- 相關(guān)推薦
籃球隊排名次
摘 要
本文以圖論的觀(guān)點(diǎn)為主旨,對球隊名次進(jìn)行排序。把參賽球隊的成績(jì)看成是隨機變量,建立隨機模型。先在確定型的情況下,把參賽球隊視為結點(diǎn),用弧的指向表示比賽的勝負情況,通過(guò)直接或間接的方法構造競賽圖。在理論的指導下,尋找有向哈密頓路徑或有向哈密頓回路,最終找出有向鏈,鏈頭表示第1名,鏈尾表示最后1名,從而可以對球隊進(jìn)行排序。再在隨機情況下,用極大似然法,結合各種參考細節,對球隊獲勝的概率進(jìn)行估計,把估計所得的概率作為確定弧的權重的參考,根據權重結合確定型情況下球隊的排序方法對隨機比賽的球隊進(jìn)行排序,從而籃球隊排序問(wèn)題得到較好的解決。
關(guān)鍵詞:競賽圖;有向哈密頓路徑;哈密頓回路;極大似然估計
Abstract
This paper attempts to range the basketball teams with the theoretical basis of graph theory. The author takes the scores of the teams as random variables and establishes the random model. Under the condition of determinacy, we take the participating teams as the nodes and represent the results of the matches with arcs and directly or indirectly form the tournament graph. With the guiding of the theory, we first find out the directed Hamilton path or the Hamilton cycles and then find out the directed chains, the head of which represents the first place and the end of which the last place. Through this process we can ultimately range the team. Under the random condition, we can estimate the winning probabilities of the teams with the method of maximal plausibility combined with vary of concerned details. Then we take the estimated probabilities as the weightings of arcs. In the last place, we can range the random participating teams by taking into consideration the weightings combined with the method of ranging under the condition of determinacy. Through this way, the ranging problem of the basketball teams can be well settled.
Key words: tournament graph; directed Hamilton path; Hamilton cycles; maximal plausibility
前言
籃球運動(dòng)是以投籃為中心的對抗性運動(dòng),籃球運動(dòng)的復雜多變以及激烈對抗等特點(diǎn),能夠培養人的勇敢果斷、積極進(jìn)取的意志品質(zhì);@球運動(dòng)的問(wèn)世,是球類(lèi)游戲的高級發(fā)展,深受廣大群眾的喜愛(ài),經(jīng)常開(kāi)展此項運動(dòng),對豐富業(yè)余文化生活,促進(jìn)身心健康,提高工作和學(xué)習效率都起著(zhù)積極作用。目前籃球比賽采用了比較科學(xué)的評分規則,1般采用積分制,但由于籃球比賽結果有較大的隨機性且籃球比賽結果不具有傳遞性,因此研究籃球隊排名次是1個(gè)10分有意義的問(wèn)題。本文結合圖論和概率論知識從另1個(gè)角度提出1種籃球隊排名次的方法。在現有的排名規則下對籃球隊排名進(jìn)行1些合理的細化和設想。從而實(shí)現籃球隊排名方式的可行性創(chuàng )新。具體做法是把球隊比賽成績(jì)看成隨機變量,建立隨機模型。從圖論的觀(guān)點(diǎn)出發(fā),結點(diǎn)表示球隊,帶箭頭的弧表示比賽的勝負,構造競賽圖,根據理論從競賽圖中找出有向鏈,從而得出確定型情況下球隊的排名。再采用極大似然法得出球隊隨機情況下的名次,從而為籃球隊排名次提出另1種比較科學(xué)的方法。
【籃球隊排名次】相關(guān)文章:
關(guān)于高職高專(zhuān)籃球隊訓練初探03-18
電力氣吸式排種器的試驗研究12-03