實(shí)用的高中數學(xué)說(shuō)課稿范文集錦六篇
作為一名辛苦耕耘的教育工作者,常常要寫(xiě)一份優(yōu)秀的說(shuō)課稿,借助說(shuō)課稿可以讓教學(xué)工作更科學(xué)化。怎么樣才能寫(xiě)出優(yōu)秀的說(shuō)課稿呢?以下是小編為大家整理的高中數學(xué)說(shuō)課稿6篇,歡迎大家分享。
高中數學(xué)說(shuō)課稿 篇1
一、說(shuō)教材:
1、地位、作用和特點(diǎn):
《 》是高中數學(xué)課本第 冊( 修)的第 章“ ”的第 節內容,高中數學(xué)課本說(shuō)課稿。
本節是在學(xué)習了 之后編排的。通過(guò)本節課的學(xué)習,既可以對 的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習 打下基礎,所以
是本章的重要內容。此外,《 》的知識與我們日常生活、生產(chǎn)、科學(xué)研究 有著(zhù)密切的聯(lián)系,因此學(xué)習這部分有著(zhù)廣泛的現實(shí)意義。本節的特點(diǎn)之一是;
特點(diǎn)之二是: 。
教學(xué)目標:
根據《教學(xué)大綱》的要求和學(xué)生已有的知識基礎和認知能力,確定以下教學(xué)目標:
。1)知識目標:A、B、C
。2)能力目標:A、B、C
。3)德育目標:A、B
教學(xué)的重點(diǎn)和難點(diǎn):
。1)教學(xué)重點(diǎn):
。2)教學(xué)難點(diǎn):
二、說(shuō)教法:
基于上面的教材分析,我根據自己對研究性學(xué)習“啟發(fā)式”教學(xué)模式和新課程改革的理論認識,結合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng )設問(wèn)題情景,充分調動(dòng)學(xué)生求知欲,并以此來(lái)激發(fā)學(xué)生的探究心理。二是運用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來(lái)統一組織運用于教學(xué)過(guò)程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內外的綜合。并且在整個(gè)教學(xué)設計盡量做到注意學(xué)生的心理特點(diǎn)和認知規律,觸發(fā)學(xué)生的思維,使教學(xué)過(guò)程真正成為學(xué)生的學(xué)習過(guò)程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數學(xué)思考方法(聯(lián)想法、類(lèi)比法、數形結合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習知識的過(guò)程中,領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法,培養學(xué)生的探索能力和創(chuàng )造性素質(zhì)。四是注意在探究問(wèn)題時(shí)留給學(xué)生充分的時(shí)間,以利于開(kāi)放學(xué)生的思維。當然這就應在處理教學(xué)內容時(shí)能夠做到葉老師所說(shuō)“教就是為了不教”。因此,擬對本節課設計如下教學(xué)程序:
導入新課 新課教學(xué)
反饋發(fā)展
三、說(shuō)學(xué)法:
學(xué)生學(xué)習的過(guò)程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運用知識和獲得學(xué)習能力的過(guò)程,因此,我覺(jué)得在教學(xué)中,指導學(xué)生學(xué)習時(shí),應盡量避免單純地、直露地向學(xué)生灌輸某種學(xué)習方法。有效的能被學(xué)生接受的學(xué)法指導應是滲透在教學(xué)過(guò)程中進(jìn)行的,是通過(guò)優(yōu)化教學(xué)程序來(lái)增強學(xué)法指導的目的性和實(shí)效性。在本節課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導。
1、培養學(xué)生學(xué)會(huì )通過(guò)自學(xué)、觀(guān)察、實(shí)驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過(guò)程中分析、歸納、推理能力得到提高。
本節教師通過(guò)列舉具體事例來(lái)進(jìn)行分析,歸納出 ,并依
據此知識與具體事例結合、推導出 ,這正是一個(gè)分析和推理的全過(guò)程。
2、讓學(xué)生親自經(jīng)歷運用科學(xué)方法探索的過(guò)程。 主要是努力創(chuàng )設應用科學(xué)方法探索、解決問(wèn)題情境,讓學(xué)生在探索中體會(huì )科學(xué)方法,如在講授 時(shí),可通過(guò)
演示,創(chuàng )設探索 規律的情境,引導學(xué)生以可靠的事實(shí)為基礎,經(jīng)過(guò)抽象思維揭示內在規律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結合起來(lái)的特點(diǎn)。
3、讓學(xué)生在探索性實(shí)驗中自己摸索方法,觀(guān)察和分析現象,從而發(fā)現“新”的問(wèn)題或探索出“新”的規律。從而培養學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng )造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀(guān)察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結和推廣。
4、在指導學(xué)生解決問(wèn)題時(shí),引導學(xué)生通過(guò)比較、猜測、嘗試、質(zhì)疑、發(fā)現等探究環(huán)節選擇合適的概念、規律和解決問(wèn)題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導學(xué)生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學(xué)生養成認真分析過(guò)程、善于比較的好習慣,又有利于培養學(xué)生通過(guò)現象發(fā)掘知識內在本質(zhì)的能力。
四、教學(xué)過(guò)程:
。ㄒ唬、課題引入:
教師創(chuàng )設問(wèn)題情景(創(chuàng )設情景:A、教師演示實(shí)驗。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例,教案《高中數學(xué)課本說(shuō)課稿》。C、講述數學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導學(xué)生提出接下去要研究的問(wèn)題。
。ǘ、新課教學(xué):
1、針對上面提出的問(wèn)題,設計學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過(guò)動(dòng)手探索有關(guān)的知識,并引導學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問(wèn)題。
2、組織學(xué)生進(jìn)行新問(wèn)題的實(shí)驗方法設計—這時(shí)在設計上最好是有對比性、數學(xué)方法性的設計實(shí)驗,指導學(xué)生實(shí)驗、通過(guò)多媒體的輔助,顯示學(xué)生的實(shí)驗數據,模擬強化出實(shí)驗情況,由學(xué)生分析比較,歸納總結出知識的結構。
。ㄈ、實(shí)施反饋:
1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問(wèn)題,實(shí)現知識的升華、實(shí)現學(xué)生的再次創(chuàng )新。
2、課后反饋,延續創(chuàng )新。通過(guò)課后練習,學(xué)生互改作業(yè),課后研實(shí)驗,實(shí)現課堂內外的綜合,實(shí)現創(chuàng )新精神的延續。
五、板書(shū)設計:
在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫(xiě)在左側,中間知識推導過(guò)程,右邊實(shí)例應用。
六、說(shuō)課綜述:
以上是我對《 》這節教材的認識和對教學(xué)過(guò)程的設計。在整個(gè)課堂中,我引導學(xué)生回顧前面學(xué)過(guò)的 知識,并把它運用到對
的認識,使學(xué)生的認知活動(dòng)逐步深化,既掌握了知識,又學(xué)會(huì )了方法。
總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學(xué)生為主體,以問(wèn)題為基礎,以能力、方法為主線(xiàn),有計劃培養學(xué)生的自學(xué)能力、觀(guān)察和實(shí)踐能力、思維能力、應用知識解決實(shí)際問(wèn)題的能力和創(chuàng )造能力為指導思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來(lái)激發(fā)學(xué)生的學(xué)習興趣,體現了對學(xué)生創(chuàng )新意識的培養。
高中數學(xué)說(shuō)課稿 篇2
一、教材分析
1.教材所處的地位和作用
本節課所學(xué)內容為算法案例3,主要學(xué)習如何給一組數據排序,學(xué)習作程序框圖和設計程序,通過(guò)本節課的學(xué)習之后將能使許多復雜的問(wèn)題在計算機上得到解決,減少工作量。
2 教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):兩種排序法的排序步驟及計算機程序設計
難點(diǎn):排序法的計算機程序設計
二、教學(xué)目標分析
1.知識與技能目標:
掌握數據排序的原理能使用直接排序法與冒泡排序法給一組數據排序,進(jìn)而能設計冒泡排序法的程序框圖及程序,理解數學(xué)算法與計算機算法的區別,理解計算機對數學(xué)的輔助作用。
2.過(guò)程與方法目標:
能根據排序法中的直接插入排序法與冒泡排序法的步驟,了解數學(xué)計算轉換為計算機計算的途徑,從而探究計算機算法與數學(xué)算法的區別,體會(huì )計算機對數學(xué)學(xué)習的輔助作用。
3.情感,態(tài)度和價(jià)值觀(guān)目標
通過(guò)對排序法的學(xué)習,領(lǐng)會(huì )數學(xué)計算與計算機計算的區別,充分認識信息技術(shù)對數學(xué)的促進(jìn)。
三、教學(xué)方法與手段分析
1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導作用,采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現象到本質(zhì),從已知到未知逐步形成概念的學(xué)習方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。
2.教學(xué)手段:通過(guò)各種教學(xué)媒體(計算機)調動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。
四、學(xué)法分析
模仿排序法中數字排序的步驟,理解計算機計算的一般步驟,領(lǐng)會(huì )數學(xué)計算在計算機上實(shí)施的要求。
五、教學(xué)過(guò)程分析
一、創(chuàng )設情境
提出問(wèn)題:大家考完試后如果要排一下成績(jì)的話(huà),單靠人手該怎樣操作呢?如果我們用計算機里的軟件電子表格對分數排序就非常簡(jiǎn)單,那么電子計算機是怎么對數據進(jìn)行排序的呢?
通過(guò)這個(gè)問(wèn)題,引出我們這節課所要學(xué)習的兩種排序方法--直接插入排序法與冒泡排序法
二、探索新知
這里我先讓學(xué)生們閱讀課本P30-P31的內容,然后回答下面的問(wèn)題:
(1)排序法中的直接插入排序法與冒泡排序法的步驟有什么區別?
(2)冒泡法排序中對5個(gè)數字進(jìn)行排序最多需要多少趟?
(3)在冒泡法排序對5個(gè)數字進(jìn)行排序的每一趟中需要比較大小幾次?
提出問(wèn)題,然后讓學(xué)生們作出回答,這樣可以促使學(xué)生們能夠積極思考,自主地去學(xué)習新的知識,而不只是單向的由老師向學(xué)生灌輸。
三、知識應用
例1 用冒泡排序法對數據7,5,3,9,1從小到大進(jìn)行排序
。ǜ鶕⻊倓偺釂(wèn)所總結的方法完成解題步驟)
練習:寫(xiě)出用冒泡排序法對5個(gè)數據4,11,7,9,6排序的過(guò)程中每一趟排序的結果.
。皶r(shí)將學(xué)到的知識應用,有利于知識的掌握)
例2 設計冒泡排序法對5個(gè)數據進(jìn)行排序的程序框圖.
(在之前所學(xué)習知識的基礎上畫(huà)出程序框圖,然后給出一個(gè)思考題)
思考:直接插入排序法的程序框圖如何設計?可否把上述程序框圖轉化為程序?
。ㄖ蟪鲆粋(gè)練習題,找出思考題的答案)
練習:用直接插入排序法對例1中的數據從小到大排序,畫(huà)出程序框圖,并轉化為程序運行求出最終答案。
。ㄟ@里可以使學(xué)生們領(lǐng)會(huì )數學(xué)計算與計算機計算的區別,充分認識信息技術(shù)對數學(xué)的促進(jìn)。)
四、課堂小結:
(1)數字排序法中的常見(jiàn)的兩種排序法直接插入排序法與冒泡排序法它們的排序步驟
(2兩種排序法的計算機程序設計
(3)注意循環(huán)語(yǔ)句的使用與算法的循環(huán)次數,對算法進(jìn)行改進(jìn)。
通過(guò)小結使學(xué)生們對知識有一個(gè)系統的認識,突出重點(diǎn),抓住關(guān)鍵,培養概括能力。
高中數學(xué)說(shuō)課稿 篇3
各位老師:
大家好!我叫***,來(lái)自**。我說(shuō)課的題目是《概率的基本性質(zhì)》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時(shí)安排為三個(gè)課時(shí),本節課內容為第三課時(shí)。下面我將從教材分析、教學(xué)目標分析、教法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1、教材所處的地位和作用
本節課主要包含了兩部分內容:一是事件的關(guān)系與運算,二是概率的基本性質(zhì),多以基本概念和性質(zhì)為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個(gè)教學(xué)中起到承上啟下的作用。同時(shí)也是新課改以來(lái)考查的熱點(diǎn)之一。
2、教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):概率的加法公式及其應用;事件的關(guān)系與運算。
難點(diǎn):互斥事件與對立事件的區別與聯(lián)系
二、教學(xué)目標分析
1.知識與技能目標
、帕私怆S機事件間的基本關(guān)系與運算;
、普莆崭怕实膸讉(gè)基本性質(zhì),并會(huì )用其解決簡(jiǎn)單的概率問(wèn)題。
2、過(guò)程與方法:
、磐ㄟ^(guò)觀(guān)察、類(lèi)比、歸納培養學(xué)生運用數學(xué)知識的綜合能力;
、仆ㄟ^(guò)學(xué)生自主探究,合作探究培養學(xué)生的動(dòng)手探索的能力。
3、情感態(tài)度與價(jià)值觀(guān):
通過(guò)數學(xué)活動(dòng),了解教學(xué)與實(shí)際生活的密切聯(lián)系,感受數學(xué)知識應用于現實(shí)世界的具體情境,從而激發(fā)學(xué)習數學(xué)的情趣。
三、教法分析
采用實(shí)驗觀(guān)察、質(zhì)疑啟發(fā)、類(lèi)比聯(lián)想、探究歸納的教學(xué)方法。
四、教學(xué)過(guò)程分析
1、創(chuàng )設情境,引入新課
在擲骰子的試驗中,我們可以定義許多事件,如:
c1=﹛出現的點(diǎn)數=1﹜,c2=﹛出現的點(diǎn)數=2﹜
c3=﹛出現的點(diǎn)數=3﹜,c4=﹛出現的點(diǎn)數=4﹜
c5=﹛出現的點(diǎn)數=5﹜,c6=﹛出現的點(diǎn)數=6﹜
D1=﹛出現的點(diǎn)數不大于1﹜D2=﹛出現的點(diǎn)數大于3﹜
D3=﹛出現的點(diǎn)數小于5﹜,E=﹛出現的點(diǎn)數小于7﹜
f=﹛出現的點(diǎn)數大于6﹜,G=﹛出現的點(diǎn)數為偶數﹜
H=﹛出現的點(diǎn)數為奇數﹜
、乓砸肜械氖录㧟1和事件H,事件c1和事件D1為例講授事件之的包含關(guān)系和相等關(guān)系。
、茝囊陨蟽蓚(gè)關(guān)系學(xué)生不難發(fā)現事件間的關(guān)系與集合間的關(guān)系相類(lèi)似。進(jìn)而引導學(xué)生思考,是否可以把事件和集合對應起來(lái)。
「設計意圖」引出我們接下來(lái)要學(xué)習的主要內容:事件之間的關(guān)系與運算
2、探究新知
、迨录年P(guān)系與運算
、沤(jīng)過(guò)上面的思考,我們得出:
試驗的可能結果的全體←→全集
↓↓
每一個(gè)事件←→子集
這樣我們就把事件和集合對應起來(lái)了,用已有的集合間關(guān)系來(lái)分析事件間的關(guān)系。
集合的并→兩事件的并事件(和事件)
集合的交→兩事件的交事件(積事件)
在此過(guò)程中要注意幫助學(xué)生區分集合關(guān)系與事件關(guān)系之間的不同。
。ɡ纾簝杉螦∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發(fā)生,表示或者事件A發(fā)生,或者事件B發(fā)生。)
「設計意圖」為更好地理解互斥事件和對立事件打下基礎,
、扑伎迹孩偃糁粩S一次骰子,則事件c1和事件c2有可能同時(shí)發(fā)生么?
、谠跀S骰子實(shí)驗中事件G和事件H是否一定有一個(gè)會(huì )發(fā)生?
「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來(lái)將要學(xué)習的互斥事件和對立事件,讓學(xué)生從實(shí)際案例中體驗它們各自的特征以及它們之間的區別與聯(lián)系。
、强偨Y出互斥事件和對立事件的概念,并通過(guò)多媒體的圖形演示使學(xué)生們能更好地理解它們的特征以及它們之間的區別與聯(lián)系。
、染毩暎和ㄟ^(guò)多媒體顯示兩道練習,目的是讓學(xué)生們能夠及時(shí)鞏固對互斥事件和對立事件的學(xué)習,加深理解。
、娓怕实幕拘再|(zhì):
、呕仡櫍侯l率=頻數/試驗的次數
我們知道當試驗次數足夠大時(shí),用頻率來(lái)估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì)、
。ㄍㄟ^(guò)對頻率的理解并結合前面投硬幣的實(shí)驗來(lái)總結出概率的基本性質(zhì),師生共同交流得出結果)
3、典型例題探究
例1一個(gè)射手進(jìn)行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?
事件A:命中環(huán)數大于7環(huán);事件B:命中環(huán)數為10環(huán);
事件c:命中環(huán)數小于6環(huán);事件D:命中環(huán)數為6、7、8、9、10環(huán)、
分析:要判斷所給事件是對立還是互斥,首先將兩個(gè)概念的聯(lián)系與區別弄清楚
例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問(wèn):
。1)取到紅色牌(事件c)的概率是多少?
。2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).
「設計意圖」通過(guò)這兩道例題,進(jìn)一步鞏固學(xué)生對本節課知識的掌握,并將所學(xué)知識應用到實(shí)際解決問(wèn)題中去。
4、課堂小結
、爬斫馐录年P(guān)系和運算
、普莆崭怕实幕拘再|(zhì)
「設計意圖」小結是引導學(xué)生對問(wèn)題進(jìn)行回味與深化,使知識成為系統。讓學(xué)生嘗試小結,提高學(xué)生的總結能力和語(yǔ)言表達能力。教師補充幫助學(xué)生全面地理解,掌握新知識。
5、布置作業(yè)
習題3、1A1、3、4
「設計意圖」課后作業(yè)的'布置是為了檢驗學(xué)生對本節課內容的理解和運用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。
五、板書(shū)設計
概率的基本性質(zhì)
一、事件間的關(guān)系和運算
二、概率的基本性質(zhì)
三、例1的板書(shū)區
例2的板書(shū)區
四、規律性質(zhì)總結
高中數學(xué)說(shuō)課稿 篇4
各位評委,老師們:大家好!
很高興參加這次說(shuō)課活動(dòng)。這對我來(lái)說(shuō)也是一次難得的學(xué)習和鍛煉的機會(huì ),感謝各位老師在百忙之中來(lái)此予以指導。希望各位評委和老師們對我的說(shuō)課內容提出寶貴意見(jiàn)。
我說(shuō)課的內容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(shū)(試驗修訂本—必修)<數學(xué)>第一冊下,教學(xué)內容為第96頁(yè)至98頁(yè)第五章第一節。本校是浙江省一級重點(diǎn)中學(xué),學(xué)生基礎相對較好。我在進(jìn)行教學(xué)設計時(shí),也充分考慮到了這一點(diǎn)。
下面我從教材分析,教學(xué)目標的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設計四個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。
一說(shuō)教材
。1)地位和作用
向量是近代數學(xué)中重要和基本的概念之一,有著(zhù)深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質(zhì)轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著(zhù)極其豐富的實(shí)際背景,在數學(xué)和物理學(xué)科中具有廣泛的應用。
平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎上進(jìn)一步對向量的深入學(xué)習。為學(xué)習向量的知識體系奠定了知識和方法基礎。
。2)教學(xué)結構的調整
課本在這一部分內容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長(cháng)度,零向量,單位向量,平行向量,共線(xiàn)向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調整:將本節教學(xué)中認知過(guò)程的教學(xué)內容適當集中,以突出這節課的主題;例題,習題部分主要由學(xué)生依照概念自行分析,獨立完成。
。3)重點(diǎn),難點(diǎn),關(guān)鍵
由于本節課是本章內容的第一節課,是學(xué)生學(xué)習本章的基礎。為了本章后面知識的學(xué)習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點(diǎn)。本節課是為高一后半學(xué)期學(xué)生設計的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習方法和習慣,但根據以往的教學(xué)經(jīng)驗,多數學(xué)生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認為向量概念也是這節課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復雜的幾何圖形中相等的有向線(xiàn)段讓學(xué)生進(jìn)行辨認,加深對向量的理解。
二說(shuō)教學(xué)目標的確定
根據本課教材的特點(diǎn),新大綱對本節課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標:
。1)基礎知識目標:理解向量,零向量,單位向量,共線(xiàn)向量,平行向量,相等向量的概念,會(huì )用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì )根據圖形判定向量是否平行,共線(xiàn),相等。
。2)能力訓練目標:培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等發(fā)現規律的一般方法,培養學(xué)生觀(guān)察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
。3)情感目標:讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習的樂(lè )趣。
三說(shuō)教學(xué)方法的選擇
、窠虒W(xué)方法
本節課我采用了”啟發(fā)探究式的教學(xué)方法,根據本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):
。1)由教材的特點(diǎn)確立類(lèi)比思維為教學(xué)的主線(xiàn)。
從教材內容看平面向量無(wú)論從形式還是內容都與物理學(xué)中的有向線(xiàn)段,矢量的概念類(lèi)似。因此在教學(xué)中運用類(lèi)比作為思維的主線(xiàn)進(jìn)行教學(xué)。讓學(xué)生充分體會(huì )數學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。
。2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習方法
通常學(xué)生對于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習興趣,另外,學(xué)生都有表現自己的欲望,希望得到老師和其他同學(xué)的認可,要多表?yè)P,多肯定來(lái)激勵他們的學(xué)習熱情?紤]到我校學(xué)生的基礎較好,思維較為活躍,對自主探索式的學(xué)習方法也有一定的認識,所以在教學(xué)中我通過(guò)創(chuàng )設問(wèn)題情境,啟發(fā)引導學(xué)生運用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。
、蚪虒W(xué)手段
本節課中,除使用常規的教學(xué)手段外,我還使用了多媒體投影儀和計算機來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過(guò)程則有助于滲透數形結合思想,更易于對概念的理解和難點(diǎn)的突破。
四教學(xué)過(guò)程的設計
、裰R引入階段———提出學(xué)習課題,明確學(xué)習目標
。1)創(chuàng )設情境——引入概念
數學(xué)學(xué)習應該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現數學(xué)、探究數學(xué)、認識并掌握數學(xué)。
由生活中具體的向量的實(shí)例引入:大海中船只的航線(xiàn),中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習興趣。
。2)觀(guān)察歸納——形成概念
由實(shí)例得出有向線(xiàn)段的概念,有向線(xiàn)段的三個(gè)要素:起點(diǎn),方向,長(cháng)度。明確知道了有向線(xiàn)段的起點(diǎn),方向和長(cháng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設計,引導學(xué)生概括總結出本課新的知識點(diǎn):向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進(jìn)行歸納,深化,之后向學(xué)生提出以下三個(gè)問(wèn)題:
、傧蛄康囊厥鞘裁?
、谙蛄恐g能否比較大?
、巯蛄颗c數量的區別是什么?
同時(shí)指出這就是本節課我們要研究和學(xué)習的主題。
、蛑R探索階段———探索平面向量的平行向量。相等向量等概念
。1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線(xiàn)向量,并且規定0與任一向量平行.長(cháng)度相等且方向相同的向量叫相等向量,規定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
。2)即時(shí)訓練—鞏固新知
為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時(shí)訓練題,通過(guò)學(xué)生的觀(guān)察嘗試,討論研究,教師引導來(lái)鞏固新知識。
。劬毩1]判斷下列命題是否正確,若不正確,請簡(jiǎn)述理由.
、傧蛄颗c是共線(xiàn)向量,則A、B、C、D四點(diǎn)必在一直線(xiàn)上;
、趩挝幌蛄慷枷嗟;
、廴我幌蛄颗c它的相反向量不相等;
、芩倪呅蜛BCD是平行四邊形的充要條件是=;
、菽0是一個(gè)向量方向不確定的充要條件;
、薰簿(xiàn)的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.
。劬毩2]下列命題正確的是( )
A.a(chǎn)與b共線(xiàn),b與c共線(xiàn),則a與c也共線(xiàn)
B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)
C.向量a與b不共線(xiàn),則a與b都是非零向量
D.有相同起點(diǎn)的兩個(gè)非零向量不平行
、笾R應用階段————共線(xiàn)向量,相等向量等概念的初步應用
在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復雜圖形中觀(guān)察,辨認平行,相等的有向線(xiàn)段。選用本題的目的是讓學(xué)生進(jìn)行獨立思考,自主探究,交流討論等探索活動(dòng),加深對概念的理解和對難點(diǎn)的突破。
例如圖所示,設O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)
具體教學(xué)安排如下:
。1)分析解決問(wèn)題
先引導學(xué)生分析解決問(wèn)題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當它們的模相等,同時(shí)方向又相同時(shí),才能稱(chēng)它們相等。進(jìn)而進(jìn)行正確的辨認,直至最終解決問(wèn)題。
。2)歸納解題方法
主要引導學(xué)生歸納以下兩個(gè)問(wèn)題:①零向量的方向是任意的,它只與零向量相
等;②兩個(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。
、魧W(xué)習,小結階段———歸納知識方法,布置課后作業(yè)
本階段通過(guò)學(xué)習小結進(jìn)行課堂教學(xué)的反饋,組織和指導學(xué)生歸納知識,技能,方法的一般規律,為后續學(xué)習打好基礎。
具體的教學(xué)安排如下:
。1)知識,方法小結在知識層面上我首先引導學(xué)生回顧本節課的主要內容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類(lèi)比,加深對每個(gè)概念的理解。
在方法層面上我將帶領(lǐng)學(xué)生回顧探索過(guò)程中用到的思維方法和數學(xué)方法如:
類(lèi)比,數形結合,等價(jià)轉化等進(jìn)行強調。
。2)布置課后作業(yè)
閱讀教材96至97頁(yè)內容,整理課堂筆記,習題5。1第1,2,3題。
高中數學(xué)說(shuō)課稿 篇5
一、說(shuō)教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類(lèi)型函數,本節課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數的概念,并進(jìn)一步體會(huì )函數是刻畫(huà)變量之間關(guān)系的數學(xué)模型,從中體會(huì )函數的模型思想。因此本節課重點(diǎn)是理解和領(lǐng)悟反比例函數的概念,所滲透的數學(xué)思想方法有:類(lèi)比,轉化,建模。
2.學(xué)情分析:對八年級學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對函數,正比例函數,一次函數的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數時(shí),還可能存在一些思維障礙,如學(xué)生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結出反比例函數的概念,因此,本節課的難點(diǎn)是理解和領(lǐng)悟反比例函數的概念。
二、說(shuō)教學(xué)目標
根據本人對《數學(xué)課程標準》的理解與分析,考慮學(xué)生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實(shí)的情境和已有的知識經(jīng)驗出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數概念的理解。
2.經(jīng)歷抽象反比例函數概念的過(guò)程,領(lǐng)會(huì )反比例函數的意義,理解反比例函數的概念。
三、說(shuō)教法
本節課從知識結構呈現的角度看,為了實(shí)現教學(xué)目標,我建立了“創(chuàng )設情境→建立模型→解釋知識→應用知識”的學(xué)習模式,這種模式清晰地再現了知識的生成與發(fā)展的過(guò)程,也符合學(xué)生的認知規律。于是,從教學(xué)內容的性質(zhì)出發(fā),我設計了如下的課堂結構:創(chuàng )設出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現新知,把上述問(wèn)題進(jìn)行類(lèi)比,導出概念,獲得新知,最后總結評價(jià)、內化新知。
四、說(shuō)學(xué)法
我認為學(xué)生將實(shí)際問(wèn)題轉化成函數的能力是有限的,所以我借助多媒體輔助教學(xué),指導學(xué)生通過(guò)類(lèi)比、轉化、直觀(guān)形象的觀(guān)察與演示,親身經(jīng)歷函數模型的轉化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng )造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。
好學(xué)教育:
因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著(zhù)問(wèn)題的深入而跳躍。
高中數學(xué)說(shuō)課稿 篇6
說(shuō)課內容:普通高中課程標準實(shí)驗教科書(shū)(人教A版)《數學(xué)必修4》第二章第四節“平面向量的數量積”的第一課時(shí)---平面向量數量積的物理背景及其含義。
下面,我從背景分析、教學(xué)目標設計、課堂結構設計、教學(xué)過(guò)程設計、教學(xué)媒體設計及教學(xué)評價(jià)設計六個(gè)方面對本節課的思考進(jìn)行說(shuō)明。
一、 背景分析
1、學(xué)習任務(wù)分析
平面向量的數量積是繼向量的線(xiàn)性運算之后的又一重要運算,也是高中數學(xué)的一個(gè)重要概念,在數學(xué)、物理等學(xué)科中應用十分廣泛。本節內容教材共安排兩課時(shí),其中第一課時(shí)主要研究數量積的概念,第二課時(shí)主要研究數量積的坐標運算,本節課是第一課時(shí)。
本節課的主要學(xué)習任務(wù)是通過(guò)物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質(zhì)與運算律,使學(xué)生體會(huì )類(lèi)比的思想方法,進(jìn)一步培養學(xué)生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運算律的基礎。同時(shí)也因為在這個(gè)概念中,既有長(cháng)度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點(diǎn),不僅應用廣泛,而且很好的體現了數形結合的數學(xué)思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學(xué)的重點(diǎn)。
2、學(xué)生情況分析
學(xué)生在學(xué)習本節內容之前,已熟知了實(shí)數的運算體系,掌握了向量的概念及其線(xiàn)性運算,具備了功等物理知識,并且初步體會(huì )了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實(shí)數運算類(lèi)比的基礎上研究性質(zhì)和運算律。這為學(xué)生學(xué)習數量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數量積概念的理解,一方面,相對于線(xiàn)性運算而言,數量積的結果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數的向量經(jīng)過(guò)數量積運算后,形卻消失了,學(xué)生對這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數乘法運算的影響,也會(huì )造成學(xué)生對數量積理解上的偏差,特別是對性質(zhì)和運算律的理解。因而本節課教學(xué)的難點(diǎn)數量積的概念。
二、 教學(xué)目標設計
《普通高中數學(xué)課程標準(實(shí)驗)》 對本節課的要求有以下三條:
(1)通過(guò)物理中“功”等事例,理解平面向量數量積的含義及其物理意義。
(2)體會(huì )平面向量的數量積與向量投影的關(guān)系。
(3)能用運數量積表示兩個(gè)向量的夾角,會(huì )用數量積判斷兩個(gè)平面向量的垂直關(guān)系。
從以上的背景分析可以看出,數量積的概念既是本節課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無(wú)論是在概念的引入還是應用過(guò)程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數量積概念延伸的性質(zhì)和運算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計算和判斷的理論依據。最后,無(wú)論是數量積的性質(zhì)還是運算律,都希望學(xué)生在類(lèi)比的基礎上,通過(guò)主動(dòng)探究來(lái)發(fā)現,因而對培養學(xué)生的抽象概括能力、推理論證能力和類(lèi)比思想都無(wú)疑是很好的載體。
綜上所述,結合“課標”要求和學(xué)生實(shí)際,我將本節課的教學(xué)目標定為:
1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;
2、體會(huì )平面向量的數量積與向量投影的關(guān)系,掌握數量積的性質(zhì)和運算律,
并能運用性質(zhì)和運算律進(jìn)行相關(guān)的運算和判斷;
3、體會(huì )類(lèi)比的數學(xué)思想和方法,進(jìn)一步培養學(xué)生抽象概括、推理論證的能力。
三、課堂結構設計
本節課從總體上講是一節概念教學(xué),依據數學(xué)課程改革應關(guān)注知識的發(fā)生和發(fā)展過(guò)程的理念,結合本節課的知識的邏輯關(guān)系,我按照以下順序安排本節課的教學(xué):
即先從數學(xué)和物理兩個(gè)角度創(chuàng )設問(wèn)題情景,通過(guò)歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質(zhì)和運算律,使學(xué)生進(jìn)一步加深對概念的理解,然后通過(guò)例題和練習使學(xué)生鞏固概念,加深印象,最后通過(guò)課堂小結提高學(xué)生認識,形成知識體系。
四、 教學(xué)媒體設計
和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來(lái)分兩節課完成的內容合并成一節,相比較而言本節課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現本節課的教學(xué)目標,考慮到本節課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設想主要有以下兩點(diǎn):
1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內容的呈現方式,以此來(lái)節約課時(shí),增加課堂容量。
2、設計科學(xué)合理的板書(shū)(見(jiàn)下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生清楚本節內容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò )。
平面向量數量積的物理背景及其含義
一、 數量積的概念 二、數量積的性質(zhì) 四、應用與提高
1、 概念: 例1:
2、 概念強調 (1)記法 例2:
(2)“規定” 三、數量積的運算律 例3:
3、幾何意義:
4、物理意義:
五、 教學(xué)過(guò)程設計
課標指出:數學(xué)教學(xué)過(guò)程是教師引導學(xué)生進(jìn)行學(xué)習活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節課我主要安排以下六個(gè)活動(dòng):
活動(dòng)一:創(chuàng )設問(wèn)題情景,激發(fā)學(xué)習興趣
正如教材主編寄語(yǔ)所言,數學(xué)是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線(xiàn)性運算一樣,也有其數學(xué)背景和物理背景,為了體現這一點(diǎn),我設計以下幾個(gè)問(wèn)題:
問(wèn)題1:我們已經(jīng)研究了向量的哪些運算?這些運算的結果是什么?
問(wèn)題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?
期望學(xué)生回答:物理模型→概念→性質(zhì)→運算律→應用
問(wèn)題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,
(1)力F所做的功W= 。
(2)請同學(xué)們分析這個(gè)公式的特點(diǎn):
W(功)是 量,
F(力)是 量,
S(位移)是 量,
α是 。
問(wèn)題1的設計意圖在于使學(xué)生了解數量積的數學(xué)背景,讓學(xué)生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線(xiàn)性運算相比,數量積運算又有其特殊性,那就是其結果發(fā)生了本質(zhì)的變化。
問(wèn)題2的設計意圖在于使學(xué)生在與向量加法類(lèi)比的基礎上明了本節課的研究方法和順序,為教學(xué)活動(dòng)指明方向。
問(wèn)題3的設計意圖在于使學(xué)生了解數量積的物理背景,讓學(xué)生知道,我們研究數量積絕不僅僅是為了數學(xué)自身的完善,而是有其客觀(guān)背景和現實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運算的愿望。同時(shí),也為抽象數量積的概念做好鋪墊。
活動(dòng)二:探究數量積的概念
1、概念的抽象
在分析“功”的計算公式的基礎上提出問(wèn)題4
問(wèn)題4:你能用文字語(yǔ)言來(lái)表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?
學(xué)生通過(guò)思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數量積概念的文字表述了,在此基礎上,我進(jìn)一步明晰數量積的概念。
2、概念的明晰
已知兩個(gè)非零向量
與
,它們的夾角為
,我們把數量 ︱
︱·︱
︱cos
叫做
與
的數量積(或內積),記作:
·
,即:
·
= ︱
︱·︱
︱cos
在強調記法和“規定”后 ,為了讓學(xué)生進(jìn)一步認識這一概念,提出問(wèn)題5
問(wèn)題5:向量的數量積運算與線(xiàn)性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:
角
的范圍0°≤
<90°
=90°0°<
≤180°
·
的符號
通過(guò)此環(huán)節不僅使學(xué)生認識到數量積的結果與線(xiàn)性運算的結果有著(zhù)本質(zhì)的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質(zhì)和運算律做好鋪墊。
3、探究數量積的幾何意義
這個(gè)問(wèn)題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學(xué)生,我覺(jué)得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問(wèn)題5。
如圖,我們把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,記做:OB1=│
│cos
問(wèn)題6:數量積的幾何意義是什么?
這樣做不僅讓學(xué)生從“形”的角度重新認識數量積的概念,從中體會(huì )數量積與向量投影的關(guān)系,同時(shí)也更符合知識的連貫性,而且也節約了課時(shí)。
4、研究數量積的物理意義
數量積的概念是由物理中功的概念引出的,學(xué)習了數量積的概念后,學(xué)生就會(huì )明白功的數學(xué)本質(zhì)就是力與位移的數量積。為此,我設計以下問(wèn)題 一方面使學(xué)生嘗試計算數量積,另一方面使學(xué)生理解數量積的物理意義,同時(shí)也為數量積的性質(zhì)埋下伏筆。
問(wèn)題7:
(1) 請同學(xué)們用一句話(huà)來(lái)概括功的數學(xué)本質(zhì):功是力與位移的數量積 。
(2)嘗試練習:一物體質(zhì)量是10千克,分別做以下運動(dòng):
、、在水平面上位移為10米;
、、豎直下降10米;
、、豎直向上提升10米;
、、沿傾角為30度的斜面向上運動(dòng)10米;
分別求重力做的功。
活動(dòng)三:探究數量積的運算性質(zhì)
1、性質(zhì)的發(fā)現
教材中關(guān)于數量積的三條性質(zhì)是以探究的形式出現的,為了很好地完成這一探究活動(dòng),在完成上述練習后,我不失時(shí)機地提出問(wèn)題8:
(1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?
(2)比較︱
·
︱與︱
︱×︱
︱的大小,你有什么結論?
在學(xué)生討論交流的基礎上,教師進(jìn)一步明晰數量積的性質(zhì),然后再由學(xué)生利用數量積的定義給予證明,完成探究活動(dòng)。
2、明晰數量積的性質(zhì)
3、性質(zhì)的證明
這樣設計體現了教師只是教學(xué)活動(dòng)的引領(lǐng)者,而學(xué)生才是學(xué)習活動(dòng)的主體,讓學(xué)生成為學(xué)習的研究者,不斷地體驗到成功的喜悅,激發(fā)學(xué)生參與學(xué)習活動(dòng)的熱情,不僅使學(xué)生獲得了知識,更培養了學(xué)生由特殊到一般的思維品質(zhì)。
活動(dòng)四:探究數量積的運算律
1、運算律的發(fā)現
關(guān)于運算律,教材仍然是以探究的形式出現,為此,首先提出問(wèn)題9
問(wèn)題9:我們學(xué)過(guò)了實(shí)數乘法的哪些運算律?這些運算律對向量是否也適用?
通過(guò)此問(wèn)題主要是想使學(xué)生在類(lèi)比的基礎上,猜測提出數量積的運算律。
學(xué)生可能會(huì )提出以下猜測: ①
·
=
·
、(
·
)
=
(
·
) ③(
+
)·
=
·
+
·
猜測①的正確性是顯而易見(jiàn)的。
關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問(wèn)題:
猜測②的左右兩邊的結果各是什么?它們一定相等嗎?
學(xué)生通過(guò)討論不難發(fā)現,猜測②是不正確的。
這時(shí)教師在肯定猜測③的基礎上明晰數量積的運算律:
2、明晰數量積的運算律
3、證明運算律
學(xué)生獨立證明運算律(2)
我把運算運算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問(wèn)題:
當λ<0時(shí),向量
與λ
,
與λ
的方向 的關(guān)系如何?此時(shí),向量λ
與
及
與λ
的夾角與向量
與
的夾角相等嗎?
師生共同證明運算律(3)
運算律(3)的證明對學(xué)生來(lái)說(shuō)是比較困難的,為了節約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。
在這個(gè)環(huán)節中,我仍然是首先為學(xué)生創(chuàng )設情景,讓學(xué)生在類(lèi)比的基礎上進(jìn)行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學(xué)生推理論證的能力,同時(shí)也增強了學(xué)生類(lèi)比創(chuàng )新的意識,將知識的獲得和能力的培養有機的結合在一起。
活動(dòng)五:應用與提高
例1、(師生共同完成)已知︱
︱=6,︱
︱=4,
與
的夾角為60°,求
(
+2
)·(
-3
),并思考此運算過(guò)程類(lèi)似于哪種運算?
例2、(學(xué)生獨立完成)對任意向量
,b是否有以下結論:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(師生共同完成)已知︱
︱=3,︱
︱=4, 且
與
不共線(xiàn),k為何值時(shí),向量
+k
與
-k
互相垂直?并思考:通過(guò)本題你有什么收獲?
本節教材共安排了四道例題,我根據學(xué)生實(shí)際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質(zhì)和運算律的綜合應用,教學(xué)時(shí),我重點(diǎn)從對運算原理的分析和運算過(guò)程的規范書(shū)寫(xiě)兩個(gè)方面加強示范。完成計算后,進(jìn)一步提出問(wèn)題:此運算過(guò)程類(lèi)似于哪種運算?目的是想讓學(xué)生在類(lèi)比多項式乘法的基礎上自己猜測提出例2給出的兩個(gè)公式,再由學(xué)生獨立完成證明,一方面這并不困難,另一方面培養了學(xué)生通過(guò)類(lèi)比這一思維模式達到創(chuàng )新的目的。例3的主要作用是,在繼續鞏固性質(zhì)和運算律的同時(shí),教給學(xué)生如何利用數量積來(lái)判斷兩個(gè)向量的垂直,是平面向量數量積的基本應用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數與形的轉化原理。
為了使學(xué)生更好的理解數量積的含義,熟練掌握性質(zhì)及運算律,并能夠應用數量積解決有關(guān)問(wèn)題,再安排如下練習:
1、 下列兩個(gè)命題正確嗎?為什么?
、、若
≠0,則對任一非零向量
,有
·
≠0.
、、若
≠0,
·
=
·
,則
=
.
2、已知△ABC中,
=
,
=
,當
·
<0或
·
=0時(shí),試判斷△ABC的形狀。
安排練習1的主要目的是,使學(xué)生在與實(shí)數乘法比較的基礎上全面認識數量積這一重要運算,
通過(guò)練習2使學(xué)生學(xué)會(huì )用數量積表示兩個(gè)向量的夾角,進(jìn)一步感受數量積的應用價(jià)值。
活動(dòng)六:小結提升與作業(yè)布置
1、本節課我們學(xué)習的主要內容是什么?
2、平面向量數量積的兩個(gè)基本應用是什么?
3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運算律的探究過(guò)程中,滲透了哪些數學(xué)思想?
4、類(lèi)比向量的線(xiàn)性運算,我們還應該怎樣研究數量積?
通過(guò)上述問(wèn)題,使學(xué)生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時(shí)也為下
一節做好鋪墊,繼續激發(fā)學(xué)生的求知欲。
布置作業(yè):
1、課本P121習題2.4A組1、2、3。
2、拓展與提高:
已知
與
都是非零向量,且
+3
與7
-5
垂直,
-4
與 7
-2
垂直求
與
的夾角。
在這個(gè)環(huán)節中,我首先考慮檢測全體學(xué)生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學(xué)生繼續加深對數量積概念的理解和應用,為后續學(xué)習打好基礎。其次,為了能讓不同的學(xué)生在數學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問(wèn)題供學(xué)有余力的同學(xué)選做。
六、教學(xué)評價(jià)設計
評價(jià)方式的轉變是新課程改革的一大亮點(diǎn),課標指出:相對于結果,過(guò)程更能反映每個(gè)學(xué)生的發(fā)展變化,體現出學(xué)生成長(cháng)的歷程。因此,數學(xué)學(xué)習的評價(jià)既要重視結果,也要重視過(guò)程。結合“課標”對數學(xué)學(xué)習的評價(jià)建議,對本節課的教學(xué)我主要通過(guò)以下幾種方式進(jìn)行:
1、 通過(guò)與學(xué)生的問(wèn)答交流,發(fā)現其思維過(guò)程,在鼓勵的基礎上,糾正偏差,并對其進(jìn)行定
性的評價(jià)。
2、在學(xué)生討論、交流、協(xié)作時(shí),教師通過(guò)觀(guān)察,就個(gè)別或整體參與活動(dòng)的態(tài)度和表現做出評價(jià),以此來(lái)調動(dòng)學(xué)生參與活動(dòng)的積極性。
3、 通過(guò)練習來(lái)檢驗學(xué)生學(xué)習的效果,并在講評中,肯定優(yōu)點(diǎn),指出不足。
4、 通過(guò)作業(yè),反饋信息,再次對本節課做出評價(jià),以便查漏補缺。
【實(shí)用的高中數學(xué)說(shuō)課稿范文集錦六篇】相關(guān)文章:
實(shí)用的高中數學(xué)說(shuō)課稿范文集錦9篇08-16
實(shí)用的高中數學(xué)說(shuō)課稿范文集錦7篇08-16
實(shí)用的高中數學(xué)說(shuō)課稿范文集錦5篇08-14
實(shí)用的高中數學(xué)說(shuō)課稿范文集錦八篇08-13
實(shí)用的高中數學(xué)說(shuō)課稿范文集錦九篇08-13
實(shí)用的高中數學(xué)說(shuō)課稿范文集錦10篇08-12
實(shí)用的高中數學(xué)說(shuō)課稿集錦6篇08-06