律,遵循教師為主導,學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用以引導發(fā)現法為主,直觀(guān)演示法、類(lèi)比法為輔。教學(xué)中,精心設計一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng )設問(wèn)題情景,誘導學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的進(jìn)取狀態(tài),從而培養思維本事。從課堂反應看,基本上到達了預期效果。

  2、學(xué)法

  讓學(xué)生在觀(guān)察一歸納一檢驗一應用的學(xué)習過(guò)程中,自主參與知識的發(fā)生、發(fā)展、構成的過(guò)程,從而使學(xué)生掌握知識。

  三、教學(xué)過(guò)程

  具體的教學(xué)過(guò)程是師生互動(dòng)交流的過(guò)程,共分六個(gè)環(huán)節:設疑導入、觀(guān)圖激趣;指導觀(guān)察、構成概念;學(xué)生探索、領(lǐng)會(huì )定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學(xué)以致用。下頭我對這六個(gè)環(huán)節進(jìn)行說(shuō)明。

 。ㄒ唬┰O疑導入、觀(guān)圖激趣

  由于本節資料相對獨立,專(zhuān)題性較強,所以我采用了開(kāi)門(mén)見(jiàn)山導入方式,直接點(diǎn)明要學(xué)的資料,使學(xué)生的思維迅速定向,到達開(kāi)始就明確目標突出重點(diǎn)的效果。

  用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱(chēng)美。再讓學(xué)生觀(guān)察幾個(gè)特殊函數圖象。經(jīng)過(guò)讓學(xué)生觀(guān)察圖片導入新課,既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為學(xué)習新知識作好鋪墊。

 。ǘ┲笇в^(guān)察、構成概念

  在這一環(huán)節中共設計了2個(gè)探究活動(dòng)。

  探究1、2數學(xué)中對稱(chēng)的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開(kāi)探究。這個(gè)探究主要是經(jīng)過(guò)學(xué)生的自主探究來(lái)實(shí)現的,由于有圖片的鋪墊,絕大多數學(xué)生很快就說(shuō)出函數圖象關(guān)于Y軸(原點(diǎn))對稱(chēng)。之后學(xué)生填表,從數值角度研究圖象的這種特征,體此刻自變量與函數值之間有何規律引導學(xué)生先把它們具體化,再用數學(xué)符號表示。借助課件演示(令比較得出等式,再令,得到)讓學(xué)生發(fā)現兩個(gè)函數的對稱(chēng)性反應到函數值上具有的特性,然后經(jīng)過(guò)解析式給出嚴格證明,進(jìn)一步說(shuō)明這個(gè)特性對定義域內任意一個(gè)都成立。最終給出偶函數(奇函數)定義(板書(shū))。

  在這個(gè)過(guò)程中,學(xué)生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗。

 。ㄈ⿲W(xué)生探索、領(lǐng)會(huì )定義

  探究3下列函數圖象具有奇偶性嗎?

  設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱(chēng)。(突破了本節課的難點(diǎn))

 。ㄋ模┲R應用,鞏固提高

  在這一環(huán)節我設計了4道題

  例1確定下列函數的奇偶性

  選例1的第(1)及(3)小題板書(shū)來(lái)示范解題步驟,其他小題讓學(xué)生在下頭完成。

  例1設計意圖是歸納出確定奇偶性的步驟:

  (1)先求定義域,看是否關(guān)于原點(diǎn)對稱(chēng);

  (2)再確定f(-x)=-f(x)還是f(-x)=f(x)。

  例2確定下列函數的奇偶性:

  例3確定下列函數的奇偶性:

  例2、3設計意圖是探究一個(gè)函數奇偶性的可能情景有幾種類(lèi)型?

  例4(1)確定函數的奇偶性。

 。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫(huà)出它在y軸左邊的圖象嗎?

  例4設計意圖加強函數奇偶性的幾何意義的應用。

  在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。經(jīng)過(guò)這些問(wèn)題的解決,學(xué)生對函數的奇偶性認識、理解和應用都能提升很大一個(gè)高度,到達當堂消化吸收的效果。

 。ㄎ澹┛偨Y反饋

  在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現了啟發(fā)式、問(wèn)題式教學(xué)法的特色。

  在本節課的最終對知識點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導學(xué)生總結出本節課應積累的解題經(jīng)驗。知識在于積累,而學(xué)習數學(xué)更在于知識的應用經(jīng)驗的積累。所以提高知識的應用本事、增強錯誤的預見(jiàn)本事是提高數學(xué)綜合本事的很重要的策略。

 。┓謱幼鳂I(yè),學(xué)以致用

  必做題:課本第36頁(yè)練習第1-2題。

  選做題:課本第39頁(yè)習題1、3A組第6題。

  思考題:課本第39頁(yè)習題1、3B組第3題。

  設計意圖:面向全體學(xué)生,注重個(gè)人差異,加強作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步到達不一樣的人在數學(xué)上得到不一樣的發(fā)展。

高中數學(xué)經(jīng)典說(shuō)課稿10

  各位評委老師,大家好!

  我是本科數學(xué)**號選手,今天我要進(jìn)行說(shuō)課的課題是高中數學(xué)必修一第一章第三節第一課時(shí)《函數單調性與最大(。┲怠罚ǹ梢栽谶@時(shí)候板書(shū)課題,以緩解緊張)。我將從教材分析;教學(xué)目標分析;教法、學(xué)法;教學(xué)過(guò)程;教學(xué)評價(jià)五個(gè)方面來(lái)陳述我對本節課的設計方案。懇請在座的專(zhuān)家評委批評指正。

  一、教材分析

  1、 教材的地位和作用

 。1)本節課主要對函數單調性的學(xué)習;

 。2)它是在學(xué)習函數概念的基礎上進(jìn)行學(xué)習的,同時(shí)又為基本初等函數的學(xué)習奠定了基礎,所以他在教材中起著(zhù)承前啟后的重要作用;(可以看看這一課題的前后章節來(lái)寫(xiě))

 。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題

 。ǜ鶕唧w的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問(wèn)題就刪掉)

  2、 教材重、難點(diǎn)

  重點(diǎn):函數單調性的定義

  難點(diǎn):函數單調性的證明

  重難點(diǎn)突破:在學(xué)生已有知識的基礎上,通過(guò)認真觀(guān)察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現重難點(diǎn)突破。(這個(gè)必須要有)

  3.學(xué)情分析

  高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節總是創(chuàng )設恰當的問(wèn)題情境,引導學(xué)生積極思考,培養他們的邏輯思維能力。從學(xué)生的認知結構來(lái)看,他們只能根據函數的圖象觀(guān)察出“隨著(zhù)自變量的增大函數值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數圖象的直觀(guān)性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統性、嚴謹性,在教學(xué)中注意加強.

  二、教學(xué)目標

  知識目標:

 。1)函數單調性的定義

 。2)函數單調性的證明

  能力目標:

  培養學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復雜,由特殊到一般的化歸思想

  情感目標:

  培養學(xué)生勇于探索的精神和善于合作的意識

 。ㄟ@樣的教學(xué)目標設計更注重教學(xué)過(guò)程和情感體驗,立足教學(xué)目標多元化)

  三、教法學(xué)法分析

  1、教法分析

  “教必有法而教無(wú)定法”,只有方法得當才會(huì )有效。新課程標準之處教師是教學(xué)的組織者、引導者、合作者,在教學(xué)過(guò)程要充分調動(dòng)學(xué)生的積極性、主動(dòng)性。本著(zhù)這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價(jià)法

  2、學(xué)法分析

  “授人以魚(yú),不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀(guān)察發(fā)現法、合作交流法、歸納總結法。

 。ㄇ叭糠钟脮r(shí)控制在三分鐘以?xún),可適當刪減)

  四、教學(xué)過(guò)程

  1、以舊引新,導入新知

  通過(guò)課前小研究讓學(xué)生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀(guān)察函數圖象的特點(diǎn),總結歸納。通過(guò)課上小組討論歸納,引導學(xué)生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線(xiàn)上升的,而二次函數f(x)=x^2的圖像是一個(gè)曲線(xiàn),在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來(lái)更自然)

  2、創(chuàng )設問(wèn)題,探索新知

  緊接著(zhù)提出問(wèn)題,你能用二次函數f(x)=x^2表達式來(lái)描述函數在(-∞,0)的圖像?教師總結,并板書(shū),揭示函數單調性的定義,并注意強調可以利用作差法來(lái)判斷這個(gè)函數的單調性。

  讓學(xué)生模仿剛才的表述法來(lái)描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規范學(xué)生的數學(xué)用語(yǔ)。

  讓學(xué)生自主學(xué)習函數單調區間的定義,為接下來(lái)例題學(xué)習打好基礎。

  3、 例題講解,學(xué)以致用

  例1主要是對函數單調區間的鞏固運用,通過(guò)觀(guān)察函數定義在(—5,5)的圖像來(lái)找出函數的單調區間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評來(lái)糾正答案,檢查學(xué)生對函數單調區間的掌握。強調單調區間一般寫(xiě)成半開(kāi)半閉的形式

  例題講解之后可讓學(xué)生自行完成課后練習4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習效果。

  例2是將函數單調性運用到其他領(lǐng)域,通過(guò)函數單調性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對例題進(jìn)行證明,以規范總結證明步驟。一設二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。

  學(xué)生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過(guò)自評、互評檢查證明步驟。

  4、歸納小結

  本節課我們主要學(xué)習了函數單調性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養學(xué)生勇于探索的精神和善于合作的意識。

  5、作業(yè)布置

  為了讓學(xué)生學(xué)習不同的數學(xué),我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2

  6、板書(shū)設計

  我力求簡(jiǎn)潔明了地概括本節課的學(xué)習要點(diǎn),讓學(xué)生一目了然。

 。ㄟ@部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說(shuō)明學(xué)生的活動(dòng))

  五、教學(xué)評價(jià)

  本節課是在學(xué)生已有知識的基礎上學(xué)習的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評、互評,讓內部動(dòng)機和外界刺激協(xié)調作用,促進(jìn)其數學(xué)素養不斷提高。

高中數學(xué)經(jīng)典說(shuō)課稿11

  尊敬的各位專(zhuān)家、評委:

  下午好!

  我的抽簽序號是____,今天我說(shuō)課的課題是《_______》第__課時(shí)。 我嘗試利用新課標的理念來(lái)指導教學(xué),對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評價(jià)分析五個(gè)方面來(lái)談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設計,敬請各位專(zhuān)家、評委批評指正。

  一、教材分析

 。ㄒ唬┑匚慌c作用

  數列是高中數學(xué)重要內容之一,它不僅有著(zhù)廣泛的實(shí)際應用,而且起著(zhù)承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學(xué)習數列也為進(jìn)一步學(xué)習數列的極限等內容做好準備。而等差數列是在學(xué)生學(xué)習了數列的有關(guān)概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進(jìn)一步深入和拓廣。同時(shí)等差數列也為今后學(xué)習等比數列提供了學(xué)習對比的依據。

 。ǘ⿲W(xué)情分析

 。1)學(xué)生已熟練掌握_________________。

 。2)學(xué)生的知識經(jīng)驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。

 。3)學(xué)生思維活潑,積極性高,已初步形成對數學(xué)問(wèn)題的合作探究能力。

 。4) 學(xué)生層次參次不齊,個(gè)體差異比較明顯。

  二、目標分析

  新課標指出“三維目標”是一個(gè)密切聯(lián)系的有機整體,應該以獲得知識與技能的過(guò)程,同時(shí)成為學(xué)會(huì )學(xué)習和正確價(jià)值觀(guān)。這要求我們在教學(xué)中以知識技能的培養為主線(xiàn),透情感態(tài)度與價(jià)值觀(guān),并把這兩者充分體現在教學(xué)過(guò)程中,新課標指出教學(xué)的主體是學(xué)生,因此目標的制定和設計必須從學(xué)生的角度出發(fā),根據____在教材內容中的地位與作用,結合學(xué)情分析,本節課教學(xué)應實(shí)現如下教學(xué)目標:

 。ㄒ唬┙虒W(xué)目標

 。1)知識與技能

  使學(xué)生理解函數單調性的概念,初步掌握判別函數單調性的方法;。

 。2)過(guò)程與方法

  引導學(xué)生通過(guò)觀(guān)察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。

 。3)情感態(tài)度與價(jià)值觀(guān)

  在函數單調性的學(xué)習過(guò)程中,使學(xué)生體驗數學(xué)的科學(xué)價(jià)值和應用價(jià)值,培養學(xué)生善于觀(guān)察、勇于探索的良好習慣和嚴謹的科學(xué)態(tài)度。

 。ǘ┲攸c(diǎn)難點(diǎn)

  本節課的教學(xué)重點(diǎn)是________________________,教學(xué)難點(diǎn)是_____________________。

  三、教法、學(xué)法分析

 。ㄒ唬┙谭

  基于本節課的內容特點(diǎn)和高二學(xué)生的年齡特征,按照臨沂市高中數學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗教學(xué)法為主來(lái)完成教學(xué),為了實(shí)現本節課的教學(xué)目標,在教法上我采取了:

  1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)學(xué)生求知欲,調動(dòng)學(xué)生主體參與的積極性.

  2、在形成概念的過(guò)程中,緊扣概念中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,正確地形成概念.

  3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并順利地完成書(shū)面表達.

 。ǘ⿲W(xué)法

  在學(xué)法上我重視了:

  1、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的質(zhì)的飛躍。

  2、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和分析解決問(wèn)題的能力。

  四、教學(xué)過(guò)程分析

 。ㄒ唬┙虒W(xué)過(guò)程設計

  教學(xué)是一個(gè)教師的“導”,學(xué)生的“學(xué)”以及教學(xué)過(guò)程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發(fā)、誘導、激勵、評價(jià)等為學(xué)生的學(xué)習搭建支架,把學(xué)習的任務(wù)轉移給學(xué)生,學(xué)生就是接受任務(wù),探究問(wèn)題、完成任務(wù)。如果在教學(xué)過(guò)程中把“教與學(xué)”完美的結合也就是以“問(wèn)題”為核心,通過(guò)對知識的發(fā)生、發(fā)展和運用過(guò)程的演繹、解釋和探究來(lái)組織和推動(dòng)教學(xué)。

 。1)創(chuàng )設情境,提出問(wèn)題。

  新課標指出:“應該讓學(xué)生在具體生動(dòng)的情境中學(xué)習數學(xué)”。在本節課的教學(xué)中,從我們熟悉的生活情境中提出問(wèn)題,問(wèn)題的設計改變了傳統目的明確的設計方式,給學(xué)生最大的思考空間,充分體現學(xué)生主體地位。

 。2)引導探究,建構概念。

  數學(xué)概念的形成來(lái)自解決實(shí)際問(wèn)題和數學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習活動(dòng)中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷“數學(xué)化”、“再創(chuàng )造”的活動(dòng)過(guò)程.

 。3)自我嘗試,初步應用。

  有效的數學(xué)學(xué)習過(guò)程,不能單純的模仿與記憶,數學(xué)思想的領(lǐng)悟和學(xué)習過(guò)程更是如此。讓學(xué)生在解題過(guò)程中親身經(jīng)歷和實(shí)踐體驗,師生互動(dòng)學(xué)習,生生合作交流,共同探究.

 。4)當堂訓練,鞏固深化。

  通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識識的再次深化。

 。5)小結歸納,回顧反思。

  小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。我設計了三個(gè)問(wèn)題:(1)通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識?(2)通過(guò)本節課的學(xué)習,你最大的體驗是什么?(3)通過(guò)本節課的學(xué)習,你掌握了哪些技能?

 。ǘ┳鳂I(yè)設計

  作業(yè)分為必做題和選做題,必做題對本節課學(xué)生知識水平的反饋,選做題是對本

  節課內容的延伸與,注重知識的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習氛圍的形成.

  我設計了以下作業(yè):

 。1)必做題

 。2)選做題

 。ㄈ┌鍟(shū)設計

  板書(shū)要基本體現整堂課的內容與方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。

  五、評價(jià)分析

  學(xué)生學(xué)習的結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對____是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。 謝謝!

高中數學(xué)經(jīng)典說(shuō)課稿12

  一、教材分析

 。ㄒ唬┑匚慌c作用

  《冪函數》選自高一數學(xué)新教材必修1第2章第3節。是基本初等函數之一,它不僅有著(zhù)廣泛的實(shí)際應用,而且起著(zhù)承前啟后的作用。從教材的整體安排看,學(xué)習了解冪函數是為了讓學(xué)生進(jìn)一步獲得比較系統的函數知識和研究函數的方法,為今后學(xué)習三角函數等其他函數打下良好的基礎.在初中曾經(jīng)研究過(guò)y=x,y=x2,y=x—1三種冪函數。這節內容,是對初中有關(guān)內容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節內容之后, 將把指數函數,對數函數,冪函數科學(xué)的組織起來(lái),體現充滿(mǎn)在整個(gè)數學(xué)中的組織化,系統化的精神。讓學(xué)生了解系統研究一類(lèi)函數的方法.這節課要特別讓學(xué)生去體會(huì )研究的方法,以便能將該方法遷移到對其他函數的研究.

 。ǘ⿲W(xué)情分析

 。1)學(xué)生已經(jīng)接觸的函數,確立利用函數的定義域、值域、奇偶性、單調性研究一個(gè)函數的意識 ,已初步形成對數學(xué)問(wèn)題的合作探究能力。

 。2)雖然前面學(xué)生已經(jīng)學(xué)會(huì )用描點(diǎn)畫(huà)圖的方法來(lái)繪制指數函數,對數函數圖像,但是對于冪函數的圖像畫(huà)法仍然缺乏感性認識。

 。3)學(xué)生層次參差不齊,個(gè)體差異比較明顯。

  二、目標分析

  新課標指出“三維目標”是一個(gè)密切聯(lián)系的有機整體。

 。ㄒ唬┙虒W(xué)目標

 。1)知識與技能

 、偈箤W(xué)生理解冪函數的概念,會(huì )畫(huà)冪函數的圖象。

 、谧寣W(xué)生結合這幾個(gè)冪函數的圖象,理解冪函圖象的變化情況和性質(zhì)。

 。2)過(guò)程與方法

 、僮寣W(xué)生通過(guò)觀(guān)察、總結冪函數的性質(zhì),培養學(xué)生概括抽象和識圖能力。

 、谑箤W(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。

 。3)情感態(tài)度與價(jià)值觀(guān)

 、偻ㄟ^(guò)熟悉的例子讓學(xué)生消除對冪函數的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習興趣。

 、诶枚嗝襟w,了解冪函數圖象的變化規律,使學(xué)生認識到現代技術(shù)在數學(xué)認知過(guò)程中的作用,從而激發(fā)學(xué)生的學(xué)習欲望。

 、叟囵B學(xué)生從特殊歸納出一般的意識,培養學(xué)生利用圖像研究函數奇偶性的能力。并引導學(xué)生發(fā)現數學(xué)中的對稱(chēng)美,讓學(xué)生在畫(huà)圖與識圖中獲得學(xué)習的快樂(lè )。

 。ǘ┲攸c(diǎn)難點(diǎn)

  根據我對本節課的內容的理解,我將重難點(diǎn)定為:

  重點(diǎn):從五個(gè)具體的冪函數中認識概念和性質(zhì)

  難點(diǎn):從冪函數的圖象中概括其性質(zhì)。

  三、教法、學(xué)法分析

 。ㄒ唬┙谭

  教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,教師要善于啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性,要有效地滲透數學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法。

  1、引導發(fā)現比較法

  因為有五個(gè)冪函數,所以可先通過(guò)學(xué)生動(dòng)手畫(huà)出函數的圖象,觀(guān)察它們的解析式和圖象并從式的角度和形的角度發(fā)現異同,并進(jìn)行比較,從而更深刻地領(lǐng)會(huì )冪函數概念以及五個(gè)冪函數的圖象與性質(zhì)。

  2、借助信息技術(shù)輔助教學(xué)

  由于多媒體信息技術(shù)能具有形象生動(dòng)易吸引學(xué)生注意的特點(diǎn),故此,可用多媒體制作引入情境,將學(xué)生引到這節課的學(xué)習中來(lái)。再利用《幾何畫(huà)板》畫(huà)出五個(gè)冪函數的圖象,為學(xué)生創(chuàng )設豐富的數形結合環(huán)境,幫助學(xué)生更深刻地理解冪函數概念以及在冪函數中指數的變化對函數圖象形狀和單調性的影響,并由此歸納冪函數的性質(zhì)。

  3、練習鞏固討論學(xué)習法

  這樣更能突出重點(diǎn),解決難點(diǎn),使學(xué)生既能夠進(jìn)行深入地獨立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來(lái)學(xué)生對這五個(gè)冪函數領(lǐng)會(huì )得會(huì )更加深刻,在這個(gè)過(guò)程中學(xué)生們分析問(wèn)題和解決問(wèn)題的能力得到進(jìn)一步的提高,班級整體學(xué)習氛氛圍也變得更加濃厚。

 。ǘ⿲W(xué)法

  本節課主要是通過(guò)對冪函數模型的特征進(jìn)行歸納,動(dòng)手探索冪函數的圖像,觀(guān)察發(fā)現其有關(guān)性質(zhì),再改變觀(guān)察角度發(fā)現奇偶函數的特征。重在動(dòng)手操作、觀(guān)察發(fā)現和歸納的過(guò)程。

  由于冪函數在第一象限的特征是學(xué)生不容易發(fā)現的問(wèn)題,因此在教學(xué)過(guò)程中引導學(xué)生將抽象問(wèn)題具體化,借助多媒體進(jìn)行動(dòng)態(tài)演化,以形成較完整的知識結構。

  四、教學(xué)過(guò)程分析

 。ㄒ唬┙虒W(xué)過(guò)程設計

 。1)創(chuàng )設情境,提出問(wèn)題。 新課標指出:“應該讓學(xué)生在具體生動(dòng)的情境中學(xué)習數學(xué)”。在本節課的教學(xué)中,從我們熟悉的生活情境中提出問(wèn)題,問(wèn)題的設計改變了傳統目的明確的設計方式,給學(xué)生最大的思考空間,充分體現學(xué)生主體地位。

  問(wèn)題1:下列問(wèn)題中的函數各有什么共同特征?是否為指數函數?

  由學(xué)生討論,總結,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

  這時(shí)學(xué)生觀(guān)察可能有些困難,老師提示可以用x表示自變量,用y表示函數值,上述函數式變成:

  都是自變量的若干次冪的形式。都是形如

  的函數。

  揭示課題:今天這節課,我們就來(lái)研究:冪函數

 。ㄒ唬┱n堂主要內容

 。1)冪函數的概念

 、賰绾瘮档亩x。

  一般地,函數

  叫做冪函數,其中x 是自變量,a是常數。

 、趦绾瘮蹬c指數函數之間的區別。

  冪函數——底數是自變量,指數是常數;

  指數函數——指數是自變量,底數是常數。

 。2)幾個(gè)常見(jiàn)冪函數的圖象和性質(zhì)

  由同學(xué)們畫(huà)出下列常見(jiàn)的冪函數的圖象,并根據圖象將發(fā)現的性質(zhì)填入表格

  根據上表的內容并結合圖象,總結函數的共同性質(zhì)。讓學(xué)生交流,老師結合學(xué)生的回答組織學(xué)生總結出性質(zhì)。

  以上問(wèn)題的設計意圖:數形結合是一個(gè)重要的數學(xué)思想方法,它包含以數助形,和以形助數的思想。通過(guò)問(wèn)題設計讓學(xué)生著(zhù)手實(shí)際,借助行的生動(dòng)來(lái)闡明冪函數的性質(zhì)。

  教師講評:冪函數的性質(zhì).

 、偎械膬绾瘮翟冢0,+∞)上都有定義,并且圖像都過(guò)點(diǎn)(1,1).

 、谌绻鸻>0,則冪函數的圖像通過(guò)原點(diǎn),并在區間〔0,+∞)上是增函數.

 、廴绻鸻<0,則冪函數在(0,+∞)上是減函數,在第一象限內,當x從右邊趨向于原點(diǎn)時(shí),圖像在y軸右方無(wú)限地趨近y軸;當x趨向于+∞時(shí),圖像在x軸上方無(wú)限地趨近x軸.

 、墚攁為奇數時(shí),冪函數為奇函數;當a為偶數時(shí),冪函數為偶函數。

  以問(wèn)題設計為主,通過(guò)問(wèn)題,讓學(xué)生由已經(jīng)學(xué)過(guò)的指數函數,對數函數,描點(diǎn)作圖得到五個(gè)冪函數的圖像,但是我們應該知道繪制冪函數的圖像比繪制指數函數和對數函數的圖像更為復雜,因為冪函數隨著(zhù)冪指數的輕微變化會(huì )出現較大的變化,因此,在描點(diǎn)作圖之前,應引導學(xué)生對幾個(gè)特殊的冪函數的性質(zhì)先進(jìn)行初步的探究,如分析函數的定義域,奇偶性等,在根據研究結果和描點(diǎn)作圖畫(huà)出圖像,讓學(xué)生觀(guān)察所作圖像特征,并由圖象特征得到相應的函數性質(zhì),讓學(xué)生充分體會(huì )系統的研究方法。同時(shí)學(xué)生對于歸納性質(zhì)這一環(huán)節相對指數函數,對數函數的性質(zhì),學(xué)生會(huì )有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認識,而不必在一般冪函數上作過(guò)多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。

  通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識識的再次深化。

 。3)當堂訓練,鞏固深化

  例題和練習題的選取應結合學(xué)生認知探究,鞏固本節課的重點(diǎn)知識,并能用知識加以運用。本節課選取主要選取了兩道例題。

  例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數。這題先從“形”的角度判斷函數的單調區間和單調性,再用到定義從“數”的角度對函數的單調性進(jìn)行推理論證,培養學(xué)生的數形結合的數學(xué)思想和解決問(wèn)題的專(zhuān)業(yè)素養。

  例2是補充例題,主要培養學(xué)生根據體例構造出函數,并利用函數的性質(zhì)來(lái)解決問(wèn)題的能力,從而加深學(xué)生對冪函數及其性質(zhì)的理解。注意:由于學(xué)生對冪函數還不是很熟悉,所以在講評中要刻意體現出冪函數y=x1。3是增函數與y=x—5/4的圖像的畫(huà)法,即再一次讓學(xué)生體會(huì )根據解析式來(lái)畫(huà)圖像解題這一基本思路

 。4)小結歸納,回顧反思。 小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。我設計了三個(gè)問(wèn)題:

 。1)通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識?

 。2)通過(guò)本節課的學(xué)習,你最大的體驗是什么?

 。3)通過(guò)本節課的學(xué)習,你掌握了哪些技能?

 。ǘ┳鳂I(yè)設計 作業(yè)分為必做題和選做題,必做題對本節課學(xué)生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習氛圍的形成. 我設計了以下作業(yè):

 。1)必做題

 。2)選做題

 。ㄈ┌鍟(shū)設計

  板書(shū)要基本體現整堂課的內容與方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。

  五、評價(jià)分析

  學(xué)生學(xué)習的結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對冪函數是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。

  謝謝!

高中數學(xué)經(jīng)典說(shuō)課稿13

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質(zhì)的第2小節。

  奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。因此,本節課起著(zhù)承上啟下的重要作用。

  2、學(xué)情分析

  從學(xué)生的認知基礎看,學(xué)生在初中已經(jīng)學(xué)習了軸對稱(chēng)圖形和中心對稱(chēng)圖形,并且有了一定數量的簡(jiǎn)單函數的儲備。同時(shí),剛剛學(xué)習了函數單調性,已經(jīng)積累了研究函數的基本方法與初步經(jīng)驗。

  從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗型向抽象理論型轉變,能夠用假設、推理來(lái)思考和解決問(wèn)題、

  3、教學(xué)目標

  基于以上對教材和學(xué)生的分析,以及新課標理念,我設計了這樣的教學(xué)目標:

  【知識與技能】

  1、能判斷一些簡(jiǎn)單函數的奇偶性。

  2、能運用函數奇偶性的代數特征和幾何意義解決一些簡(jiǎn)單的問(wèn)題。

  【過(guò)程與方法】

  經(jīng)歷奇偶性概念的形成過(guò)程,提高觀(guān)察抽象能力以及從特殊到一般的歸納概括能力。

  【情感、態(tài)度與價(jià)值觀(guān)】

  通過(guò)自主探索,體會(huì )數形結合的思想,感受數學(xué)的對稱(chēng)美。

  從課堂反應看,基本上達到了預期效果。

  4、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):函數奇偶性的概念和幾何意義。

  幾年的教學(xué)實(shí)踐證明,雖然函數奇偶性這一節知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了考慮函數定義域的問(wèn)題。因此,在介紹奇、偶函數的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把函數的奇偶性概念設計為本節課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強本節課重點(diǎn)問(wèn)題的講解。

  難點(diǎn):奇偶性概念的數學(xué)化提煉過(guò)程。

  由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數學(xué)化提煉過(guò)程設計為本節課的難點(diǎn)。

  二、教法與學(xué)法分析

  1、教法

  根據本節教材內容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認知規律,遵循教師為主導,學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用以引導發(fā)現法為主,直觀(guān)演示法、類(lèi)比法為輔。教學(xué)中,精心設計一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng )設問(wèn)題情景,誘導學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),從而培養思維能力。從課堂反應看,基本上達到了預期效果。

  2、學(xué)法

  讓學(xué)生在觀(guān)察一歸納一檢驗一應用的學(xué)習過(guò)程中,自主參與知識的發(fā)生、發(fā)展、形成的過(guò)程,從而使學(xué)生掌握知識。

  三、教學(xué)過(guò)程

  具體的教學(xué)過(guò)程是師生互動(dòng)交流的過(guò)程,共分六個(gè)環(huán)節:設疑導入、觀(guān)圖激趣;指導觀(guān)察、形成概念;學(xué)生探索、領(lǐng)會(huì )定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學(xué)以致用。下面我對這六個(gè)環(huán)節進(jìn)行說(shuō)明。

 。ㄒ唬┰O疑導入、觀(guān)圖激趣

  由于本節內容相對獨立,專(zhuān)題性較強,所以我采用了開(kāi)門(mén)見(jiàn)山導入方式,直接點(diǎn)明要學(xué)的內容,使學(xué)生的思維迅速定向,達到開(kāi)始就明確目標突出重點(diǎn)的效果。

  用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱(chēng)美。再讓學(xué)生觀(guān)察幾個(gè)特殊函數圖象。通過(guò)讓學(xué)生觀(guān)察圖片導入新課,既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為學(xué)習新知識作好鋪墊。

 。ǘ┲笇в^(guān)察、形成概念

  在這一環(huán)節中共設計了2個(gè)探究活動(dòng)。

  探究1 、2 數學(xué)中對稱(chēng)的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開(kāi)探究。這個(gè)探究主要是通過(guò)學(xué)生的自主探究來(lái)實(shí)現的,由于有圖片的鋪墊,絕大多數學(xué)生很快就說(shuō)出函數圖象關(guān)于Y軸(原點(diǎn))對稱(chēng)。接著(zhù)學(xué)生填表,從數值角度研究圖象的這種特征,體現在自變量與函數值之間有何規律? 引導學(xué)生先把它們具體化,再用數學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現兩個(gè)函數的對稱(chēng)性反應到函數值上具有的特性, ()然后通過(guò)解析式給出嚴格證明,進(jìn)一步說(shuō)明這個(gè)特性對定義域內任意一個(gè) 都成立。 最后給出偶函數(奇函數)定義(板書(shū))。

  在這個(gè)過(guò)程中,學(xué)生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗。

 。ㄈ 學(xué)生探索、領(lǐng)會(huì )定義

  探究3 下列函數圖象具有奇偶性嗎?

  設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱(chēng)。(突破了本節課的難點(diǎn))

 。ㄋ模┲R應用,鞏固提高

  在這一環(huán)節我設計了4道題

  例1判斷下列函數的奇偶性

  選例1的第(1)及(3)小題板書(shū)來(lái)示范解題步驟,其他小題讓學(xué)生在下面完成。

  例1設計意圖是歸納出判斷奇偶性的步驟:

  (1) 先求定義域,看是否關(guān)于原點(diǎn)對稱(chēng);

  (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

  例2 判斷下列函數的奇偶性:

  例3 判斷下列函數的奇偶性:

  例2、3設計意圖是探究一個(gè)函數奇偶性的可能情況有幾種類(lèi)型?

  例4(1)判斷函數的奇偶性。

 。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫(huà)出它在y軸左邊的圖象嗎?

  例4設計意圖加強函數奇偶性的幾何意義的應用。

  在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。通過(guò)這些問(wèn)題的解決,學(xué)生對函數的奇偶性認識、理解和應用都能提升很大一個(gè)高度,達到當堂消化吸收的效果。

 。ㄎ澹┛偨Y反饋

  在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現了啟發(fā)式、問(wèn)題式教學(xué)法的特色。

  在本節課的最后對知識點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導學(xué)生總結出本節課應積累的解題經(jīng)驗。知識在于積累,而學(xué)習數學(xué)更在于知識的應用經(jīng)驗的積累。所以提高知識的應用能力、增強錯誤的預見(jiàn)能力是提高數學(xué)綜合能力的很重要的策略。

 。┓謱幼鳂I(yè),學(xué)以致用

  必做題:課本第36頁(yè)練習第1-2題。

  選做題:課本第39頁(yè)習題1、3A組第6題。

  思考題:課本第39頁(yè)習題1、3B組第3題。

  設計意圖:面向全體學(xué)生,注重個(gè)人差異,加強作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達到不同的人在數學(xué)上得到不同的發(fā)展。

高中數學(xué)經(jīng)典說(shuō)課稿14

  一.內容和內容分析

  “函數的奇偶性”是人教版數學(xué)必修教材必修一第一章第三節的內容,本節的主要內容是研究函數的一個(gè)性質(zhì)—函數的奇偶性,學(xué)習奇函數和偶函數的概念.奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的兩個(gè)特殊函數入手,從特殊到一般,從具體到抽象,從感性到理性比較系統地介紹了函數的奇偶性.從知識結構看,它既是函數概念的拓展和深化,又為后續研究指數函數、對數函數、冪函數、三角函數的基礎,因此,本節課起著(zhù)承上啟下的重要作用。 本節課的教學(xué)重點(diǎn):函數奇偶性的概念及判定。

  二.目標和目標分析

 。1)知識目標:從形和數兩個(gè)方面進(jìn)行引導,使學(xué)生理解奇偶性的概念,學(xué)會(huì )利用定義判斷

  簡(jiǎn)單函數的奇偶性。

 。2)能力目標:通過(guò)設置問(wèn)題情境培養學(xué)生判斷、推理的能力,同時(shí)滲透數形結合和由特殊

  到一般的數學(xué)思想方法.

 。3)情感目標:在學(xué)生感受數學(xué)美的同時(shí),激發(fā)學(xué)習的興趣,培養學(xué)生樂(lè )于求索的精神。

  三.教學(xué)問(wèn)題診斷分析

  導入有點(diǎn)慢,講的有點(diǎn)細,導致時(shí)間上沒(méi)有完成教學(xué)任務(wù),感覺(jué)還是自己講的太多,不能充分調動(dòng)學(xué)生的積極性。

  四.教學(xué)支持條件分析

  用了多媒體,使用ppt,使得奇偶性函數概念的探究過(guò)程更形象更直觀(guān),是學(xué)生理解更深刻。

  五.教學(xué)過(guò)程設計

  為了達到預期的教學(xué)目標,我對整個(gè)教學(xué)過(guò)程進(jìn)行了系統地規劃,設計了四個(gè)主要的教學(xué)程序是:

  1.設疑導入、觀(guān)圖激趣:

  使用幻燈片展示圖片蝴蝶、雪花等讓學(xué)生感受生活中的美,從而引入對稱(chēng)在函數中的體現。

  2.指導觀(guān)察、形成概念:

  作出函數y=x的圖象,并觀(guān)察這兩個(gè)函數圖象的對稱(chēng)性如何?

  借助課件演示,讓學(xué)生分別計算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì )得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內是否對所有的x,都有類(lèi)似的情況?借助課件演示,學(xué)生會(huì )得出結論,f(-x)=f(x),從而引導學(xué)生先把它們具體化,再用數學(xué)符號表示。根據以上特點(diǎn),請學(xué)生用完整的語(yǔ)言敘述定義,同時(shí)給出板書(shū):

  函數f(x)的定義域為A,且關(guān)于原點(diǎn)對稱(chēng),如果有f(-x)=f(x),則稱(chēng)f(x)為偶函數,類(lèi)比探究2

  偶函數的過(guò)程,得到奇函數的概念,又通過(guò)具體的例子說(shuō)明了定義域關(guān)于原點(diǎn)對稱(chēng)是研究奇偶性的前提。

  3.學(xué)生探索、發(fā)展思維。

  接著(zhù)通過(guò)學(xué)案上的例一,總結函數奇偶性的判斷方法及步驟:

  (1)求出函數的定義域,并判斷是否關(guān)于原點(diǎn)對稱(chēng)

  (2)驗證f(-x)=f(x)或f(-x)=-f(x)

  (3)得出結論

  由學(xué)生小結判斷奇偶性的步驟之后,提出新的問(wèn)題:函數按奇偶性如何分類(lèi)?既奇又偶的函數是不是只有一個(gè)?試舉例說(shuō)明。

  4.布置作業(yè):

  六.目標檢測設計

  學(xué)案上的題型主要包括奇偶性函數的判斷及應用

  七.教學(xué)反思:(從兩方面)

  1.思成功

  一:是通過(guò)設計富有挑戰性的問(wèn)題來(lái)呈現背景,通過(guò)問(wèn)題的探究和自主學(xué)習來(lái)獲取相關(guān)概念,實(shí)現了 “教學(xué)邏輯”與“學(xué)習邏輯”的連通、“知識邏輯”與“認知邏輯”的連通;二:是在老師創(chuàng )設的情境中,每個(gè)學(xué)生都積極投入探究過(guò)程,學(xué)生在疑惑中探索,在探索中思考,在思考中發(fā)現,大部分學(xué)生積極性高漲,通過(guò)看別人怎樣觀(guān)察,

  聽(tīng)別人怎樣介紹,也學(xué)到了知識.

  2.思不足

  學(xué)生練習:在教學(xué)過(guò)程中應多注意學(xué)生的活動(dòng),由單一的問(wèn)答式轉化為多方位的考察,以采用

  學(xué)生板演或者把學(xué)生練習投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。

  語(yǔ)言組織:

  在講授過(guò)程中還要注意到說(shuō)話(huà)語(yǔ)速,語(yǔ)言組織等講授技巧,應該用平緩的語(yǔ)氣講授,語(yǔ)言描述要簡(jiǎn)練易懂,不能拖泥帶水。

  教學(xué)環(huán)節(的完整):

  在授課過(guò)程中要注意到教學(xué)環(huán)節設計,我們的教學(xué)過(guò)程有復習引入、講授新課、例題講解、學(xué)生練習、課時(shí)小結、布置作業(yè)等幾個(gè)重要的環(huán)節,由于時(shí)間的關(guān)系沒(méi)有來(lái)得及小結造成教學(xué)設計不完善。在以后的教學(xué)過(guò)程中要注意這些環(huán)節。

  以上是我對這節課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯誤,以便更好的適應教學(xué),努力使自己的教學(xué)更上一層樓。

高中數學(xué)經(jīng)典說(shuō)課稿15

  一、教材分析:

  1、教材的地位與作用:

  線(xiàn)性規劃是運籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著(zhù)廣泛的應用。本節內容是在學(xué)習了不等式、直線(xiàn)方程的基礎上,利用不等式和直線(xiàn)方程的有關(guān)知識展開(kāi)的,它是對二元一次不等式的深化和再認識、再理解。通過(guò)這一部分的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,體驗數形結合和轉化的思想方法,培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):畫(huà)可行域;在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。

  難點(diǎn):在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。

  二、目標分析:

  在新課標讓學(xué)生經(jīng)歷“學(xué)數學(xué)、做數學(xué)、用數學(xué)”的理念指導下,本節課的教學(xué)目標分設為知識目標、能力目標和情感目標。

 知識目標:

  1、了解線(xiàn)性規劃的意義,了解線(xiàn)性約束條件、線(xiàn)性目標函數、可行解、可行域和最優(yōu)解等概念;

  2、理解線(xiàn)性規劃問(wèn)題的圖解法;

  3、會(huì )利用圖解法求線(xiàn)性目標函數的最優(yōu)解。

  能力目標:

  1、在應用圖解法解題的過(guò)程中培養學(xué)生的觀(guān)察能力、理解能力。

  2、在變式訓練的過(guò)程中,培養學(xué)生的分析能力、探索能力。

  3、在對具體事例的感性認識上升到對線(xiàn)性規劃的理性認識過(guò)程中,培養學(xué)生運用數形結合思想解題的能力和化歸能力。

  情感目標:

  1、讓學(xué)生體驗數學(xué)來(lái)源于生活,服務(wù)于生活,體驗數學(xué)在建設節約型社會(huì )中的作用,品嘗學(xué)習數學(xué)的樂(lè )趣。

  2、讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索與創(chuàng )造,培養學(xué)生勤于思考、勇于探索的精神;

  3、讓學(xué)生學(xué)會(huì )用運動(dòng)觀(guān)點(diǎn)觀(guān)察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。

  三、過(guò)程分析:

  數學(xué)教學(xué)是數學(xué)活動(dòng)的教學(xué)。因此,我將整個(gè)教學(xué)過(guò)程分為以下六個(gè)教學(xué)環(huán)節:

  1、創(chuàng )設情境,提出問(wèn)題;

  2、分析問(wèn)題,形成概念;

  3、反思過(guò)程,提煉方法;

  4、變式演練,深入探究;

  5、運用新知,解決問(wèn)題;

  6、歸納總結,鞏固提高。

  1、創(chuàng )設情境,提出問(wèn)題:

  在課堂教學(xué)的開(kāi)始,我以一組生動(dòng)的動(dòng)畫(huà)(配圖片)描述出在神奇的數學(xué)王國里,有一種算法廣泛應用于工農業(yè)、軍事、交通運輸、決策管理與規劃等領(lǐng)域,應用它已節約了億萬(wàn)財富,還被列為20世紀對科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習情境。

【高中數學(xué)經(jīng)典說(shuō)課稿】相關(guān)文章:

高中數學(xué)的說(shuō)課稿11-04

高中數學(xué)經(jīng)典說(shuō)課稿范文06-24

高中數學(xué)向量說(shuō)課稿09-09

高中數學(xué)《向量》說(shuō)課稿11-05

高中數學(xué)《集合》說(shuō)課稿10-31

高中數學(xué)函數的說(shuō)課稿11-17

高中數學(xué)集合說(shuō)課稿11-12

高中數學(xué)面試說(shuō)課稿11-18

高中數學(xué)全套說(shuō)課稿12-05

激情欧美日韩一区二区,浪货撅高贱屁股求主人调教视频,精品无码成人片一区二区98,国产高清av在线播放,色翁荡息又大又硬又粗视频