精選高中數學(xué)說(shuō)課稿范文集合七篇
作為一名教學(xué)工作者,通常會(huì )被要求編寫(xiě)說(shuō)課稿,借助說(shuō)課稿可以提高教學(xué)質(zhì)量,取得良好的教學(xué)效果。那么你有了解過(guò)說(shuō)課稿嗎?以下是小編為大家收集的高中數學(xué)說(shuō)課稿7篇,希望能夠幫助到大家。
高中數學(xué)說(shuō)課稿 篇1
一、本節內容的地位與重要性
"分類(lèi)計數原理與分步計數原理"是《高中數學(xué)》一節獨特內容。這一節課與排列、組合的基本概念有著(zhù)緊密的聯(lián)系,通過(guò)對這一節課的學(xué)習,既可以讓學(xué)生接受、理解分類(lèi)計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學(xué)做好準備,起到奠基的重要作用。
二、關(guān)于教學(xué)目標的確定
根據兩個(gè)基本原理的地位和作用,我認為本節課的教學(xué)目標是:
。1)使學(xué)生正確理解兩個(gè)基本原理的概念;
。2)使學(xué)生能夠正確運用兩個(gè)基本原理分析、解決一些簡(jiǎn)單問(wèn)題;
。3)提高分析、解決問(wèn)題的能力
。4)使學(xué)生樹(shù)立"由個(gè)別到一般,由一般到個(gè)別"的認識事物的辯證唯物主義哲學(xué)思想觀(guān)點(diǎn)。
三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理
中學(xué)數學(xué)課程中引進(jìn)的關(guān)于排列、組合的計算公式都是以?xún)蓚(gè)計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開(kāi)兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問(wèn)題是學(xué)習本章的重點(diǎn)內容。
正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類(lèi),學(xué)生不是一下子就能理解深刻的,面對復雜的事物和現象學(xué)生對分類(lèi)和分步的選擇容易產(chǎn)生錯誤的認識,所以分類(lèi)計數原理和分步計數原理的準確應用是本節課的教學(xué)難點(diǎn)。必需使學(xué)生認清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類(lèi)還是分步,才能使學(xué)生接受概念并對如何運用這兩個(gè)基本原理有正確清楚的認識。教學(xué)中兩個(gè)基本問(wèn)題的引用及引伸,就是為突破難點(diǎn)做準備。
四、關(guān)于教學(xué)方法和教學(xué)手段的選用
根據本節課的內容及學(xué)生的實(shí)際水平,我采取啟發(fā)引導式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。
啟發(fā)引導式作為一種啟發(fā)式教學(xué)方法,體現了認知心理學(xué)的基本理論。符合教學(xué)論中的自覺(jué)性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結合、教師的主導作用與學(xué)生的主體地位相統一等原則,教學(xué)過(guò)程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過(guò)主動(dòng)思考、動(dòng)手操作來(lái)達到對知識的"發(fā)現"和接受,進(jìn)而完成知識的內化,使書(shū)本的知識成為自己的知識。
電腦多媒體以聲音、動(dòng)畫(huà)、影像等多種形式強化對學(xué)生感觀(guān)的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習興趣,加大一堂課的信息容量,使教學(xué)目標更完美地體現。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來(lái)體現,更好地為教學(xué)服務(wù)。
五、關(guān)于學(xué)法的指導
"授人以魚(yú),不如授人以漁",在教學(xué)過(guò)程中,不但要傳授學(xué)生課本知識,還要培養學(xué)生主動(dòng)觀(guān)察、主動(dòng)思考、自我發(fā)現的學(xué)習能力,增強學(xué)生的綜合素質(zhì),從而達到教學(xué)的目標。教學(xué)中,教師創(chuàng )設疑問(wèn),學(xué)生想辦法解決疑問(wèn),通過(guò)教師的啟發(fā)點(diǎn)撥,類(lèi)比推理,在積極的雙邊活動(dòng)中,學(xué)生找到了解決疑難的方法。整個(gè)過(guò)程貫穿"設疑"——"思索"——"發(fā)現"——"解惑"四個(gè)環(huán)節,學(xué)生隨時(shí)對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過(guò)程,符合學(xué)生認知水平,培養了學(xué)習能力。
六、關(guān)于教學(xué)程序的設計
。ㄒ唬┱n題導入
這是本章的第一節課,是起始課,講起始課時(shí),把這一學(xué)科的內容作一個(gè)大概的介紹,能使學(xué)生從一開(kāi)始就對將要學(xué)習的知識有一個(gè)初步的了解,并為下面的學(xué)習打下思想基礎。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問(wèn)題,引出學(xué)習本節的必要性,明確研究計數方法是本章內容的獨特性,從應用的廣泛看學(xué)習本章內容的重要性。同時(shí)板書(shū)課題(分類(lèi)計數原理與分步計數原理)
這樣做,能使學(xué)生明白本節內容的地位和作用,激發(fā)其學(xué)習新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準備。
。ǘ┬抡n講授
通過(guò)幻燈片給出問(wèn)題,配圖分析,講清坐火車(chē)與坐汽車(chē)兩類(lèi)方法均可,每類(lèi)中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。
緊跟著(zhù)給出:
引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不同的走法?
引伸2:若完成一件事,有 類(lèi)辦法。在第1類(lèi)辦法中有 種不同方法,在第2類(lèi)辦法中有 種不同的方法,……,在第 類(lèi)辦法中有 種不同方法,每一類(lèi)中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?
這個(gè)問(wèn)題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生接受分類(lèi)計數原理做好了準備。
板書(shū)分類(lèi)計數原理內容:
完成一件事,有 類(lèi)辦法。在第1類(lèi)辦法中有 種不同方法,在第2類(lèi)辦法中有 種不同的方法,……,在第 類(lèi)辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱(chēng)加法原理)
此時(shí),趁學(xué)生對于原理有了一個(gè)較清晰的認識,引導學(xué)生分析分類(lèi)計數原理內容,啟發(fā)總結得下面三點(diǎn)注意:(出示幻燈片)
。1)各分類(lèi)之間相互獨立,都能完成這件事;
。2)根據問(wèn)題的特點(diǎn)在確定的分類(lèi)標準下進(jìn)行分類(lèi);
。3)完成這件事的任何一種方法必屬于某一類(lèi),并且分別屬于不同兩類(lèi)的兩種方法都是不同的方法。
這樣做加深學(xué)生對分類(lèi)計數原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。
接下來(lái)給出問(wèn)題2:(出示幻燈片)
由A村去B村的道路有3條,由B村去C村的道路有2條(見(jiàn)圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?
提出問(wèn)題:?jiǎn)?wèn)題1與問(wèn)題2同是研究從甲地到乙地的不同走法,請找出這兩個(gè)問(wèn)題的不之處?學(xué)生會(huì )發(fā)現問(wèn)題1中采用乘火車(chē)或乘汽車(chē)都可以從甲地到乙地,而問(wèn)題2中必須經(jīng)過(guò)先乘火車(chē)后乘汽車(chē)兩個(gè)步驟才能完成從甲地到乙地這件事。
問(wèn)題2的講授采用給出問(wèn)題,配圖分析,組織討論,強調分步。用多媒體配不同的顏色閃現出六種不同的走法,讓學(xué)生列式求出不同走法數,并列舉所有走法。
歸納得出:分步計數原理(板書(shū)原理內容)
分步計數原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有
N=m1×m2×…×mn
種不同的方法。
同樣趁學(xué)生對定理有一定的認識,引導學(xué)生分析分步計數原理內容,啟發(fā)總結得下面三點(diǎn)注意:(出示幻燈片)
。1) 各步驟相互依存,只有各個(gè)步驟完成了,這件事才算完成;
。2) 根據問(wèn)題的特點(diǎn)在確定的分步標準下分步;
。3) 分步時(shí)要注意滿(mǎn)足完成一件事必須并且只需連續完成這N個(gè)步驟這件事才算完成。
。ㄈ⿷门e例
教材例1:(書(shū)架取書(shū)問(wèn)題)引導學(xué)生分析解答,注意區分是分類(lèi)還是分步。
例2:由數字0,1,2,3,4可以組成多少個(gè)三位整數(各位上的數字允許重復)?本題設置了4個(gè)問(wèn)題:
。1) 每一個(gè)三位數是由什么構成的?(三個(gè)整數字)
。2) 023是一個(gè)三位數嗎?(百位上不能是0)
。3) 組成一個(gè)三位數需要怎么做?(分成三個(gè)步驟來(lái)完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個(gè)位上的數字)
。4) 怎樣表述?
教師巡視指導、并歸納
解:要組成一個(gè)三位數,需要分成三個(gè)步驟:第一步確定百位上的數字,從1~4這4個(gè)數字中任選一個(gè)數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個(gè)位上的數字,仍有5種選法。根據分步計數原理,得到可以組成的三位整數的個(gè)數是N=4×5×5=100.
答:可以組成100個(gè)三位整數。
。ń處煹倪B續發(fā)問(wèn)、啟發(fā)、引導,幫助學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問(wèn)題能力有所提高。
教師在第二個(gè)例題中給出板書(shū)示范,能幫助學(xué)生進(jìn)一步加深對兩個(gè)基本原理實(shí)質(zhì)的理解,周密的考慮,準確的表達、規范的書(shū)寫(xiě),對于學(xué)生周密思考、準確表達、規范書(shū)寫(xiě)良好習慣的形成有著(zhù)積極的促進(jìn)作用,也可以為學(xué)生后面應用兩個(gè)基本原理解排列、組合綜合題打下基礎)
。ㄋ模w納小結
師:什么時(shí)候用分類(lèi)計數原理、什么時(shí)候用分步計數原理呢?
生:分類(lèi)時(shí)用分類(lèi)計數原理,分步時(shí)用分步計數原理。
師:應用兩個(gè)基本原理時(shí)需要注意什么呢?
生:分類(lèi)時(shí)要求各類(lèi)辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨立的。
。ㄎ澹┱n堂練習
P222:練習1~4.學(xué)生板演第4題
。▽τ陬}4,教師有必要對三個(gè)多項式乘積展開(kāi)后各項的構成給以提示)
。┎贾米鳂I(yè)
P222:練習5,6,7.
補充題:
1.在所有的兩位數中,個(gè)位數字小于十位數字的共有多少個(gè)?
。ㄌ崾荆喊词簧蠑底值拇笮】梢苑譃9類(lèi),共有9+8+7+…+2+1=45個(gè)個(gè)位數字小于十位數字的兩位數)
2.某學(xué)生填報高考志愿,有m個(gè)不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫(xiě)3個(gè)不同的志愿,求該生填寫(xiě)志愿的方式的種數。
。ㄌ崾荆盒枰慈齻(gè)志愿分成三步。共有m(m-1)(m-2)種填寫(xiě)方式)
3.在所有的三位數中,有且只有兩個(gè)數字相同的三位數共有多少個(gè)?
。ㄌ崾荆嚎梢杂孟旅娣椒▉(lái)求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類(lèi)中每類(lèi)都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)只有兩個(gè)數字相同的三位數)
4.某小組有10人,每人至少會(huì )英語(yǔ)和日語(yǔ)中的一門(mén),其中8人會(huì )英語(yǔ),5人會(huì )日語(yǔ),(1)從中任選一個(gè)會(huì )外語(yǔ)的人,有多少種選法?(2)從中選出會(huì )英語(yǔ)與會(huì )日語(yǔ)的各1人,有多少種不同的選法?
。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會(huì )英語(yǔ)又會(huì )日語(yǔ)。(1)N=5+2+3;(2)N=5×2+5×3+2×3)
只要大家用心學(xué)習,認真復習,就有可能在高中的戰場(chǎng)上考取自己理想的成績(jì)。
高中數學(xué)說(shuō)課稿 篇2
【一】教學(xué)背景分析
1.教材結構分析
《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節.圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用.圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用.
2.學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的.但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難.另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強.
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3.教學(xué)目標
(1) 知識目標:①掌握圓的標準方程;
、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;
、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題.
(2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W(xué)生用數學(xué)的意識.
(3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;
、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣.
根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4. 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標準方程的求法及其應用.
(2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題.
為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1.教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上.另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程.
2.學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓.通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程. 下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
【三】教學(xué)過(guò)程與設計
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:
創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖.
首先:縱向敘述教學(xué)過(guò)程
(一)創(chuàng )設情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?
通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節.
(二)深入探究——獲得新知
問(wèn)題二 1.根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2.如果圓心在,半徑為時(shí)又如何呢?
好學(xué)教育:
這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程.然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究.我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法.
得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節.
(三)應用舉例——鞏固提高
I.直接應用 內化新知
問(wèn)題三 1.寫(xiě)出下列各圓的標準方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn).
2.寫(xiě)出圓的圓心坐標和半徑.
我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備.
II.靈活應用 提升能力
問(wèn)題四 1.求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程.
2.求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程.
3.已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程.
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?
我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程.第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓.第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間.最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮.
III.實(shí)際應用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0.01m).
好學(xué)教育:
我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識.
(四)反饋訓練——形成方法
問(wèn)題六 1.求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程.
2.求圓過(guò)點(diǎn)的切線(xiàn)方程.
3.求圓過(guò)點(diǎn)的切線(xiàn)方程.
接下來(lái)是第四環(huán)節——反饋訓練.這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心.另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果.
(五)小結反思——拓展引申
1.課堂小結
把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:.
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:.
2.分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程.
3.激發(fā)新疑
問(wèn)題七 1.把圓的標準方程展開(kāi)后是什么形式?
2.方程表示什么圖形?
在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計: 橫向闡述教學(xué)設計
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
好學(xué)教育:
求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn).
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五.這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破.
(二)學(xué)生主體 教師主導 探究主線(xiàn)
本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終.從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的.另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù).
(三)培養思維 提升能力 激勵創(chuàng )新
為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力.在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.
以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變.最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”.
高中數學(xué)說(shuō)課稿 篇3
尊敬的各位評委、各位老師大家好!我說(shuō)課的題目是《直線(xiàn)的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書(shū)數學(xué)必修2(A版),是第三章直線(xiàn)與方程中的第2節的第一課時(shí)3.2.1直線(xiàn)的點(diǎn)斜式方程的內容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。
一、教學(xué)背景的分析
1.教材分析
直線(xiàn)的方程是學(xué)生在初中學(xué)習了一次函數的概念和圖象及高中學(xué)習了直線(xiàn)的斜率后進(jìn)行研究的。直線(xiàn)的方程屬于解析幾何學(xué)的基礎知識,是研究解析幾何學(xué)的開(kāi)始,對后續研究?jì)蓷l直線(xiàn)的位置關(guān)系、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容,無(wú)論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內容之一!爸本(xiàn)的點(diǎn)斜式方程”可以說(shuō)是直線(xiàn)的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線(xiàn)作為常見(jiàn)的最簡(jiǎn)單的曲線(xiàn),在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。同時(shí)在這一節中利用坐標法來(lái)研究曲線(xiàn)的數形結合、幾何直觀(guān)等數學(xué)思想將貫穿于我們整個(gè)高中數學(xué)教學(xué)。
2.學(xué)情分析
我校的生源較差,學(xué)生的基礎和學(xué)習習慣都有待加強。又由于剛開(kāi)始學(xué)習解析幾何,第一次用坐標法來(lái)求曲線(xiàn)的方程,在學(xué)習過(guò)程中,會(huì )出現“數”與“形”相互轉化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面更有待加強。
根據上述教材分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3.教學(xué)目標
(1)了解直線(xiàn)的方程的概念和直線(xiàn)的點(diǎn)斜式方程的推導過(guò)程及方法;
(2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì )準確地使用直線(xiàn)的點(diǎn)斜式、斜截式方程 ;
(3)從實(shí)例入手,通過(guò)類(lèi)比、推廣、特殊化等,使學(xué)生體會(huì )從特殊到一般再到特殊的認知規律;
(4)提倡學(xué)生用舊知識解決新問(wèn)題,通過(guò)體會(huì )直線(xiàn)的斜截式方程與一次函數的關(guān)系等活動(dòng),培養學(xué)生主動(dòng)探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。
4. 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn): 直線(xiàn)點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應用。
(2)難點(diǎn):直線(xiàn)的方程的概念,點(diǎn)斜式方程的推導及點(diǎn)斜式、斜截式方程的應用。
二、教法學(xué)法分析
1.教法分析:根據學(xué)情,為了能調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“實(shí)例引導的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數化,用代數的語(yǔ)言描述直線(xiàn)的幾何要素及其關(guān)系,進(jìn)而將直線(xiàn)的問(wèn)題轉化為直線(xiàn)方程的問(wèn)題,通過(guò)對直線(xiàn)的方程的研究,最終解決有關(guān)直線(xiàn)的一些簡(jiǎn)單的問(wèn)題。另外可以恰當的利用多媒體課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習興趣。
2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結、質(zhì)疑、運用,體會(huì )學(xué)習數學(xué)的樂(lè )趣;通過(guò)推導直線(xiàn)的點(diǎn)斜式方程的學(xué)習,要了解用坐標法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線(xiàn),進(jìn)而可求出直線(xiàn)的點(diǎn)斜式方程,要能體會(huì )“形”與“數”的轉化思想。
下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
三、教學(xué)過(guò)程的設計及實(shí)施
整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節,學(xué)習或涉及四個(gè)概念:
溫故知新,澄清概念----直線(xiàn)的方程
深入探究,獲得新知--------點(diǎn)斜式
拓展知識,再獲新知--------斜截式
小結引申,思維延續--------兩點(diǎn)式
平面上的點(diǎn)可以用坐標表示,直線(xiàn)的傾斜程度可以用斜率表示,那么平面上的直線(xiàn)如何表示呢?這就是本節要學(xué)習的內容。
(一)溫故知新,澄清概念----直線(xiàn)的方程
問(wèn)題一:畫(huà)出一次函數y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標有何關(guān)系?
[學(xué)生活動(dòng)] 通過(guò)動(dòng)手畫(huà)圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。
[教師活動(dòng)] 對于不同學(xué)生的表述進(jìn)行分析、歸納,用規范的語(yǔ)言對方程和直線(xiàn)的方程進(jìn)行描述。
[設計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線(xiàn)的方程的概念,試圖做到“用學(xué)生已有的數學(xué)知識去學(xué)數學(xué)”,從而突破難點(diǎn)。通過(guò)對這個(gè)問(wèn)題的研究,一方面認識到以方程的解為坐標的點(diǎn)在直線(xiàn)上,另一方面認識到直線(xiàn)上的點(diǎn)的坐標滿(mǎn)足方程;從而使同學(xué)意識到直線(xiàn)可以由直線(xiàn)上任意一點(diǎn)P(x,y)的坐標x和y之間的等量關(guān)系來(lái)表示。
問(wèn)題二:若直線(xiàn)經(jīng)過(guò)點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線(xiàn)l上。
(1) 若點(diǎn)P在直線(xiàn)l上從A點(diǎn)開(kāi)始運動(dòng),橫坐標增加1時(shí),點(diǎn)P的坐標是 ;
(2)畫(huà)出直線(xiàn)l,你能求出直線(xiàn)l的方程嗎?
(3)若點(diǎn)P在直線(xiàn)l上運動(dòng),設P點(diǎn)的坐標為(x,y),你會(huì )有什么方法找到x,y滿(mǎn)足的關(guān)系式?
[學(xué)生活動(dòng)]學(xué)生獨立思考5分鐘,必要的話(huà)可進(jìn)行分組討論、合作交流。
[教師活動(dòng)]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導學(xué)生觀(guān)察發(fā)現,得到當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線(xiàn)的斜率恒等于-2,體會(huì )“動(dòng)中有靜”的思維策略。
[設計意圖]復習斜率公式;待定系數法;初步體會(huì )坐標法。同時(shí)引導學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數學(xué)簡(jiǎn)潔的美感和嚴謹性。還要指出這樣的事實(shí):當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí),P的坐標(x,y)滿(mǎn)足方程2x+y-1=0.反過(guò)來(lái),以方程2x+y-1=0的解為坐標的點(diǎn)在直線(xiàn)l上。把學(xué)生的思維引到用坐標法研究直線(xiàn)的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
(二)深入探究,獲得新知----點(diǎn)斜式
問(wèn)題三: ① 若直線(xiàn)l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線(xiàn)l的方程。
、谥本(xiàn)的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線(xiàn)?
[學(xué)生活動(dòng)] ①學(xué)生敘述,老師板書(shū),強調斜率公式與點(diǎn)斜式的區別。 ②指導學(xué)生用筆轉一轉不難發(fā)現,當直線(xiàn)l的傾斜角α=90°時(shí),斜率k不存在,當然不存在點(diǎn)斜式方程;討論k=0的情況;觀(guān)察并總結點(diǎn)斜式方程的特征。
[設計意圖] 由特殊到一般的學(xué)習思路,突破難點(diǎn),培養學(xué)生的歸納概括能力。通過(guò)對這個(gè)問(wèn)題的探究使學(xué)生獲得直線(xiàn)點(diǎn)斜式方程;由②知:當直線(xiàn)斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線(xiàn),培養思維的嚴謹性,這時(shí)直線(xiàn)l與y軸平行,它上面的每一點(diǎn)的橫坐標都等于x0,直線(xiàn)l的方程是:x=x0;通過(guò)學(xué)生的觀(guān)察討論總結,明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎練習,突破重難點(diǎn)。
問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿(mǎn)足下列條件的直線(xiàn)的方程
(1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。
[練習]P95.1、2。
[學(xué)生活動(dòng)]學(xué)生獨立完成并展示或敘述,老師點(diǎn)評。
[設計意圖]充分用好教材的例題和習題,因為這些題都是專(zhuān)家精心編排的,充分體現必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節的教學(xué),指導下個(gè)環(huán)節的安排;突破重點(diǎn)內容后,進(jìn)入第三環(huán)節。
(三)拓展知識,再獲新知----斜截式
問(wèn)題五:(1)一條直線(xiàn)與y軸交于點(diǎn)(0,3),直線(xiàn)的斜率為2,求這條直線(xiàn)的方程。
(2)若直線(xiàn)l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線(xiàn)l的方程。
[學(xué)生活動(dòng)]學(xué)生獨立完成后口述,教師板書(shū)。
[設計意圖] 由一般到特殊再到一般,培養學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強調截距不是距離。類(lèi)比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數的關(guān)系。通過(guò)下面的基礎練習,突破重點(diǎn)。
[練習]P95.3。
[設計意圖]充分用好教材習題,及時(shí)反饋本環(huán)節的教學(xué)情況,指導下個(gè)環(huán)節的安排。
(四)小結引申,思維延續----兩點(diǎn)式
課堂小結 1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線(xiàn)方程的方法:公式法、等斜率法、待定系數法。)
2、哪些地方還沒(méi)有學(xué)好?
問(wèn)題六:(1)直線(xiàn)l過(guò)(1,0)點(diǎn),且與直線(xiàn)平行,求直線(xiàn)l的方程。
(2)直線(xiàn)l過(guò)點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線(xiàn)l的方程。
[學(xué)生活動(dòng)]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。
[教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話(huà),可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式;沒(méi)時(shí)間就布置分層作業(yè)。
[設計意圖](1)小題與上一節的平行綜合,學(xué)生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機會(huì ),以及課后學(xué)習的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節課研究直線(xiàn)的兩點(diǎn)式方程作了重要的準備。
分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.
選做題:P100.A組:1.(4)(5)(6).
[設計意圖]通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展。
四、教學(xué)特點(diǎn)分析
(一)實(shí)例引導。在字母運算、公式推導之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習知識的可能和興趣,關(guān)注學(xué)困生的成長(cháng)與發(fā)展。
(二)啟發(fā)式教學(xué)。教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內容,如:1.直角坐標系內的所有直線(xiàn)都有點(diǎn)斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會(huì )求直線(xiàn)在軸上的截距嗎?4.觀(guān)察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話(huà)與交流活動(dòng)。
(三)注重自主探究。設計問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區上,布設了由淺入深的學(xué)習環(huán)境突破重點(diǎn)、難點(diǎn),引導學(xué)生逐步發(fā)現知識的形成過(guò)程。設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng )造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。
高中數學(xué)說(shuō)課稿 篇4
尊敬的各位專(zhuān)家、評委:
上午好!
今天我說(shuō)課的課題是人教A版必修1第二章第二節《對數函數》。
我嘗試利用新課標的理念來(lái)指導教學(xué),對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評價(jià)分析五個(gè)方面來(lái)談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設計,敬請各位專(zhuān)家、評委批評指正。
一、教材分析
地位和作用
本章學(xué)習是在學(xué)生完成函數的第一階段學(xué)習(初中)的基礎上,進(jìn)行第二階段的函數學(xué)習。而對數函數作為這一階段的重要的基本初等函數之一,它是在學(xué)生已經(jīng)學(xué)習了指數函數及對數的內容,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用!皩岛瘮怠边@節教材,是在沒(méi)有學(xué)習反函數的基礎上研究的指數函數和對數函數的自變量和因變量之間的關(guān)系。同時(shí)對數函數作為常用數學(xué)模型在解決社會(huì )生活中的實(shí)例有著(zhù)廣泛的應用,本節課的學(xué)習為學(xué)生進(jìn)一步學(xué)習,參加生產(chǎn)和實(shí)際生活提供必要的基礎知識。
二、目標分析
。ㄒ唬、教學(xué)目標
根據《對數函數》在教材內容中的地位與作用,結合學(xué)情分析,本節課教學(xué)應實(shí)現如下的教學(xué)目標:
1、知識與技能
。1)、進(jìn)一步體會(huì )函數是描述變量之間的依賴(lài)關(guān)系的重要數學(xué)模型;
。2)、理解對數函數的概念、掌握對數函數的圖像和性質(zhì);
。3)、由實(shí)際問(wèn)題出發(fā),培養學(xué)生探索知識和抽象概括知識等方面的能力。
2、過(guò)程與方法
引導學(xué)生觀(guān)察,探尋變量和變量的對應關(guān)系,通過(guò)歸納、抽象、概括,自主建構對數函數的概念;體驗結合舊知識探索新知識,研究新問(wèn)題的快樂(lè )。
3、情感態(tài)度與價(jià)值觀(guān)
通過(guò)對對數函數函數圖像和性質(zhì)的探究過(guò)程,培養學(xué)生發(fā)現問(wèn)題,探索問(wèn)題,不斷超越的創(chuàng )新品質(zhì)。在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。
。ǘ┙虒W(xué)重點(diǎn)、難點(diǎn)及關(guān)鍵
1、重點(diǎn):對數函數的概念、圖像和性質(zhì);在教學(xué)中只有突出這個(gè)重點(diǎn),才能使教材脈絡(luò )分明,才能有利于學(xué)生聯(lián)系舊知識,學(xué)習新知識。
2、 難點(diǎn):底數a對對數函數的圖像和性質(zhì)的影響。
[關(guān)鍵]對數函數與指數函數的類(lèi)比教學(xué)。
由指數函數的圖像過(guò)渡到對數函數的圖像,通過(guò)類(lèi)比分析達到深刻地了解對數函數的圖像及其性質(zhì)是掌握重點(diǎn)和突破難點(diǎn)的關(guān)鍵,在教學(xué)中一定要使學(xué)生的思考緊緊圍繞圖像,數形結合,加強直觀(guān)教學(xué),使學(xué)生能形成以圖像為根本,以性質(zhì)為主體的知識網(wǎng)絡(luò ),同時(shí)在立體的講解中,重視加強題組的設計和變形,使教學(xué)真正體現出由淺入深,由易到難,由具體到抽象的特點(diǎn),從而突破重點(diǎn)、突破難點(diǎn)。
三、教法、學(xué)法分析
。ㄒ唬、教法
教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法:
1、啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現“對比聯(lián)系”、“數形結合”及“分類(lèi)討論”的思想方法;
4、投影儀演示法。
在整個(gè)過(guò)程中,應以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細觀(guān)察、類(lèi)比、想象的基礎上通過(guò)問(wèn)題串的形式加以引導點(diǎn)撥,與指數函數性質(zhì)對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺(jué)地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。
。ǘ、學(xué)法
教給學(xué)生方法比教給學(xué)生知識更重要,本節課注重調動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導:
1、對照比較學(xué)習法:學(xué)習對數函數,處處與指數函數相對照;
2、探究式學(xué)習法:學(xué)生通過(guò)分析、探索,得出對數函數的定義;
3、自主性學(xué)習法:通過(guò)實(shí)驗畫(huà)出函數圖像、觀(guān)察圖像自得其性質(zhì);
4、反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。
四、教學(xué)過(guò)程分析
。ㄒ唬、教學(xué)過(guò)程設計
1、創(chuàng )設情境,提出問(wèn)題。
在某細胞分裂過(guò)程中,細胞個(gè)數y是分裂次數x的函數y=2x,因此,知道x的值(輸入值是分裂次數)就能求出y的值(輸出值為細胞的個(gè)數),這樣就建立了一個(gè)細胞個(gè)數和分裂次數x之間的函數關(guān)系式。
問(wèn)題一:這是一個(gè)怎樣的函數模型類(lèi)型呢?
設計意圖
復習指數函數
問(wèn)題二:現在我們來(lái)研究相反的問(wèn)題,如果知道了細胞的個(gè)數y,如何求分裂的次數x呢?這將會(huì )是我們研究的哪類(lèi)問(wèn)題?
設計意圖
為了引出對數函數
問(wèn)題三:在關(guān)系式x=log2y每輸入一個(gè)細胞的個(gè)數y的值,是否一定都能得到唯一一個(gè)分裂次數x的值呢?
設計意圖
。1)、為了讓學(xué)生更好地理解函數;
。2)、為了讓學(xué)生更好地理解對數函數的概念。
2、引導探究,建構概念。
。1)、對數函數的概念:
同樣,在前面提到的發(fā)射性物質(zhì),經(jīng)過(guò)的時(shí)間x年與物質(zhì)剩余量y的關(guān)系式為y=0.84x,我們也可以把它改成對數式x=log0.84y,其中x年夜可以看作物質(zhì)剩余量y的函數,可見(jiàn)這樣的問(wèn)題在現實(shí)生活中還是不少的。
設計意圖
前面的問(wèn)題情景的底數為2,而這個(gè)問(wèn)題情景的底數是0.84,我認為這個(gè)情景并不是多余的,其實(shí)它暗示了對數函數的底數與指數函數的底數一樣有兩類(lèi)。
但是在習慣上,我們用x表示自變量,用y表示函數值。
問(wèn)題一:你能把以上兩個(gè)函數表示出來(lái)嗎?
問(wèn)題二:你能得到此類(lèi)函數的一般式嗎?
設計意圖
體現出了由特殊到一般的數學(xué)思想
問(wèn)題三:在y=logax中,a有什么限制條件嗎?請結合指數式給以解釋。
問(wèn)題四:你能根據指數函數的定義給出對數函數的定義嗎?
問(wèn)題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?
設計意圖
前四個(gè)問(wèn)題是為了引導出對數函數的概念,然而,光有前四個(gè)問(wèn)題還是不夠的,學(xué)生最容易忽略或最不容易理解的是函數的定義域,所以設計這個(gè)問(wèn)題是為了讓學(xué)生更好地理解對數函數的定義域。
。2)、對數函數的圖像與性質(zhì)
問(wèn)題:有了研究指數函數的經(jīng)歷,你覺(jué)得下面該學(xué)習什么內容了?
設計意圖
提示學(xué)生進(jìn)行類(lèi)比學(xué)習
合作探究1:借助計算器在同一直角坐標系中畫(huà)出下列兩組函數的圖像,并觀(guān)察各族函數圖像,探求他們之間的關(guān)系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:當a>0,a≠ 1,函數y=ax與y=logax圖像之間有什么關(guān)系?
設計意圖
在這兒體現“從特殊到一般”、“從具體到抽象”的方法。
合作探究3:分析你所畫(huà)的兩組函數的圖像,對照指數函數的性質(zhì),總結歸納對數函數的性質(zhì)。
設計意圖
學(xué)生討論并交流各自的而發(fā)現成果,教師結合學(xué)生的交流,適時(shí)歸納總結,并板書(shū)對數函數的性質(zhì))。問(wèn)題1:對數函數y=logax( a>0,a≠1,)是否具有奇偶性,為什么?
問(wèn)題2:對數函數y=logax( a>0,a≠1,),當a>1時(shí),x取何值,y>0,x取何值,y<0,當0 問(wèn)題3:對數式logab的值的符號與a,b的取值之間有何關(guān)系? 知識拓展:函數y=ax稱(chēng)為y=logax的反函數,反之,也成立,一般地,如果函數y=f(x)存在反函數,那么它的反函數記作y=f-1(x)。 3、自我嘗試,初步應用。 例1:求下列函數的定義域 y=log0.2(4-x)(該題主要考查對函數y=logax的定義域(0,+∞)這一限制條件,根據函數的解析式求得不等式,解對應的不等式。) 例2:利用對數函數的性質(zhì),比較下列各組數中兩個(gè)數的大。 。1)、㏒2 3.4,log2 3.8; 。2)、log0.5 1.8,log0.5 2.1; 。3)、log7 5,log6 7 。ㄔ谶@兒要求學(xué)生通過(guò)回顧指數函數的有關(guān)性質(zhì)比較大小的步驟和方法,完成完成前兩題,最后一題可以通過(guò)教師的適當點(diǎn)撥完成解答,最后進(jìn)行歸納總結比較數的大小常用的方法) 合作探究4:已知logm 4 設計意圖 該題不僅運用了對數函數的圖像和性質(zhì),還培養了學(xué)生數形結合、分類(lèi)討論等數學(xué)思想。 4、當堂訓練,鞏固深化。 通過(guò)學(xué)生的主體性參與,使學(xué)生深刻體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識的再次深化。 采用課后習題1,2,3. 5、小結歸納,回顧反思。 小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。 。1)、小結: 、賹岛瘮档母拍 、趯岛瘮档膱D像和性質(zhì) 、劾脤岛瘮档男再|(zhì)比較大小的一般方法和步驟, 。2)、反思 我設計了三個(gè)問(wèn)題 、、通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識? 、、通過(guò)本節課的學(xué)習,你最大的體驗是什么? 、、通過(guò)本節課的學(xué)習,你掌握了哪些技能? 。ǘ、作業(yè)設計 作業(yè)分為必做題和選做題,必做題是對本節課學(xué)生知識水平的反饋,選做題是對本節課內容的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習氛圍的形成。 我設計了以下作業(yè): 必做題:課后習題A 1,2,3; 選做題:課后習題B 1,2,3; (三)、板書(shū)設計 板書(shū)要基本體現課堂的內容和方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互關(guān)系:能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。 五、評價(jià)分析 學(xué)生學(xué)習的結果評價(jià)固然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用了及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對本節是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。 謝謝! 各位老師你們好!今天我要為大家講的課題是 首先,我對本節教材進(jìn)行一些分析: 一、教材分析(說(shuō)教材): 1. 教材所處的地位和作用: 本節內容在全書(shū)和章節中的作用是:《 》是 中數學(xué)教材第 冊第 章第 節內容。在此之前學(xué)生已學(xué)習了 基礎,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學(xué)科和今后的學(xué)習打下基礎。 2. 教育教學(xué)目標: 根據上述教材分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標: 。1)知識目標: (2)能力目標:通過(guò)教學(xué)初步培養學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團結協(xié)作,語(yǔ)言表達能力以及通過(guò)師生雙邊活動(dòng),初步培養學(xué)生運用知識的能力,培養學(xué)生加強理論聯(lián)系實(shí)際的能力,(3)情感目標:通過(guò) 的教學(xué)引導學(xué)生從現實(shí)的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習興趣。 3. 重點(diǎn),難點(diǎn)以及確定依據: 本著(zhù)課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn) 重點(diǎn): 通過(guò) 突出重點(diǎn) 難點(diǎn): 通過(guò) 突破難點(diǎn) 關(guān)鍵: 下面,為了講清重難上點(diǎn),使學(xué)生能達到本節課設定的目標,再從教法和學(xué)法上談?wù)劊?/p> 二、教學(xué)策略(說(shuō)教法) 1. 教學(xué)手段: 如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現教學(xué)目標。在教學(xué)過(guò)程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟澱n的特點(diǎn): 應著(zhù)重采用 的教學(xué)方法。 2. 教學(xué)方法及其理論依據:堅持“以學(xué)生為主體,以教師為主導”的原則,根據學(xué)生的心理發(fā)展規律,采用學(xué)生參與程度高的學(xué)導式討論教學(xué)法。在學(xué)生看書(shū),討論的基礎上,在老師啟發(fā)引導下,運用問(wèn)題解決式教法,師生交談法,圖像信號法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎差的學(xué)生也能有表現機會(huì ),培養其自信心,激發(fā)其學(xué)習熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎上得到發(fā)展。同時(shí)通過(guò)課堂練習和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識回到社會(huì )實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數學(xué)知識,學(xué)習基礎性的知識和技能,在教學(xué)中積極培養學(xué)生學(xué)習興趣和動(dòng)機,明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。 3. 學(xué)情分析:(說(shuō)學(xué)法) 我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。 。1) 學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué) 生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習方式,定能激發(fā)學(xué)生興趣,有效地培養學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散 。2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現知識遺忘,所以應全面系統的去講述;學(xué)生學(xué)習本節課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應予以簡(jiǎn)單明白,深入淺出的分析。 。3) 動(dòng)機和興趣上:明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力 最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程: 4. 教學(xué)程序及設想: 。1)由 引入:把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當肖學(xué)習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。 。2)由實(shí)例得出本課新的知識點(diǎn) 。3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于學(xué)生的思維能力。 。4)能力訓練。課后練習使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。 。5)總結結論,強化認識。知識性的內容小結,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的'地位和應用,并且逐步培養學(xué)生良好的個(gè)性品質(zhì)目標。 。6)變式延伸,進(jìn)行重構,重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。 。7)板書(shū) 。8)布置作業(yè)。 針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高, 教學(xué)程序: 課堂結構:復習提問(wèn),導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分 一、地位作用 數列是高中數學(xué)重要的內容之一,等比數列是在學(xué)習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個(gè)高中數學(xué)內容中數列與已學(xué)過(guò)的函數及后面的數列極限有密切聯(lián)系,它也是培養學(xué)生數學(xué)能力的良好題材,它可以培養學(xué)生的觀(guān)察、分析、歸納、猜想及綜合解決問(wèn)題的能力。 基于此,設計本節的數學(xué)思路上: 利用類(lèi)比的思想,聯(lián)系等差數列的概念及通項公式的學(xué)習方法,采取自學(xué)、引導、歸納、猜想、類(lèi)比總結的教學(xué)思路,充分發(fā)揮學(xué)生主觀(guān)能動(dòng)性,調動(dòng)學(xué)生的主體地位,充分體現教為主導、學(xué)為主體、練為主線(xiàn)的教學(xué)思想。 二、教學(xué)目標 知識目標:1)理解等比數列的概念 2)掌握等比數列的通項公式 3)并能用公式解決一些實(shí)際問(wèn)題 能力目標:培養學(xué)生觀(guān)察能力及發(fā)現意識,培養學(xué)生運用類(lèi)比思想、解決分析問(wèn)題的能力。 三、教學(xué)重點(diǎn) 1)等比數列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn) 2)等比數列的通項公式的推導及應用 四、教學(xué)難點(diǎn) “等比”的理解及利用通項公式解決一些問(wèn)題。 五、教學(xué)過(guò)程設計 (一)預習自學(xué)環(huán)節。(8分鐘) 首先讓學(xué)生重新閱讀課本105頁(yè)國際象棋發(fā)明者的故事,并出示預習提綱,要求學(xué)生閱讀課本P122至P123例1上面。 回答下列問(wèn)題 1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數列的定義。 2)觀(guān)察以下幾個(gè)數列,回答下面問(wèn)題: 1, , , ,…… 。1,-2,-4,-8…… 1,2,-4,8…… 。1,-1,-1,-1,…… 1,0,1,0…… 、儆心膸讉(gè)是等比數列?若是公比是什么? 、诠萹為什么不能等于零?首項能為零嗎? 、酃萹=1時(shí)是什么數列? 、躴>0時(shí)數列遞增嗎?q<0時(shí)遞減嗎? 3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導? 4)等比數列通項公式與函數關(guān)系怎樣? (二)歸納主導與總結環(huán)節(15分鐘) 這一環(huán)節主要是通過(guò)學(xué)生回答為主體,教師引導總結為主線(xiàn)解決本節兩個(gè)重點(diǎn)內容。 通過(guò)回答問(wèn)題(1)(2)給出等比數列的定義并強調以下幾點(diǎn):①定義關(guān)鍵字“第二項起”“常數”; 、谝龑W(xué)生用數學(xué)語(yǔ)言表達定義: =q(n≥2);③q=1時(shí)為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類(lèi)討論的思想。 、躴>0時(shí)等比數列單調性不定,q<0為擺動(dòng)數列,類(lèi)比等差數列d>0為遞增數列,d<0為遞減數列。 通過(guò)回答問(wèn)題(3)回憶等差數列的推導方法,比較兩個(gè)數列定義的不同,引導推出等比數列通項公式。 法一:歸納法,學(xué)會(huì )從特殊到一般的方法,并從次數中發(fā)現規律,培養觀(guān)察力。 法二:迭乘法,聯(lián)系等差數列“迭加法”,培養學(xué)生類(lèi)比能力及新舊知識轉化能力。 尊敬的各位專(zhuān)家、評委: 上午好! 今天我說(shuō)課的課題是人教A版必修2第二章第二節《直線(xiàn)與圓的位置關(guān)系》。 我嘗試利用新課標的理念來(lái)指導教學(xué),對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評價(jià)分析五個(gè)方面來(lái)談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設計,敬請各位專(zhuān)家、評委批評指正。 一、教材分析 地位和作用 學(xué)生在初中的學(xué)習中已經(jīng)了解直線(xiàn)與圓的位置關(guān)系,并知道可以利用直線(xiàn)與圓的焦點(diǎn)的個(gè)數以及圓心與直線(xiàn)的距離d與半徑r的關(guān)系判斷直線(xiàn)與圓的位置關(guān)系。但是,在初中學(xué)習時(shí),利用圓心與直線(xiàn)的距離d與半徑r的關(guān)系判斷直線(xiàn)與圓的位置關(guān)系的方法卻以結論性的形式呈現。在高一學(xué)習了解析幾何后,要考慮的問(wèn)題是如何掌握由直線(xiàn)和圓的方程判斷直線(xiàn)與圓的位置關(guān)系的方法。解決問(wèn)題的方法主要是幾何法和代數法。其中幾何法應該是在初中學(xué)習的基礎上,結合高中所學(xué)的點(diǎn)到直線(xiàn)的距離公式求出圓心與直線(xiàn)的距離d后,比較與半徑r的關(guān)系。從而作出判斷,適可而止第引進(jìn)用聯(lián)立方程組轉化為二次方程判別根的“純代數判別法”,并與“幾何法”欣賞比較,以決優(yōu)劣,從而也深化了基本的“幾何法”。含參數的問(wèn)題、簡(jiǎn)單的弦的問(wèn)題、切線(xiàn)問(wèn)題等綜合問(wèn)題作為進(jìn)一步的拓展提高或綜合應用,也適度第引入課堂教學(xué)中,但以深化“判定直線(xiàn)與圓的位置關(guān)系”為目的,要控制難度。雖然學(xué)生學(xué)習解析幾何了,但是把幾何問(wèn)題代數化無(wú)論是思維習慣還是具體轉化方法,學(xué)生仍是似懂非懂,因此應不斷強化,逐漸內化為學(xué)生的習慣和基本素質(zhì)。 二、目標分析 (一)、教學(xué)目標 1、知識與技能 理解直線(xiàn)與圓的位置的種類(lèi); 利用平面直角坐標系中點(diǎn)到直線(xiàn)的距離公式求圓心到直線(xiàn)的距離; 會(huì )用點(diǎn)到直線(xiàn)的距離來(lái)判斷直線(xiàn)與圓的位置關(guān)系。 2、過(guò)程與方法 設直線(xiàn)L:ax+by+c=o,圓C:x2+y2+Dx+Ey+F=0,圓的半徑為r,圓心(- ,- )到直線(xiàn)的距離為d,則判別直線(xiàn)與圓的位置關(guān)系的根據有以下幾點(diǎn): 當d >r時(shí),直線(xiàn)l與圓c相離; 當d =r時(shí),直線(xiàn)l與圓c相切; 當d 3、情態(tài)與價(jià)值觀(guān) 讓學(xué)生通過(guò)觀(guān)察圖形,理解并掌握直線(xiàn)與圓的位置關(guān)系,培養學(xué)生數形結合的思想。 (二)、教學(xué)重點(diǎn)與難點(diǎn) 1、重點(diǎn):直線(xiàn)與圓的位置關(guān)系的幾何圖形及其判斷方法。 2、難點(diǎn):用坐標判斷直線(xiàn)與圓的位置關(guān)系。 三、教法學(xué)法分析 (一)、教法 教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數學(xué)思想方法,提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法: 1、啟發(fā)引導學(xué)生思考、分析、實(shí)驗、探索、歸納。 2、采用“從特殊到一般”、“從具體到抽象”的方法。 3、體現“對比聯(lián)系”、“數形結合”及“分類(lèi)討論”的思想方法。 4、投影儀演示法。 在整個(gè)過(guò)程中,應以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細觀(guān)察、類(lèi)比、想象的基礎上通過(guò)問(wèn)題串的形式加以引導點(diǎn)撥,對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺(jué)地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。 (二)、學(xué)法 建構主義學(xué)習理論認為,學(xué)習是學(xué)生積極主動(dòng)地建構知識的過(guò)程,學(xué)習應該與學(xué)生熟悉的背景相聯(lián)系。在教學(xué)中,讓學(xué)生在問(wèn)題情境中,經(jīng)歷知識的形成和發(fā)展,通過(guò)觀(guān)察、操作、歸納、探索、交流、反思參與學(xué)習,認識和理解數學(xué)知識,學(xué)會(huì )學(xué)習,發(fā)展能力。 四、教學(xué)過(guò)程分析 (一)、教學(xué)過(guò)程設計 問(wèn)題 設計意圖 師生活動(dòng) 1、初中學(xué)過(guò)的平面幾何中,直線(xiàn)與圓的位置關(guān)系有幾類(lèi)? 啟發(fā)學(xué)生由圖形獲取判斷直線(xiàn)與圓的位置關(guān)系的直觀(guān)認知,引入新課 師:讓學(xué)生之間進(jìn)行討論,交流,引導學(xué)生觀(guān)察圖形,導入新課 生:看圖,并說(shuō)出自己的看法 2、直線(xiàn)與圓的位置關(guān)系有幾種? 得出直線(xiàn)與圓的位置關(guān)系的幾何特征與種類(lèi) 師:引導學(xué)生利用類(lèi)比,歸納的思想,總結直線(xiàn)與圓的位置關(guān)系的種類(lèi),進(jìn)一步神話(huà)數形結合的數學(xué)思想 生:學(xué)生觀(guān)察圖形,利用類(lèi)比,歸納的思想,總結直線(xiàn)與圓的位置關(guān) 3、在初中,我們怎么樣判斷直線(xiàn)與圓的位置關(guān)系呢?如何用直線(xiàn)與圓的方程判斷他們之間的位置關(guān)系呢? 你能說(shuō)出判斷直線(xiàn)與圓的位置關(guān)系的兩 種方法嗎? 使學(xué)生回憶初中的數學(xué)知識,培養抽象的概括能力。 抽象判斷呢直線(xiàn)與圓的位置關(guān)系的思路和方法 師:引導學(xué)生回憶初中判斷直線(xiàn)與圓的位置關(guān)系的思想過(guò)程 生:回憶直線(xiàn)與圓的位置關(guān)系的判斷過(guò)程 師:引導學(xué)生從集合的角度判斷直線(xiàn)與圓的方法 生:利用圖形,尋求兩種方法的數學(xué)思路 5、你能用兩種判斷直線(xiàn)與圓的位置關(guān)系的數學(xué)思路解決例1的問(wèn)題嗎? 體會(huì )判斷直線(xiàn)與圓的位置關(guān)系的思想方法,關(guān)注量與量的之間的關(guān)系 師:指導學(xué)生閱讀教材書(shū)上的例1 生:閱讀教材書(shū)上的例1,并完成教材書(shū)上的136頁(yè)的練習題2 6、通過(guò)學(xué)習教材書(shū)上的例1,你能總結下判斷直線(xiàn)與圓的位置 關(guān)系的步驟嗎? 是學(xué)生熟悉判斷直線(xiàn)與圓的位置關(guān)系的基本步驟 生:于都例1 師:分析例1 ,并展示解答過(guò)程,啟發(fā)學(xué)生概括判斷直線(xiàn)與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有思考的時(shí)間 生:交流自己總結的步驟 7、通過(guò)學(xué)習教材書(shū)上的例2,你能說(shuō)明例2中體現的數學(xué)思想方法嗎? 進(jìn)一步深化數形結合的數學(xué)思想 師:指導學(xué)生閱讀并完成教材書(shū)上的例2 ,啟發(fā)學(xué)生利用數形結合的數學(xué)思想解決問(wèn)題 生:閱讀教材書(shū)上的例2 ,并完成137的練習題 8、通過(guò)例2的學(xué)習,你發(fā)現了什么? 明確弦長(cháng)的運算方法 師:引導并啟發(fā)學(xué)生探索直線(xiàn)與圓的相交弦的求法 生:通過(guò)分析,抽象,歸納,得出相交弦的運算方法 9、完成教材書(shū)上的136頁(yè)的習題1234 鞏固所學(xué)過(guò)的知識,進(jìn)一步理解和掌握直線(xiàn)與圓的位置關(guān)系 師:指導學(xué)生完成練習題 生:互相討論交流,完成練習題 10、課堂小結 教師提出下列問(wèn)題讓學(xué)生思考 通過(guò)直線(xiàn)與圓的位置關(guān)系的判斷,你學(xué)到什么了? 判斷直線(xiàn)與圓的位置關(guān)系有幾種方法?他們的特點(diǎn)是什么? 如何求直線(xiàn)與圓的相交弦長(cháng)? (二)、作業(yè)設計 作業(yè)分為必做題和選擇題,必做題是對本節課學(xué)生知識水平的反饋,選擇題是對本節課內容的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習氛圍的形成。 我設計了以下作業(yè): 必做題:課后習題A 1,2,3; 選擇題:課后習題B1,2,3; (三)、板書(shū)設計 板書(shū)要基本體現課堂的內容和方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互關(guān)系:能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。 五、評價(jià)分析 學(xué)生學(xué)習的結果評價(jià)固然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用了及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對本節是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。 謝謝! 【精選高中數學(xué)說(shuō)課稿范文集合七篇】相關(guān)文章: 關(guān)于高中數學(xué)說(shuō)課稿范文集合七篇08-18 精選高中數學(xué)說(shuō)課稿范文集合5篇08-14 精選高中數學(xué)說(shuō)課稿范文集合8篇08-09 精選高中數學(xué)說(shuō)課稿范文匯編七篇08-20 精選高中數學(xué)說(shuō)課稿范文集錦七篇08-20高中數學(xué)說(shuō)課稿 篇5
高中數學(xué)說(shuō)課稿 篇6
高中數學(xué)說(shuō)課稿 篇7