【精華】高中數學(xué)說(shuō)課稿3篇
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,通常會(huì )被要求編寫(xiě)說(shuō)課稿,借助說(shuō)課稿我們可以快速提升自己的教學(xué)能力。那么應當如何寫(xiě)說(shuō)課稿呢?以下是小編為大家收集的高中數學(xué)說(shuō)課稿3篇,希望能夠幫助到大家。
高中數學(xué)說(shuō)課稿 篇1
一、教學(xué)背景分析
1、教材結構分析
《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。
2、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3、教學(xué)目標
(1) 知識目標:①掌握圓的標準方程;
、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;
、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。
(2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W(xué)生用數學(xué)的意識。
(3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;
、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。
根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4、教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標準方程的求法及其應用。
(2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。
為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:
二、教法學(xué)法分析
1、教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。
2、學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。
下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
三、教學(xué)過(guò)程與設計
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:
創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。
首先:縱向敘述教學(xué)過(guò)程
(一)創(chuàng )設情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?
通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
(二)深入探究——獲得新知
問(wèn)題二 1、根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2、如果圓心在,半徑為時(shí)又如何呢?
這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。
(三)應用舉例——鞏固提高
I、直接應用 內化新知
問(wèn)題三 1、寫(xiě)出下列各圓的標準方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。
2、寫(xiě)出圓的圓心坐標和半徑。
我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。
II、靈活應用 提升能力
問(wèn)題四 1、求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。
2、求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。
3、已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?
我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮。
III、實(shí)際應用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。
我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。
(四)反饋訓練——形成方法
問(wèn)題六 1、求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。
2、求圓過(guò)點(diǎn)的切線(xiàn)方程。
3、求圓過(guò)點(diǎn)的切線(xiàn)方程。
接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。
(五)小結反思——拓展引申
1、課堂小結
把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法
、賵A心為,半徑為r 的圓的標準方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。
2、分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。
3、激發(fā)新疑
問(wèn)題七 1、把圓的標準方程展開(kāi)后是什么形式?
2、方程表示什么圖形?
在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計:
橫向闡述教學(xué)設計
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。
(二)學(xué)生主體 教師主導 探究主線(xiàn)
本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的.推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。
(三)培養思維 提升能力 激勵創(chuàng )新
為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
高中數學(xué)說(shuō)課稿 篇2
一、教材分析
本節是人教A版高中數學(xué)必修三第二章《統計》中的第三節 “變量間的相關(guān)關(guān)系” 的第二課時(shí)。在上一課時(shí),學(xué)生已經(jīng)懂得根據兩個(gè)相關(guān)變量的數據作出散點(diǎn)圖,并利用散點(diǎn)圖直觀(guān)認識變量間的相關(guān)關(guān)系。這節課是在上一節課的基礎上介紹了用線(xiàn)性回歸的方法研究?jì)蓚(gè)變量的相關(guān)性和最小二乘法的思想。
從全章的內容上看,線(xiàn)性回歸方程的建立不僅是本節的難點(diǎn),也是本章內容的難點(diǎn)之一。線(xiàn)性回歸是最簡(jiǎn)單的回歸分析,學(xué)好回歸分析是學(xué)好統計學(xué)的重要基礎。
二、教學(xué)目標
根據課標的要求及前面的分析,結合高二學(xué)生的認知特點(diǎn)確定本節課的教學(xué)目標如下:
知識與技能:
1. 知道最小二乘法和回歸分析的思想;
2. 能根據線(xiàn)性回歸方程系數公式求出回歸方程
過(guò)程與方法:
經(jīng)歷線(xiàn)性回歸分析過(guò)程,借助圖形計算器得出回歸直線(xiàn),增強數學(xué)應用和使用技術(shù)的意識。
情感態(tài)度與價(jià)值觀(guān)
通過(guò)合作學(xué)習,養成傾聽(tīng)別人意見(jiàn)和建議的良好品質(zhì)
三、重點(diǎn)難點(diǎn)分析:
根據目標分析,確定教學(xué)重點(diǎn)和難點(diǎn)如下:
教學(xué)重點(diǎn):
1. 知道最小二乘法和回歸分析的思想;
2.會(huì )求回歸直線(xiàn)
教學(xué)難點(diǎn):
建立回歸思想,會(huì )求回歸直線(xiàn)
四、教學(xué)設計
提出問(wèn)題
理論探究
驗證結論
小結提升
應用實(shí)踐
作業(yè)設計
教學(xué)環(huán)節
內容及說(shuō)明
創(chuàng )設情境
探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數據:
問(wèn)題與引導設計
師生活動(dòng)
設計意圖
問(wèn)題1. 利用圖形計算器作出散點(diǎn)圖,并指出上面的兩個(gè)變量是正相關(guān)還是負相關(guān)?
教師提問(wèn),學(xué)生
通過(guò)動(dòng)手操作得
出散點(diǎn)圖并回答
以舊“探”新:對舊的知識進(jìn)行簡(jiǎn)要的提問(wèn)復習,為本節課學(xué)生能夠更好的建構新的知識做好充分的準備;尤其為一些后進(jìn)生能夠順利的完成本節課的內容提供必要的基礎。
教師引導:通過(guò)上節課的學(xué)習,我們知道散點(diǎn)圖是研究?jì)蓚(gè)變量相關(guān)關(guān)系的一種重要手段。下面,請同學(xué)們根據得出的散點(diǎn)圖,思考下面的問(wèn)題2.
問(wèn)題2. 甲同學(xué)判斷某人年齡在65歲時(shí)體內脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,
乙,丙三個(gè)同學(xué)的判斷有什么看法?
學(xué)生能夠表達自己的看法。有的學(xué)生可能會(huì )認為乙同學(xué)的判斷是錯誤的;有的學(xué)生可能認為甲乙丙三個(gè)同學(xué)的判斷都是對的,答案不唯一
該問(wèn)題具有探究性、啟發(fā)性和開(kāi)放性。鼓勵學(xué)生大膽表達自己的看法。通過(guò)設計該問(wèn)題,引導學(xué)生自己發(fā)現問(wèn)題,注意到散點(diǎn)圖中點(diǎn)的分布具有一定規律,體會(huì )觀(guān)測點(diǎn)與回歸直線(xiàn)的關(guān)系;進(jìn)而引起學(xué)生的對本節課內容的興趣。
問(wèn)題3. 反思問(wèn)題,你還可以提出哪些問(wèn)題嗎?小組討論,看哪個(gè)小組提出的問(wèn)題多
在小組討論的形式下和比較哪個(gè)小組提出的問(wèn)題多,學(xué)生之間會(huì )充分的進(jìn)行交流,提出問(wèn)題
通過(guò)小組討論比較,調動(dòng)學(xué)生的學(xué)習積極性和興趣,活躍課堂氣氛,達到學(xué)生自己提出問(wèn)題的效果,培養學(xué)生的學(xué)生創(chuàng )新思維和問(wèn)題意識。
學(xué)生可能提出的問(wèn)題:
、贋槭裁醇、丙同學(xué)的判斷結果正確的可能性較大,而乙同學(xué)判斷結果正確的可能性較?
、谀橙四挲g在65歲時(shí)體內脂肪含量百分比最可能是多少?在其它年齡時(shí)呢?
、圻@些樣本數據揭示出兩個(gè)相關(guān)變量之間怎樣的關(guān)系呢?
、茉鯓佑脭祵W(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個(gè)問(wèn)題都是學(xué)生“火熱的思考”成果
高中數學(xué)說(shuō)課稿 篇3
各位老師:
大家好!我叫***,來(lái)自**。我說(shuō)課的題目是《概率的基本性質(zhì)》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時(shí)安排為三個(gè)課時(shí),本節課內容為第三課時(shí)。下面我將從教材分析、教學(xué)目標分析、教法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1、教材所處的地位和作用
本節課主要包含了兩部分內容:一是事件的關(guān)系與運算,二是概率的基本性質(zhì),多以基本概念和性質(zhì)為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個(gè)教學(xué)中起到承上啟下的作用。同時(shí)也是新課改以來(lái)考查的熱點(diǎn)之一。
2、教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):概率的加法公式及其應用;事件的關(guān)系與運算。
難點(diǎn):互斥事件與對立事件的區別與聯(lián)系
二、教學(xué)目標分析
1.知識與技能目標
、帕私怆S機事件間的基本關(guān)系與運算;
、普莆崭怕实膸讉(gè)基本性質(zhì),并會(huì )用其解決簡(jiǎn)單的概率問(wèn)題。
2、過(guò)程與方法:
、磐ㄟ^(guò)觀(guān)察、類(lèi)比、歸納培養學(xué)生運用數學(xué)知識的綜合能力;
、仆ㄟ^(guò)學(xué)生自主探究,合作探究培養學(xué)生的動(dòng)手探索的能力。
3、情感態(tài)度與價(jià)值觀(guān):
通過(guò)數學(xué)活動(dòng),了解教學(xué)與實(shí)際生活的密切聯(lián)系,感受數學(xué)知識應用于現實(shí)世界的具體情境,從而激發(fā)學(xué)習數學(xué)的情趣。
三、教法分析
采用實(shí)驗觀(guān)察、質(zhì)疑啟發(fā)、類(lèi)比聯(lián)想、探究歸納的教學(xué)方法。
四、教學(xué)過(guò)程分析
1、創(chuàng )設情境,引入新課
在擲骰子的試驗中,我們可以定義許多事件,如:
c1=﹛出現的點(diǎn)數=1﹜,c2=﹛出現的點(diǎn)數=2﹜
c3=﹛出現的點(diǎn)數=3﹜,c4=﹛出現的點(diǎn)數=4﹜
c5=﹛出現的點(diǎn)數=5﹜,c6=﹛出現的點(diǎn)數=6﹜
D1=﹛出現的點(diǎn)數不大于1﹜D2=﹛出現的點(diǎn)數大于3﹜
D3=﹛出現的點(diǎn)數小于5﹜,E=﹛出現的點(diǎn)數小于7﹜
f=﹛出現的點(diǎn)數大于6﹜,G=﹛出現的點(diǎn)數為偶數﹜
H=﹛出現的點(diǎn)數為奇數﹜
、乓砸肜械氖录㧟1和事件H,事件c1和事件D1為例講授事件之的包含關(guān)系和相等關(guān)系。
、茝囊陨蟽蓚(gè)關(guān)系學(xué)生不難發(fā)現事件間的關(guān)系與集合間的關(guān)系相類(lèi)似。進(jìn)而引導學(xué)生思考,是否可以把事件和集合對應起來(lái)。
「設計意圖」引出我們接下來(lái)要學(xué)習的主要內容:事件之間的關(guān)系與運算
2、探究新知
、迨录年P(guān)系與運算
、沤(jīng)過(guò)上面的思考,我們得出:
試驗的可能結果的全體←→全集
↓↓
每一個(gè)事件←→子集
這樣我們就把事件和集合對應起來(lái)了,用已有的集合間關(guān)系來(lái)分析事件間的關(guān)系。
集合的并→兩事件的并事件(和事件)
集合的交→兩事件的交事件(積事件)
在此過(guò)程中要注意幫助學(xué)生區分集合關(guān)系與事件關(guān)系之間的不同。
。ɡ纾簝杉螦∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發(fā)生,表示或者事件A發(fā)生,或者事件B發(fā)生。)
「設計意圖」為更好地理解互斥事件和對立事件打下基礎,
、扑伎迹孩偃糁粩S一次骰子,則事件c1和事件c2有可能同時(shí)發(fā)生么?
、谠跀S骰子實(shí)驗中事件G和事件H是否一定有一個(gè)會(huì )發(fā)生?
「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來(lái)將要學(xué)習的互斥事件和對立事件,讓學(xué)生從實(shí)際案例中體驗它們各自的特征以及它們之間的區別與聯(lián)系。
、强偨Y出互斥事件和對立事件的概念,并通過(guò)多媒體的圖形演示使學(xué)生們能更好地理解它們的特征以及它們之間的區別與聯(lián)系。
、染毩暎和ㄟ^(guò)多媒體顯示兩道練習,目的是讓學(xué)生們能夠及時(shí)鞏固對互斥事件和對立事件的學(xué)習,加深理解。
、娓怕实幕拘再|(zhì):
、呕仡櫍侯l率=頻數/試驗的次數
我們知道當試驗次數足夠大時(shí),用頻率來(lái)估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì)、
。ㄍㄟ^(guò)對頻率的理解并結合前面投硬幣的實(shí)驗來(lái)總結出概率的基本性質(zhì),師生共同交流得出結果)
3、典型例題探究
例1一個(gè)射手進(jìn)行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?
事件A:命中環(huán)數大于7環(huán);事件B:命中環(huán)數為10環(huán);
事件c:命中環(huán)數小于6環(huán);事件D:命中環(huán)數為6、7、8、9、10環(huán)、
分析:要判斷所給事件是對立還是互斥,首先將兩個(gè)概念的聯(lián)系與區別弄清楚
例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問(wèn):
。1)取到紅色牌(事件c)的概率是多少?
。2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).
「設計意圖」通過(guò)這兩道例題,進(jìn)一步鞏固學(xué)生對本節課知識的掌握,并將所學(xué)知識應用到實(shí)際解決問(wèn)題中去。
4、課堂小結
、爬斫馐录年P(guān)系和運算
、普莆崭怕实幕拘再|(zhì)
「設計意圖」小結是引導學(xué)生對問(wèn)題進(jìn)行回味與深化,使知識成為系統。讓學(xué)生嘗試小結,提高學(xué)生的總結能力和語(yǔ)言表達能力。教師補充幫助學(xué)生全面地理解,掌握新知識。
5、布置作業(yè)
習題3、1A1、3、4
「設計意圖」課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。
五、板書(shū)設計
概率的基本性質(zhì)
一、事件間的關(guān)系和運算
二、概率的基本性質(zhì)
三、例1的板書(shū)區
例2的板書(shū)區
四、規律性質(zhì)總結
【【精華】高中數學(xué)說(shuō)課稿3篇】相關(guān)文章:
高中數學(xué)經(jīng)典說(shuō)課稿范文06-24
高中數學(xué)經(jīng)典優(yōu)秀說(shuō)課稿模板07-14
高中數學(xué)說(shuō)課稿三篇06-09