精選高中數學(xué)說(shuō)課稿15篇
作為一名教師,時(shí)常要開(kāi)展說(shuō)課稿準備工作,說(shuō)課稿有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。那要怎么寫(xiě)好說(shuō)課稿呢?下面是小編為大家收集的高中數學(xué)說(shuō)課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數學(xué)說(shuō)課稿 1
一 、教學(xué)內容分析
集合概念及其理論是近代數學(xué)的基石,集合語(yǔ)言是現代數學(xué)的基本語(yǔ)言,通過(guò)學(xué)習、使用集合語(yǔ)言,有利于學(xué)生簡(jiǎn)潔、準確地表達數學(xué)內容,高中課程只將集合作為一種語(yǔ)言來(lái)學(xué)習,學(xué)生將學(xué)會(huì )使用最基本的集合語(yǔ)言表示有關(guān)的數學(xué)對象,發(fā)展運用數學(xué)語(yǔ)言進(jìn)行交流的能力。
本章集合的初步知識是學(xué)生學(xué)習、掌握和使用數學(xué)語(yǔ)言的基礎,是高中數學(xué)學(xué)習的出發(fā)點(diǎn)。本小節內容是在學(xué)習了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎上,進(jìn)一步學(xué)習集合與集合之間的關(guān)系,同時(shí)也是下一節學(xué)習集合之間的運算的基礎,因此本小節起著(zhù)承上啟下的重要作用。
本節課的教學(xué)重視過(guò)程的教學(xué),因此我選擇了啟發(fā)式教學(xué)的教學(xué)方式。通過(guò)問(wèn)題情境的設置,層層深入,由具體到抽象,由特殊到一般,幫助學(xué)生的逐步提升數學(xué)思維。
二、學(xué)情分析
本節課是學(xué)生進(jìn)入高中學(xué)習的第3節數學(xué)課,也是學(xué)生正式學(xué)習集合語(yǔ)言的第3節課。由于一切對于學(xué)生來(lái)說(shuō)都是新的,所以學(xué)生的學(xué)習興趣相對來(lái)說(shuō)比較濃厚,有利于學(xué)習活動(dòng)的展開(kāi)。而集合對于學(xué)生來(lái)說(shuō)既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數軸求簡(jiǎn)單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語(yǔ)言來(lái)描述集合之間的關(guān)系。而從具體的實(shí)例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學(xué)生是一個(gè)挑戰。
根據上面對教材的分析,并結合學(xué)生的認知水平和思維特點(diǎn),確定本節課的教學(xué)目標和教學(xué)重、難點(diǎn)如下:
三、教學(xué)目標:
知識與技能目標:
。1)理解集合之間包含和相等的含義;
。2)能識別給定集合的子集;
。3)能使用Venn圖表達集合之間的包含關(guān)系
過(guò)程與方法目標:
。1)通過(guò)復習元素與集合之間的關(guān)系,對照實(shí)數的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;
。2)初步經(jīng)歷使用最基本的集合語(yǔ)言表示有關(guān)的數學(xué)對象的過(guò)程,體會(huì )集合語(yǔ)言,發(fā)展運用數學(xué)語(yǔ)言進(jìn)行交流的能力;
情感、態(tài)度、價(jià)值觀(guān)目標:
。1)了解集合的包含、相等關(guān)系的含義,感受集合語(yǔ)言在描述客觀(guān)現實(shí)和數學(xué)問(wèn)題中的意義;
。2)探索利用直觀(guān)圖示(Venn圖)理解抽象概念,體會(huì )數形結合的思想。
四、本節課教學(xué)的重、難點(diǎn):
重點(diǎn):
。1)幫助學(xué)生由具體到抽象地認識集合與集合之間的關(guān)系——子集;
。2)如何確定集合之間的關(guān)系;
難點(diǎn):集合關(guān)系與其特征性質(zhì)之間的關(guān)系
五、教學(xué)過(guò)程設計
1.新課的引入——設置問(wèn)題情境,激發(fā)學(xué)習興趣
我們的教學(xué)方式,要服務(wù)于學(xué)生的學(xué)習方式。那我們來(lái)思考一下,在何種情況下,學(xué)生學(xué)得最好?我想,當學(xué)生感興趣時(shí);當學(xué)生智力遭遇到挑戰時(shí);當學(xué)生能自主地參與探索和創(chuàng )新時(shí);當學(xué)生能夠學(xué)以致用時(shí);當學(xué)生得到鼓勵與信任時(shí),他們學(xué)得最好。數學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上,這樣才能讓學(xué)生體驗到成就感,保持積極的興奮狀態(tài)。而集合的.語(yǔ)言對于學(xué)生來(lái)說(shuō)是陌生的,雖然比較容易理解,但是由于概念多,符號多,學(xué)生容易產(chǎn)生厭煩心理,如何讓學(xué)生長(cháng)時(shí)間興趣盎然地投入到集合關(guān)系的學(xué)習中呢?我在整個(gè)教學(xué)過(guò)程中層層設問(wèn),不斷地向學(xué)生提出挑戰,以激發(fā)學(xué)生的學(xué)習興趣。在引入的環(huán)節,我設計了下面的問(wèn)題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數與數之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問(wèn)題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學(xué)生迫切尋求答案的愿望,激發(fā)學(xué)生的求知欲。在學(xué)生討論的基礎上提出這一節課我們來(lái)共同探討集合之間的基本關(guān)系。(板書(shū)課題)
2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問(wèn)題情境1的探究:
具體實(shí)例1:
。1)A={1,2,3}; B={1,2,3,4,5};
。2)A={菱形}, B={平行四邊形}
。3)A={x| x>2}, B={x| x>1};
此環(huán)節設置了三個(gè)具體實(shí)例,包含了有限集、無(wú)限集、數集(包括不等式)、圖形的集合。第一個(gè)例子為有限集數集,最為簡(jiǎn)單直觀(guān),對學(xué)生初步認識子集,理解子集的概念很有幫助;第二個(gè)例子是圖形集合且是無(wú)限集,需要通過(guò)探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個(gè)例子是無(wú)限數集,基于學(xué)生初中階段已經(jīng)學(xué)習了用數軸表示不等式的解集,啟發(fā)學(xué)生可以通過(guò)數形結合的方式來(lái)研究集合之間的關(guān)系,從而引出Venn圖。對第一個(gè)例子,借助多媒體演示動(dòng)畫(huà),幫助學(xué)生體會(huì )“任意”性。使學(xué)生在經(jīng)歷直觀(guān)感知、觀(guān)察發(fā)現的基礎上建構子集的概念,并且我在教學(xué)的過(guò)程中特別注重讓學(xué)生說(shuō),借此來(lái)學(xué)習運用集合語(yǔ)言進(jìn)行交流,對于學(xué)生的創(chuàng )新意識和創(chuàng )新結果我都給予積極的評價(jià)。
3.概念的剖析
。1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,
。2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。
這里引入了許多新的符號,對初學(xué)者來(lái)說(shuō)容易混淆,是一個(gè)易錯點(diǎn),因此我在這里設置了一個(gè)填空小練習:
0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1
并引導學(xué)生類(lèi)比數與數之間的“≤”“≥”符號來(lái)記憶“?”“?”符號。
4.概念的深化——集合的相等與真子集
問(wèn)題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個(gè)元素,它與集合A之間又可能是什么關(guān)系呢?
高中數學(xué)說(shuō)課稿 2
尊敬的各位評委、各位老師:
大家好!我說(shuō)課的題目是《直線(xiàn)的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書(shū)數學(xué)必修2(A版),是第三章直線(xiàn)與方程中的第2節的第一課時(shí)3.2.1直線(xiàn)的點(diǎn)斜式方程的內容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。
一、教學(xué)背景的分析
1.教材分析
直線(xiàn)的方程是學(xué)生在初中學(xué)習了一次函數的概念和圖象及高中學(xué)習了直線(xiàn)的斜率后進(jìn)行研究的。直線(xiàn)的方程屬于解析幾何學(xué)的基礎知識,是研究解析幾何學(xué)的開(kāi)始,對后續研究?jì)蓷l直線(xiàn)的位置關(guān)系、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容,無(wú)論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內容之一!爸本(xiàn)的點(diǎn)斜式方程”可以說(shuō)是直線(xiàn)的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線(xiàn)作為常見(jiàn)的最簡(jiǎn)單的曲線(xiàn),在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。同時(shí)在這一節中利用坐標法來(lái)研究曲線(xiàn)的數形結合、幾何直觀(guān)等數學(xué)思想將貫穿于我們整個(gè)高中數學(xué)教學(xué)。
2.學(xué)情分析
我校的生源較差,學(xué)生的基礎和學(xué)習習慣都有待加強。又由于剛開(kāi)始學(xué)習解析幾何,第一次用坐標法來(lái)求曲線(xiàn)的方程,在學(xué)習過(guò)程中,會(huì )出現“數”與“形”相互轉化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面更有待加強。
根據上述教材分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3.教學(xué)目標
(1)了解直線(xiàn)的方程的概念和直線(xiàn)的點(diǎn)斜式方程的推導過(guò)程及方法;
(2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì )準確地使用直線(xiàn)的點(diǎn)斜式、斜截式方程 ;
(3)從實(shí)例入手,通過(guò)類(lèi)比、推廣、特殊化等,使學(xué)生體會(huì )從特殊到一般再到特殊的認知規律;
(4)提倡學(xué)生用舊知識解決新問(wèn)題,通過(guò)體會(huì )直線(xiàn)的斜截式方程與一次函數的關(guān)系等活動(dòng),培養學(xué)生主動(dòng)探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。
4. 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn): 直線(xiàn)點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應用。
(2)難點(diǎn):直線(xiàn)的方程的概念,點(diǎn)斜式方程的推導及點(diǎn)斜式、斜截式方程的應用。
二、教法學(xué)法分析
1.教法分析:根據學(xué)情,為了能調動(dòng)學(xué)生學(xué)習的.積極性,本節課采用“實(shí)例引導的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數化,用代數的語(yǔ)言描述直線(xiàn)的幾何要素及其關(guān)系,進(jìn)而將直線(xiàn)的問(wèn)題轉化為直線(xiàn)方程的問(wèn)題,通過(guò)對直線(xiàn)的方程的研究,最終解決有關(guān)直線(xiàn)的一些簡(jiǎn)單的問(wèn)題。另外可以恰當的利用多媒體課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習興趣。
2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結、質(zhì)疑、運用,體會(huì )學(xué)習數學(xué)的樂(lè )趣;通過(guò)推導直線(xiàn)的點(diǎn)斜式方程的學(xué)習,要了解用坐標法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線(xiàn),進(jìn)而可求出直線(xiàn)的點(diǎn)斜式方程,要能體會(huì )“形”與“數”的轉化思想。
下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
三、教學(xué)過(guò)程的設計及實(shí)施
整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節,學(xué)習或涉及四個(gè)概念:
溫故知新,澄清概念----直線(xiàn)的方程
深入探究,獲得新知--------點(diǎn)斜式
拓展知識,再獲新知--------斜截式
小結引申,思維延續--------兩點(diǎn)式
平面上的點(diǎn)可以用坐標表示,直線(xiàn)的傾斜程度可以用斜率表示,那么平面上的直線(xiàn)如何表示呢?這就是本節要學(xué)習的內容。
(一)溫故知新,澄清概念----直線(xiàn)的方程
問(wèn)題一:畫(huà)出一次函數y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標有何關(guān)系?
[學(xué)生活動(dòng)] 通過(guò)動(dòng)手畫(huà)圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。
[教師活動(dòng)] 對于不同學(xué)生的表述進(jìn)行分析、歸納,用規范的語(yǔ)言對方程和直線(xiàn)的方程進(jìn)行描述。
[設計意圖]從學(xué)生熟知的舊知識出發(fā)澄清直線(xiàn)的方程的概念,試圖做到“用學(xué)生已有的數學(xué)知識去學(xué)數學(xué)”,從而突破難點(diǎn)。通過(guò)對這個(gè)問(wèn)題的研究,一方面認識到以方程的解為坐標的點(diǎn)在直線(xiàn)上,另一方面認識到直線(xiàn)上的點(diǎn)的坐標滿(mǎn)足方程;從而使同學(xué)意識到直線(xiàn)可以由直線(xiàn)上任意一點(diǎn)P(x,y)的坐標x和y之間的等量關(guān)系來(lái)表示。
問(wèn)題二:若直線(xiàn)經(jīng)過(guò)點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線(xiàn)l上。
(1) 若點(diǎn)P在直線(xiàn)l上從A點(diǎn)開(kāi)始運動(dòng),橫坐標增加1時(shí),點(diǎn)P的坐標是 ;
(2)畫(huà)出直線(xiàn)l,你能求出直線(xiàn)l的方程嗎?
(3)若點(diǎn)P在直線(xiàn)l上運動(dòng),設P點(diǎn)的坐標為(x,y),你會(huì )有什么方法找到x,y滿(mǎn)足的關(guān)系式?
[學(xué)生活動(dòng)]學(xué)生獨立思考5分鐘,必要的話(huà)可進(jìn)行分組討論、合作交流。
[教師活動(dòng)]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導學(xué)生觀(guān)察發(fā)現,得到當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線(xiàn)的斜率恒等于-2,體會(huì )“動(dòng)中有靜”的思維策略。
[設計意圖]復習斜率公式;待定系數法;初步體會(huì )坐標法。同時(shí)引導學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數學(xué)簡(jiǎn)潔的美感和嚴謹性。還要指出這樣的事實(shí):當點(diǎn)P在直線(xiàn)l上運動(dòng)時(shí),P的坐標(x,y)滿(mǎn)足方程2x+y-1=0.反過(guò)來(lái),以方程2x+y-1=0的解為坐標的點(diǎn)在直線(xiàn)l上。把學(xué)生的思維引到用坐標法研究直線(xiàn)的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
(二)深入探究,獲得新知----點(diǎn)斜式
問(wèn)題三:
、 若直線(xiàn)l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線(xiàn)l的方程。
、谥本(xiàn)的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線(xiàn)?
[學(xué)生活動(dòng)]
、賹W(xué)生敘述,老師板書(shū),強調斜率公式與點(diǎn)斜式的區別。
、谥笇W(xué)生用筆轉一轉不難發(fā)現,當直線(xiàn)l的傾斜角α=90°時(shí),斜率k不存在,當然不存在點(diǎn)斜式方程;討論k=0的情況;觀(guān)察并總結點(diǎn)斜式方程的特征。
[設計意圖] 由特殊到一般的學(xué)習思路,突破難點(diǎn),培養學(xué)生的歸納概括能力。通過(guò)對這個(gè)問(wèn)題的探究使學(xué)生獲得直線(xiàn)點(diǎn)斜式方程;由②知:當直線(xiàn)斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線(xiàn),培養思維的嚴謹性,這時(shí)直線(xiàn)l與y軸平行,它上面的每一點(diǎn)的橫坐標都等于x0,直線(xiàn)l的方程是:x=x0;通過(guò)學(xué)生的觀(guān)察討論總結,明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎練習,突破重難點(diǎn)。
問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿(mǎn)足下列條件的直線(xiàn)的方程
(1) 斜率;
(2)傾斜角;
(3)與軸平行 ;
(4)與軸垂直。
[練習]P95.1、2。
[學(xué)生活動(dòng)]學(xué)生獨立完成并展示或敘述,老師點(diǎn)評。
[設計意圖]充分用好教材的例題和習題,因為這些題都是專(zhuān)家精心編排的,充分體現必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節的教學(xué),指導下個(gè)環(huán)節的安排;突破重點(diǎn)內容后,進(jìn)入第三環(huán)節。
(三)拓展知識,再獲新知----斜截式
問(wèn)題五:
(1)一條直線(xiàn)與y軸交于點(diǎn)(0,3),直線(xiàn)的斜率為2,求這條直線(xiàn)的方程。
(2)若直線(xiàn)l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線(xiàn)l的方程。
[學(xué)生活動(dòng)]學(xué)生獨立完成后口述,教師板書(shū)。
[設計意圖] 由一般到特殊再到一般,培養學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強調截距不是距離。類(lèi)比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數的關(guān)系。通過(guò)下面的基礎練習,突破重點(diǎn)。
[練習]P95.3。
[設計意圖]充分用好教材習題,及時(shí)反饋本環(huán)節的教學(xué)情況,指導下個(gè)環(huán)節的安排。
(四)小結引申,思維延續----兩點(diǎn)式
課堂小結
1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線(xiàn)方程的方法:公式法、等斜率法、待定系數法。)
2、哪些地方還沒(méi)有學(xué)好?
問(wèn)題六:
(1)直線(xiàn)l過(guò)(1,0)點(diǎn),且與直線(xiàn)平行,求直線(xiàn)l的方程。
(2)直線(xiàn)l過(guò)點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線(xiàn)l的方程。
[學(xué)生活動(dòng)]學(xué)生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。
[教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話(huà),可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式;沒(méi)時(shí)間就布置分層作業(yè)。
[設計意圖]
(1)小題與上一節的平行綜合,學(xué)生應該有思路求出方程;
(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機會(huì ),以及課后學(xué)習的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節課研究直線(xiàn)的兩點(diǎn)式方程作了重要的準備。
分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.
選做題:P100.A組:1.(4)(5)(6).
[設計意圖]通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展。
四、教學(xué)特點(diǎn)分析
(一)實(shí)例引導。在字母運算、公式推導之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習知識的可能和興趣,關(guān)注學(xué)困生的成長(cháng)與發(fā)展。
(二)啟發(fā)式教學(xué)。教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內容,如:
1.直角坐標系內的所有直線(xiàn)都有點(diǎn)斜式方程嗎?
2.截距是距離嗎?它可以是負數嗎?
3.你會(huì )求直線(xiàn)在軸上的截距嗎?
4.觀(guān)察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對話(huà)與交流活動(dòng)。
(三)注重自主探究。設計問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區上,布設了由淺入深的學(xué)習環(huán)境突破重點(diǎn)、難點(diǎn),引導學(xué)生逐步發(fā)現知識的形成過(guò)程。設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng )造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。
高中數學(xué)說(shuō)課稿 3
一、教材分析
1.《指數函數》在教材中的地位、作用和特點(diǎn)
《指數函數》是人教版高中數學(xué)(必修)第一冊第二章“函數”的第六節內容,是在學(xué)習了《指數》一節內容之后編排的。通過(guò)本節課的學(xué)習,既可以對指數和函數的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習對數、對數函數尤其是利用互為反函數的圖象間的關(guān)系來(lái)研究對數函數的性質(zhì)打下堅實(shí)的概念和圖象基礎,又因為《指數函數》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學(xué)習基礎,所以《指數函數》不僅是本章《函數》的重點(diǎn)內容,也是高中學(xué)段的主要研究?jì)热葜,有?zhù)不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著(zhù)緊密的聯(lián)系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習這部分知識還有著(zhù)廣泛的現實(shí)意義。本節內容的特點(diǎn)之一是概念性強,特點(diǎn)之二是凸顯了數學(xué)圖形在研究函數性質(zhì)時(shí)的重要作用。
2.教學(xué)目標、重點(diǎn)和難點(diǎn)
通過(guò)初中學(xué)段的學(xué)習和高中對集合、函數等知識的系統學(xué)習,學(xué)生對函數和圖象的關(guān)系已經(jīng)構建了一定的認知結構,主要體現在三個(gè)方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡(jiǎn)單的函數概念和性質(zhì)已有了初步認識,能夠從初中運動(dòng)變化的角度認識函數初步轉化到從集合與對應的`觀(guān)點(diǎn)來(lái)認識函數。
技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質(zhì)做好準備。
素質(zhì)維度:由觀(guān)察到抽象的數學(xué)活動(dòng)過(guò)程已有一定的體會(huì ),已初步了解了數形結合的思想。
鑒于對學(xué)生已有的知識基礎和認知能力的分析,根據《教學(xué)大綱》的要求,我確定本節課的教學(xué)目標、教學(xué)重點(diǎn)和難點(diǎn)如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
、谡莆罩笖岛瘮档膱D象和性質(zhì);
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實(shí)際問(wèn)題;
(2)技能目標:
、贊B透數形結合的基本數學(xué)思想方法
、谂囵B學(xué)生觀(guān)察、聯(lián)想、類(lèi)比、猜測、歸納的能力;
(3)情感目標:
、袤w驗從特殊到一般的學(xué)習規律,認識事物之間的普遍聯(lián)系與相互轉化,培養學(xué)生用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題
、谕ㄟ^(guò)教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習興趣,提高學(xué)生抽象、概括、分析、綜合的能力
、垲I(lǐng)會(huì )數學(xué)科學(xué)的應用價(jià)值。
(4)教學(xué)重點(diǎn):指數函數的圖象和性質(zhì)。
(5)教學(xué)難點(diǎn):指數函數的圖象性質(zhì)與底數a的關(guān)系。
突破難點(diǎn)的關(guān)鍵:尋找新知生長(cháng)點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數形結合來(lái)掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過(guò)這一節課的教學(xué)達到不僅使學(xué)生初步理解并能簡(jiǎn)單應用指數函數的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數圖象性質(zhì)的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學(xué)生學(xué)習能力的目的,我根據自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結合起來(lái),主要突出了幾個(gè)方面:
1.創(chuàng )設問(wèn)題情景.按照指數函數的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調動(dòng)學(xué)生的學(xué)習興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2.強化“指數函數”概念.引導學(xué)生結合指數的有關(guān)概念來(lái)歸納出指數函數的定義,并向學(xué)生指出指數函數的形式特點(diǎn),請學(xué)生思考對于底數a是否需要限制,如不限制會(huì )有什么問(wèn)題出現,這樣避免了學(xué)生對于底數a范圍分類(lèi)的不清楚,也為研究指數函數的圖象做了“分類(lèi)討論”的鋪墊。
3.突出圖象的作用.在數學(xué)學(xué)習過(guò)程中,圖形始終使我們需要借助的重要輔助手段。一位數學(xué)家曾經(jīng)說(shuō)過(guò)“數離形時(shí)少直觀(guān),形離數時(shí)難入微”,而在研究指數函數的性質(zhì)時(shí),更是直接由圖象觀(guān)察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4.注意數學(xué)與生活和實(shí)踐的聯(lián)系.數學(xué)的本質(zhì)是來(lái)源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關(guān)的生活問(wèn)題,力圖使學(xué)生了解到數學(xué)的基礎學(xué)科作用,培養學(xué)生的數學(xué)應用意識。
三、學(xué)法指導
本節課是在學(xué)習完“指數”的概念和運算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個(gè)方面做了嘗試:
1.再現原有認知結構。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數的概念,幫助學(xué)生再現原有認知結構,為理解指數函數的概念做好準備。
2.領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法。在借助圖象研究指數函數的性質(zhì)時(shí)會(huì )遇到分類(lèi)討論、數形結合等基本數學(xué)思想方法,這些方法將會(huì )貫穿整個(gè)高中的數學(xué)學(xué)習。
3.在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導入、指數函數的性質(zhì)研究、例題與訓練、課內小節等教學(xué)環(huán)節中都安排了學(xué)生的討論、分組、交流等活動(dòng),讓學(xué)生變被動(dòng)的接受和記憶知識為在合作學(xué)習的樂(lè )趣中主動(dòng)地建構新知識的框架和體系,從而完成知識的內化過(guò)程。
4.注意學(xué)習過(guò)程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應用、拓展的過(guò)程中按照先易后難的順序層層遞進(jìn),讓學(xué)生感到有挑戰、有收獲,跳一跳,夠得著(zhù),不同難度的題目設計將盡可能照顧到課堂學(xué)生的個(gè)體差異。
四、程序設計
在設計本節課的教學(xué)過(guò)程中,本著(zhù)遵循學(xué)生的認知規律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過(guò)程的原則,我設計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現和認識指數函數的圖象和性質(zhì)。
1.創(chuàng )設情景、導入新課
教師活動(dòng):
、儆秒娔X展示兩個(gè)實(shí)例,第一個(gè)是計算機價(jià)格下降問(wèn)題,第二個(gè)是生物中細胞分裂的例子。
、趯W(xué)生按奇數列、偶數列分組。
學(xué)生活動(dòng):
、俜謩e寫(xiě)出計算機價(jià)格y與經(jīng)過(guò)月份x的關(guān)系式和細胞個(gè)數y與分裂次數x的關(guān)系式,并互相交流;
、诨貞浿笖档母拍;
、蹥w納指數函數的概念;④分析出對指數函數底數討論的必要性以及分類(lèi)的方法。
設計意圖:通過(guò)生活實(shí)例激發(fā)學(xué)生的學(xué)習動(dòng)機,掃清由概念不清而造成的知識障礙,培養學(xué)生思維的主動(dòng)性, 為突破難點(diǎn)做好準備;
2.啟發(fā)誘導、探求新知
教師活動(dòng):
、俳o出兩個(gè)簡(jiǎn)單的指數函數并要求學(xué)生畫(huà)它們的圖象
、谠跍蕚浜玫男『诎迳弦幏兜禺(huà)出這兩個(gè)指數函數的圖象
、郯鍟(shū)指數函數的性質(zhì)。
學(xué)生活動(dòng):
、佼(huà)出兩個(gè)簡(jiǎn)單的指數函數圖象
、诮涣、討論
、蹥w納出研究函數性質(zhì)涉及的方面
、芸偨Y出指數函數的性質(zhì)。
設計意圖:讓學(xué)生動(dòng)手作簡(jiǎn)單的指數函數的圖象對深刻理解本節課的內容有著(zhù)一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進(jìn)一步規范學(xué)生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學(xué)生就會(huì )很自然的通過(guò)觀(guān)察圖象總結出指數函數的性質(zhì),同時(shí)對于底數的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動(dòng):
、侔鍟(shū)例1
、诎鍟(shū)例2第一問(wèn)
、劢榻B有關(guān)考古的拓展知識。
高中數學(xué)說(shuō)課稿 4
各位老師:
大家好!我叫xx,來(lái)自xx。我說(shuō)課的題目是《概率的基本性質(zhì)》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時(shí)安排為三個(gè)課時(shí),本節課內容為第三課時(shí)。下面我將從教材分析、教學(xué)目標分析、教法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1、教材所處的地位和作用
本節課主要包含了兩部分內容:一是事件的關(guān)系與運算,二是概率的基本性質(zhì),多以基本概念和性質(zhì)為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個(gè)教學(xué)中起到承上啟下的作用。同時(shí)也是新課改以來(lái)考查的熱點(diǎn)之一。
2、教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):概率的加法公式及其應用;事件的關(guān)系與運算。
難點(diǎn):互斥事件與對立事件的區別與聯(lián)系
二、教學(xué)目標分析
1.知識與技能目標
、帕私怆S機事件間的基本關(guān)系與運算;
、普莆崭怕实膸讉(gè)基本性質(zhì),并會(huì )用其解決簡(jiǎn)單的概率問(wèn)題。
2、過(guò)程與方法:
、磐ㄟ^(guò)觀(guān)察、類(lèi)比、歸納培養學(xué)生運用數學(xué)知識的綜合能力;
、仆ㄟ^(guò)學(xué)生自主探究,合作探究培養學(xué)生的動(dòng)手探索的能力。
3、情感態(tài)度與價(jià)值觀(guān):
通過(guò)數學(xué)活動(dòng),了解教學(xué)與實(shí)際生活的密切聯(lián)系,感受數學(xué)知識應用于現實(shí)世界的具體情境,從而激發(fā)學(xué)習數學(xué)的情趣。
三、教法分析
采用實(shí)驗觀(guān)察、質(zhì)疑啟發(fā)、類(lèi)比聯(lián)想、探究歸納的教學(xué)方法。
四、教學(xué)過(guò)程分析
1、創(chuàng )設情境,引入新課
在擲骰子的試驗中,我們可以定義許多事件,如:
c1=﹛出現的點(diǎn)數=1﹜,c2=﹛出現的點(diǎn)數=2﹜
c3=﹛出現的點(diǎn)數=3﹜,c4=﹛出現的點(diǎn)數=4﹜
c5=﹛出現的點(diǎn)數=5﹜,c6=﹛出現的點(diǎn)數=6﹜
D1=﹛出現的點(diǎn)數不大于1﹜D2=﹛出現的點(diǎn)數大于3﹜
D3=﹛出現的點(diǎn)數小于5﹜,E=﹛出現的點(diǎn)數小于7﹜
f=﹛出現的點(diǎn)數大于6﹜,G=﹛出現的點(diǎn)數為偶數﹜
H=﹛出現的點(diǎn)數為奇數﹜
、乓砸肜械氖录㧟1和事件H,事件c1和事件D1為例講授事件之的包含關(guān)系和相等關(guān)系。
、茝囊陨蟽蓚(gè)關(guān)系學(xué)生不難發(fā)現事件間的關(guān)系與集合間的關(guān)系相類(lèi)似。進(jìn)而引導學(xué)生思考,是否可以把事件和集合對應起來(lái)。
「設計意圖」引出我們接下來(lái)要學(xué)習的主要內容:事件之間的關(guān)系與運算
2、探究新知
、迨录年P(guān)系與運算
、沤(jīng)過(guò)上面的思考,我們得出:
試驗的可能結果的`全體←→全集
↓↓
每一個(gè)事件←→子集
這樣我們就把事件和集合對應起來(lái)了,用已有的集合間關(guān)系來(lái)分析事件間的關(guān)系。
集合的并→兩事件的并事件(和事件)
集合的交→兩事件的交事件(積事件)
在此過(guò)程中要注意幫助學(xué)生區分集合關(guān)系與事件關(guān)系之間的不同。
。ɡ纾簝杉螦∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發(fā)生,表示或者事件A發(fā)生,或者事件B發(fā)生。)
「設計意圖」為更好地理解互斥事件和對立事件打下基礎,
、扑伎迹
①若只擲一次骰子,則事件c1和事件c2有可能同時(shí)發(fā)生么?
、谠跀S骰子實(shí)驗中事件G和事件H是否一定有一個(gè)會(huì )發(fā)生?
「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來(lái)將要學(xué)習的互斥事件和對立事件,讓學(xué)生從實(shí)際案例中體驗它們各自的特征以及它們之間的區別與聯(lián)系。
、强偨Y出互斥事件和對立事件的概念,并通過(guò)多媒體的圖形演示使學(xué)生們能更好地理解它們的特征以及它們之間的區別與聯(lián)系。
、染毩暎和ㄟ^(guò)多媒體顯示兩道練習,目的是讓學(xué)生們能夠及時(shí)鞏固對互斥事件和對立事件的學(xué)習,加深理解。
、娓怕实幕拘再|(zhì):
、呕仡櫍侯l率=頻數/試驗的次數
我們知道當試驗次數足夠大時(shí),用頻率來(lái)估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì)、
。ㄍㄟ^(guò)對頻率的理解并結合前面投硬幣的實(shí)驗來(lái)總結出概率的基本性質(zhì),師生共同交流得出結果)
3、典型例題探究
例1一個(gè)射手進(jìn)行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?
事件A:命中環(huán)數大于7環(huán);事件B:命中環(huán)數為10環(huán);
事件c:命中環(huán)數小于6環(huán);事件D:命中環(huán)數為6、7、8、9、10環(huán)、
分析:要判斷所給事件是對立還是互斥,首先將兩個(gè)概念的聯(lián)系與區別弄清楚
例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問(wèn):
。1)取到紅色牌(事件c)的概率是多少?
。2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).
「設計意圖」通過(guò)這兩道例題,進(jìn)一步鞏固學(xué)生對本節課知識的掌握,并將所學(xué)知識應用到實(shí)際解決問(wèn)題中去。
4、課堂小結
、爬斫馐录年P(guān)系和運算
、普莆崭怕实幕拘再|(zhì)
「設計意圖」小結是引導學(xué)生對問(wèn)題進(jìn)行回味與深化,使知識成為系統。讓學(xué)生嘗試小結,提高學(xué)生的總結能力和語(yǔ)言表達能力。教師補充幫助學(xué)生全面地理解,掌握新知識。
5、布置作業(yè)
習題3、1A1、3、4
「設計意圖」課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。
五、板書(shū)設計
概率的基本性質(zhì)
一、事件間的關(guān)系和運算
二、概率的基本性質(zhì)
三、例1的板書(shū)區
例2的板書(shū)區
四、規律性質(zhì)總結
高中數學(xué)說(shuō)課稿 5
一、教材分析
本節內容是等差數列(第一課時(shí))的內容,屬于數與代數領(lǐng)域的知識。本節是數列課程的新授課,為后面等比數列以及數列求和的知識點(diǎn)作基礎。數列是高中數學(xué)重要內容之一,它有著(zhù)廣泛的實(shí)際應用。等差數列是在學(xué)生學(xué)習了數列的有關(guān)概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進(jìn)一步深入和拓廣。同時(shí)等差數列也為今后學(xué)習等比數列提供了學(xué)習對比的依據。在數學(xué)思想的方面,數列在處理數與數之間的關(guān)系中,更多地培養了學(xué)生運用函數與函數關(guān)系的思想。
二、教學(xué)目標
根據課程標準的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標
。1)在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過(guò)程及思想。
。2)在能力上:培養學(xué)生觀(guān)察、分析、歸納、推理的能力;以形象的實(shí)際例子作為學(xué)生理解與練習的模板,使學(xué)生在不斷實(shí)踐中鞏固學(xué)習到的知識;通過(guò)階梯性練習,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
。3)在情感上:通過(guò)對等差數列在實(shí)際問(wèn)題中的研究,培養學(xué)生主動(dòng)探索、勇于發(fā)現的求知精神;養成細心觀(guān)察、認真分析、善于總結的良好思維習慣。
3、教學(xué)重點(diǎn)和難點(diǎn)
根據課程標準的要求我確定本節課的`教學(xué)重點(diǎn)為:
、俚炔顢盗械母拍。
、诘炔顢盗械耐椆降耐茖н^(guò)程及應用。
三、教學(xué)方法分析:
對于高中學(xué)生,知識經(jīng)驗比較貧乏,雖然他們的智力發(fā)展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以本堂課將從實(shí)際中的問(wèn)題出發(fā),以學(xué)生日常生活中較易接觸的一些數學(xué)問(wèn)題,籍此啟發(fā)學(xué)生對于數列知識點(diǎn)的理解。本節課大多采用啟發(fā)式、討論式的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數學(xué)實(shí)踐活動(dòng),以獨立思考和相互交流的形式,在教師的指導下發(fā)現、分析和解決問(wèn)題,并學(xué)會(huì )將數學(xué)知識運用到實(shí)際問(wèn)題的解決中。
四、教學(xué)過(guò)程
通過(guò)復習上節課數列的定義來(lái)引入幾個(gè)數列
1)0,5,10,15,20,25.....2)18,15.5,13,10.5,8,4.5 3) 48,53,58,63,68.....通過(guò)這3個(gè)數列,初步認識等差數列的特征,為后面的概念學(xué)習建立基礎。由學(xué)生觀(guān)察第一個(gè)數列與第三個(gè)數列的特點(diǎn),并與第二個(gè)做對比,引出等差數列的概念。
(二)新課探究
1、由引入自然的給出等差數列的概念:
定義:如果一個(gè)數列,從第二項開(kāi)始它的每一項與前一項之差都等于同一常數,這個(gè)數列就叫等差數列,這個(gè)常數叫做等差數列的公差,通常用字母d來(lái)表示。強調:
、 “從第二項起”滿(mǎn)足條件;
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個(gè)常數;
在理解概念的基礎上,由學(xué)生將等差數列的文字語(yǔ)言轉化為數學(xué)語(yǔ)言,歸納出數學(xué)表達式:
an+1-an=d (n≥1)
同時(shí)為了配合概念的理解,引導學(xué)生講本不是等差數列的第二組數列修改成等差數列。并由觀(guān)察三組數列的不同特點(diǎn),由此強調:公差可以是正數、負數,并再舉出特例數列1,1,1,1,1,1,1......說(shuō)明公差也可以是0。
2、第二個(gè)重點(diǎn)部分為等差數列的通項公式
在歸納等差數列通項公式中,我采用討論式的教學(xué)方法。給出等差數列的首項,公差d,運用求數列通項公式的辦法------迭加法:整個(gè)過(guò)程通過(guò)互相討論的方式既培養了學(xué)生的協(xié)作意識又化解了教學(xué)難點(diǎn)。
若一等差數列{an }的首項是a1,公差是d,則據其定義可得:
a2 – a1 =d a3 – a2 =d a4 – a3 =d …… an – an-1=d將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d(1)
當n=1時(shí),(1)也成立,
所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數列{an}的通項公式。對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項公式。
在這里通過(guò)運用迭加法這一數學(xué)思想,便于學(xué)生從概念理解的過(guò)程過(guò)渡到運用概念的過(guò)程。
接著(zhù)舉例說(shuō)明:若一個(gè)等差數列{an}的首項是1,公差是2,得出這個(gè)數列的通項公式是:an=1+(n-1)×2,
即an=2n-1以此來(lái)鞏固等差數列通項公式運用。
。ㄈ⿷门e例
現實(shí)生活中,以學(xué)生較為熟悉的iphone手機的數據作為例子。觀(guān)察Iphone手機的發(fā)布時(shí)間,iphone第一代發(fā)布于2004年,第二代發(fā)布于2006年,第三代發(fā)布于2008年,第四代發(fā)布于2010年,F在第六代發(fā)布于今年2014年。首先,讓學(xué)生觀(guān)察從04年到10年每?jì)纱鷌phone發(fā)布的間隔時(shí)間,讓學(xué)生自行尋找規律,并在此基礎上讓學(xué)生估測第五代iphone的發(fā)布時(shí)間,并驗證第五代iphone發(fā)布于2012年。同時(shí),再讓學(xué)生預測在未來(lái),下一部iphone發(fā)布的時(shí)間,是學(xué)生體驗到將數學(xué)知識運用到實(shí)際中的方法與步驟。為了加深聯(lián)系,再給出了每代iphone的價(jià)格:iphone1 4299;iphone2 4800;iphone3 5299;iphone4 5988;iphone5 6300。在給出的數據上,將價(jià)格隨時(shí)間的變化以坐標軸的形式作圖表示出來(lái),讓學(xué)生觀(guān)察到雖然這些數據非等差,但是可以大致變?yōu)榈炔畹闹本(xiàn)圖像,讓學(xué)生體會(huì )到“擬合數據”的思想。在此基礎上,讓學(xué)生進(jìn)行練習,預測14年如今iphone6的上市價(jià)格為6888元,并與學(xué)生通過(guò)數列進(jìn)行推理的價(jià)格進(jìn)行對比,讓學(xué)生對自己在實(shí)踐中解決問(wèn)題的過(guò)程中找到一定的認同感。
五、歸納小結
提問(wèn)學(xué)生,總結這節課的收獲
1、等差數列的概念及數學(xué)表達式,并強調關(guān)鍵字:從第二項開(kāi)始,它的每一項與前一項之差都等于同一常數。
2、等差數列的通項公式an= a1+(n-1) d
3、將讓學(xué)生在實(shí)踐中了解,將數列知識點(diǎn)運用到實(shí)際中的方法。
4、在課末提出啟發(fā)性問(wèn)題,若是有人將每一部iphone都買(mǎi)入,那他一共花費了多少錢(qián)?借此引出了下一節,等差數列求和的知識點(diǎn)。讓學(xué)生嘗試自行去思考這樣的問(wèn)題。
5、布置作業(yè)
高中數學(xué)說(shuō)課稿 6
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線(xiàn)性運算”的第一節課。本節內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時(shí)。向量的加法是向量的線(xiàn)性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
二、學(xué)情分析:
學(xué)生在上節課中學(xué)習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動(dòng),這是學(xué)習本節內容的基礎。學(xué)生對數的運算了如指掌,并且在物理中學(xué)過(guò)力的合成、位移的合成等矢量的加法,所以向量的加法可通過(guò)類(lèi)比數的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準確把握兩個(gè)加法法則的特點(diǎn)。
三、教學(xué)目的:
1、通過(guò)對向量加法的探究,使學(xué)生掌握向量加法的概念,結合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì )向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個(gè)已知向量的和向量。
2、在應用活動(dòng)中,理解向量加法滿(mǎn)足交換律和結合律以及表述兩個(gè)運算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線(xiàn)向量,共起點(diǎn)向量、共終點(diǎn)向量等。
3、通過(guò)本節的學(xué)習,培養學(xué)生類(lèi)比、遷移、分類(lèi)、歸納等數學(xué)方面的能力。
四、教學(xué)重、難點(diǎn)
重點(diǎn):向量的加法法則。探究向量的加法法則并正確應用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡(jiǎn)便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點(diǎn):對三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認識到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線(xiàn)段之間必須構成三角形。
五、教學(xué)方法
本節采用以下教學(xué)方法:
1、類(lèi)比:由數的加法運算類(lèi)比向量的加法運算。
2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀(guān)察圖形得出三角形法則,探求共線(xiàn)向量的加法,發(fā)現三角形法則適用于任意向量相加;通過(guò)圖形,觀(guān)察得出向量加法滿(mǎn)足交換律、結合律等,這些都體現探究式教學(xué)法的運用。
3、講解與練習:對兩個(gè)法則特點(diǎn)的分析,例題都采取了引導與講解的方法,學(xué)生課堂完成教材中的練習。
4、多媒體技術(shù)的運用,能直觀(guān)地表現向量的平移,相等向量的意義,更能說(shuō)清兩個(gè)法則的幾何意義及運算律。
六、數學(xué)思想的體現:
1、分類(lèi)的思想:總的來(lái)說(shuō)本課中向量的加法分為不共線(xiàn)向量及共線(xiàn)向量?jì)煞N形式,共線(xiàn)向量又分為方向相同與方向相反兩種情形,然后專(zhuān)門(mén)對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線(xiàn)索清楚。
2、類(lèi)比思想:使之與數的加法進(jìn)行類(lèi)比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺(jué),又能從對比中看出兩者的不同,效果較好。
3、歸納思想:主要體現在以下三個(gè)環(huán)節
、賹W(xué)完平行四邊形法則和三角形法則后,歸納總結,對不共線(xiàn)向量相加,兩個(gè)法則都可以選用。
、谟晒簿(xiàn)向量的加法總結出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線(xiàn)向量相加。
、蹖ο蛄考臃ǖ慕Y合律和探討中,又使學(xué)生發(fā)現了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節中的運用,使得學(xué)生對兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。
七、教學(xué)過(guò)程:
1、回顧舊知:本節要進(jìn)行向量的平移,且對向量加法分共線(xiàn)與不共線(xiàn)兩種情況,所以要復習向量、相等向量、共線(xiàn)向量等概念,這些都是新課學(xué)習中必要的知識鋪墊。
2、引入新課:
。1)平行四邊形法則的引入。
學(xué)生在物理學(xué)中雖然接觸過(guò)位移的合成,但是并沒(méi)有形成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過(guò),很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,但是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒(méi)有深刻的認識,易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線(xiàn)段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要通過(guò)講解例1,使學(xué)生認識到可以通過(guò)平移向量,使表示兩個(gè)向量的有向線(xiàn)段有共同的起點(diǎn)。這一點(diǎn)對理解及運用法則求兩向量的和很重要。
設計意圖:本著(zhù)從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點(diǎn),用學(xué)生熟知的方法來(lái)解決新的問(wèn)題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的'平行四邊形法則的“起點(diǎn)相同”這一特點(diǎn)的認識,例1的講解使學(xué)生認識到當表示向量的有向線(xiàn)段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。
。2)三角形法則的引入。三角形法則沒(méi)有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。
所以這種把兩個(gè)向量相加的方法稱(chēng)為三角形法則。接下來(lái)用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過(guò)程對學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來(lái)做。
這時(shí),總結出兩個(gè)不共線(xiàn)向量求和時(shí),平行四邊形法則與三角形法則都可以用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認識到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),而且銜接自然,能夠使學(xué)生對比地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對兩個(gè)法則的特點(diǎn)有較深刻的印象。
。3)共線(xiàn)向量的加法
方向相同的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)較易完成,“將它們接在一起,取它們的方向及長(cháng)度之和,作為和向量的方向與長(cháng)度!币龑W(xué)生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。
方向相反的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過(guò)有理數加法中的異號兩數相加:“異號兩數相加,用較大
的絕對值減去較小的絕對值,符號取絕對值較大的數的符號!鳖(lèi)比異號兩數相加,他們會(huì )用較長(cháng)的模減去較短的模,方向取模較長(cháng)的向量的方向。具體做法由老師引導學(xué)生嘗試運用三角形法則去做,發(fā)現結論正確。
反思過(guò)程,學(xué)生自然會(huì )想到方向相同的兩個(gè)向量相加,類(lèi)似于同號兩數相加。這說(shuō)明兩個(gè)共線(xiàn)向量相加依然可用三角形法則 通過(guò)以上幾個(gè)環(huán)節的討論,可以作個(gè)簡(jiǎn)單的小結:兩個(gè)不共線(xiàn)向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線(xiàn)向量相加在本課所學(xué)方法中只能用三角形法則,說(shuō)明三角形法則適用于任意兩個(gè)向量相加。
設計意圖:通過(guò)對共線(xiàn)向量加法的探討,拓寬了學(xué)生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類(lèi)比的方法,使學(xué)生對共線(xiàn)向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,可以化解難點(diǎn)。
。4)向量加法的運算律
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角形法則得出,理解起來(lái)沒(méi)什么困難,再一次強化了學(xué)生對兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認識。
、诮Y合律:結合律是通過(guò)三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結果相同。
接下來(lái)是對應的兩個(gè)練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來(lái)方便,從后面的練習中學(xué)生能夠體會(huì )到這點(diǎn)。由結合律還使學(xué)生發(fā)現,多個(gè)向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。
3、小結
先由學(xué)生小結,檢查學(xué)生對本課重要知識的認識,也給學(xué)生一個(gè)概括本節知識的機會(huì ),然后用課件展示小結內容,使學(xué)生印象更深。
。1)平行四邊形法則:起點(diǎn)相同,適用于不共線(xiàn)向量的求和。
。2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。
。3)運算律
高中數學(xué)說(shuō)課稿 7
各位評委,老師們:
大家好!
很高興參加這次說(shuō)課活動(dòng)。這對我來(lái)說(shuō)也是一次難得的學(xué)習和鍛煉的機會(huì ),感謝各位老師在百忙之中來(lái)此予以指導。希望各位評委和老師們對我的說(shuō)課內容提出寶貴意見(jiàn)。
我說(shuō)課的內容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(shū)(試驗修訂本—必修)<數學(xué)>第一冊下,教學(xué)內容為第96頁(yè)至98頁(yè)第五章第一節。本校是浙江省一級重點(diǎn)中學(xué),學(xué)生基礎相對較好。我在進(jìn)行教學(xué)設計時(shí),也充分考慮到了這一點(diǎn)。
下面我從教材分析,教學(xué)目標的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設計四個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。
一說(shuō)教材
。1)地位和作用
向量是近代數學(xué)中重要和基本的概念之一,有著(zhù)深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質(zhì)轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著(zhù)極其豐富的實(shí)際背景,在數學(xué)和物理學(xué)科中具有廣泛的應用。
平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎上進(jìn)一步對向量的深入學(xué)習。為學(xué)習向量的知識體系奠定了知識和方法基礎。
。2)教學(xué)結構的調整
課本在這一部分內容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長(cháng)度,零向量,單位向量,平行向量,共線(xiàn)向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的'調整:將本節教學(xué)中認知過(guò)程的教學(xué)內容適當集中,以突出這節課的主題;例題,習題部分主要由學(xué)生依照概念自行分析,獨立完成。
。3)重點(diǎn),難點(diǎn),關(guān)鍵
由于本節課是本章內容的第一節課,是學(xué)生學(xué)習本章的基礎。為了本章后面知識的學(xué)習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點(diǎn)。本節課是為高一后半學(xué)期學(xué)生設計的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習方法和習慣,但根據以往的教學(xué)經(jīng)驗,多數學(xué)生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認為向量概念也是這節課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復雜的幾何圖形中相等的有向線(xiàn)段讓學(xué)生進(jìn)行辨認,加深對向量的理解。
二說(shuō)教學(xué)目標的確定
根據本課教材的特點(diǎn),新大綱對本節課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標:
。1)基礎知識目標:理解向量,零向量,單位向量,共線(xiàn)向量,平行向量,相等向量的概念,會(huì )用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì )根據圖形判定向量是否平行,共線(xiàn),相等。
。2)能力訓練目標:培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等發(fā)現規律的一般方法,培養學(xué)生觀(guān)察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
。3)情感目標:讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習的樂(lè )趣。
三說(shuō)教學(xué)方法的選擇
、窠虒W(xué)方法
本節課我采用了”啟發(fā)探究式的教學(xué)方法,根據本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):
。1)由教材的特點(diǎn)確立類(lèi)比思維為教學(xué)的主線(xiàn)。
從教材內容看平面向量無(wú)論從形式還是內容都與物理學(xué)中的有向線(xiàn)段,矢量的概念類(lèi)似。因此在教學(xué)中運用類(lèi)比作為思維的主線(xiàn)進(jìn)行教學(xué)。讓學(xué)生充分體會(huì )數學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。
。2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習方法
通常學(xué)生對于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習興趣,另外,學(xué)生都有表現自己的欲望,希望得到老師和其他同學(xué)的認可,要多表?yè)P,多肯定來(lái)激勵他們的學(xué)習熱情?紤]到我校學(xué)生的基礎較好,思維較為活躍,對自主探索式的學(xué)習方法也有一定的認識,所以在教學(xué)中我通過(guò)創(chuàng )設問(wèn)題情境,啟發(fā)引導學(xué)生運用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。
、蚪虒W(xué)手段
本節課中,除使用常規的教學(xué)手段外,我還使用了多媒體投影儀和計算機來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過(guò)程則有助于滲透數形結合思想,更易于對概念的理解和難點(diǎn)的突破。
四教學(xué)過(guò)程的設計
、裰R引入階段———提出學(xué)習課題,明確學(xué)習目標
。1)創(chuàng )設情境——引入概念
數學(xué)學(xué)習應該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現數學(xué)、探究數學(xué)、認識并掌握數學(xué)。
由生活中具體的向量的實(shí)例引入:大海中船只的航線(xiàn),中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習興趣。
。2)觀(guān)察歸納——形成概念
由實(shí)例得出有向線(xiàn)段的概念,有向線(xiàn)段的三個(gè)要素:起點(diǎn),方向,長(cháng)度。明確知道了有向線(xiàn)段的起點(diǎn),方向和長(cháng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設計,引導學(xué)生概括總結出本課新的知識點(diǎn):向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進(jìn)行歸納,深化,之后向學(xué)生提出以下三個(gè)問(wèn)題:
、傧蛄康囊厥鞘裁?
、谙蛄恐g能否比較大?
、巯蛄颗c數量的區別是什么?
同時(shí)指出這就是本節課我們要研究和學(xué)習的主題。
、蛑R探索階段———探索平面向量的平行向量。相等向量等概念
。1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線(xiàn)向量,并且規定0與任一向量平行.長(cháng)度相等且方向相同的向量叫相等向量,規定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
。2)即時(shí)訓練—鞏固新知
為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時(shí)訓練題,通過(guò)學(xué)生的觀(guān)察嘗試,討論研究,教師引導來(lái)鞏固新知識。
。劬毩1]判斷下列命題是否正確,若不正確,請簡(jiǎn)述理由.
、傧蛄颗c是共線(xiàn)向量,則A、B、C、D四點(diǎn)必在一直線(xiàn)上;
、趩挝幌蛄慷枷嗟;
、廴我幌蛄颗c它的相反向量不相等;
、芩倪呅蜛BCD是平行四邊形的充要條件是=;
、菽0是一個(gè)向量方向不確定的充要條件;
、薰簿(xiàn)的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.
。劬毩2]下列命題正確的是( )
A.a(chǎn)與b共線(xiàn),b與c共線(xiàn),則a與c也共線(xiàn)
B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)
C.向量a與b不共線(xiàn),則a與b都是非零向量
D.有相同起點(diǎn)的兩個(gè)非零向量不平行
、笾R應用階段————共線(xiàn)向量,相等向量等概念的初步應用
在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復雜圖形中觀(guān)察,辨認平行,相等的有向線(xiàn)段。選用本題的目的是讓學(xué)生進(jìn)行獨立思考,自主探究,交流討論等探索活動(dòng),加深對概念的理解和對難點(diǎn)的突破。
例如圖所示,設O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)
具體教學(xué)安排如下:
。1)分析解決問(wèn)題
先引導學(xué)生分析解決問(wèn)題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當它們的模相等,同時(shí)方向又相同時(shí),才能稱(chēng)它們相等。進(jìn)而進(jìn)行正確的辨認,直至最終解決問(wèn)題。
。2)歸納解題方法
主要引導學(xué)生歸納以下兩個(gè)問(wèn)題:
、倭阆蛄康姆较蚴侨我獾,它只與零向量相等;
、趦蓚(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。
、魧W(xué)習,小結階段———歸納知識方法,布置課后作業(yè)
本階段通過(guò)學(xué)習小結進(jìn)行課堂教學(xué)的反饋,組織和指導學(xué)生歸納知識,技能,方法的一般規律,為后續學(xué)習打好基礎。
具體的教學(xué)安排如下:
。1)知識,方法小結在知識層面上我首先引導學(xué)生回顧本節課的主要內容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類(lèi)比,加深對每個(gè)概念的理解。
在方法層面上我將帶領(lǐng)學(xué)生回顧探索過(guò)程中用到的思維方法和數學(xué)方法如:
類(lèi)比,數形結合,等價(jià)轉化等進(jìn)行強調。
。2)布置課后作業(yè)
閱讀教材96至97頁(yè)內容,整理課堂筆記,習題5。1第1,2,3題。
高中數學(xué)說(shuō)課稿 8
一、教材分析
本節知識是必修五第一章《解三角形》的第一節資料,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,并且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。
根據上述教材資料分析,研究到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的資料,推證正弦定理及簡(jiǎn)單運用正弦定理與三角形的內角和定理解斜三角形的兩類(lèi)問(wèn)題。
本領(lǐng)目標:引導學(xué)生經(jīng)過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維本事,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,經(jīng)過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習的興趣。
教學(xué)重點(diǎn):正弦定理的資料,正弦定理的證明及基本應用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)確定解的個(gè)數。
二、教法
根據教材的資料和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究資料,以生活實(shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,進(jìn)取探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當的提示和指導。突破難點(diǎn)的方法:抓住學(xué)生的本事線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過(guò)例題和練習來(lái)突破難點(diǎn)
三、學(xué)法:
指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、團體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維本事,構成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
第一:創(chuàng )設情景,大概用2分鐘
第二:實(shí)踐探究,構成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
。ㄒ唬﹦(chuàng )設情境,布疑激趣
“興趣是最好的教師”,如果一節課有個(gè)好的`開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不明白AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習的興趣,從而進(jìn)入今日的學(xué)習課題。
。ǘ┨綄ぬ乩,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。
2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。
3.讓學(xué)生總結實(shí)驗結果,得出猜想:
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。
。ㄈ┻壿嬐评,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生經(jīng)過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明
。ㄋ模w納總結,簡(jiǎn)單應用
1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。
2.正弦定理的資料,討論能夠解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
3.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自我參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
。ㄎ澹┲v解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
。┱n堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
2.學(xué)生板演,教師巡視,及時(shí)發(fā)現問(wèn)題,并解答。
。ㄆ撸┬〗Y反思,提高認識
經(jīng)過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會(huì )?
1.用向量證明了正弦定理,體現了數形結合的數學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。
。◤膶(shí)際問(wèn)題出發(fā),經(jīng)過(guò)猜想、實(shí)驗、歸納等思維方法,最終得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅僅收獲著(zhù)結論,并且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。)
。ò耍┤蝿(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現正弦定理不適用了,那么自然過(guò)渡到下一節資料,余弦定理。布置作業(yè),預習下一節資料。
高中數學(xué)說(shuō)課稿 9
一、教材分析:
集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。
二、目標分析:
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):集合的含義與表示方法。
難點(diǎn):表示法的恰當選擇。
教學(xué)目標
1.知識與技能
。1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合的屬于關(guān)系;
。2)知道常用數集及其專(zhuān)用記號;
。3)了解集合中元素的確定性;ギ愋。無(wú)序性;
。4)會(huì )用集合語(yǔ)言表示有關(guān)數學(xué)對象;
2. 過(guò)程與方法
。1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義。
。2)讓學(xué)生歸納整理本節所學(xué)知識。
3. 情感、態(tài)度與價(jià)值觀(guān)
使學(xué)生感受到學(xué)習集合的必要性,增強學(xué)習的積極性。
三、教法分析
1. 教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習。思考。交流。討論和概括,從而更好地完成本節課的教學(xué)目標。
2. 教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué)。
四、過(guò)程分析
。ㄒ唬﹦(chuàng )設情景,揭示課題
1、教師首先提出問(wèn)題:
。1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現在的班級。
。2)問(wèn)題:像"家庭"、"學(xué)校"、"班級"等,有什么共同特征?
引導學(xué)生互相交流。 與此同時(shí),教師對學(xué)生的活動(dòng)給予評價(jià)。
2.活動(dòng):
。1)列舉生活中的集合的例子;
。2)分析、概括各實(shí)例的共同特征
由此引出這節要學(xué)的內容。
設計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為新知作好鋪墊
。ǘ┭刑叫轮,建構概念
1.教師利用多媒體設備向學(xué)生投影出下面7個(gè)實(shí)例:
。1)1-20以?xún)鹊乃匈|(zhì)數;
。2)我國古代的四大發(fā)明;
。3)所有的安理會(huì )常任理事國;
。4)所有的正方形;
。5)海南省在2004年9月之前建成的所有立交橋;
。6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);
。7)國興中學(xué)2004年9月入學(xué)的高一學(xué)生的全體。
2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?
3.每個(gè)小組選出--位同學(xué)發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義。
一般地,指定的某些對象的全體稱(chēng)為集合(簡(jiǎn)稱(chēng)為集)。集合中的每個(gè)對象叫作這個(gè)集合的元素。
4.教師指出:集合常用大寫(xiě)字母A,B,C,D,…表示,元素常用小寫(xiě)字母…表示。
設計意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習的興趣,培養學(xué)生樂(lè )于求索的精神
。ㄈ┵|(zhì)疑答辯,發(fā)展思維
1.教師引導學(xué)生閱讀教材中的相關(guān)內容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導,解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性;ギ愋院蜔o(wú)序性。只要構成兩個(gè)集合的元素是一樣的,我們就稱(chēng)這兩個(gè)集合相等。
2.教師組織引導學(xué)生思考以下問(wèn)題:
判斷以下元素的全體是否組成集合,并說(shuō)明理由:
。1)大于3小于11的偶數;
。2)我國的小河流。
讓學(xué)生充分發(fā)表自己的建解。
3. 讓學(xué)生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說(shuō)明理由。教師對學(xué)生的學(xué)習活動(dòng)給予及時(shí)的評價(jià)。
4.教師提出問(wèn)題,讓學(xué)生思考
。1)如果用A表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的`一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。
如果是集合A的元素,就說(shuō)屬于集合A,記作。
如果不是集合A的元素,就說(shuō)不屬于集合A,記作。
。2)如果用A表示"所有的安理會(huì )常任理事國"組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數學(xué)符號分別表示。
。3)讓學(xué)生完成教材第6頁(yè)練習第1題。
5.教師引導學(xué)生回憶數集擴充過(guò)程,然后閱讀教材中的相交內容,寫(xiě)出常用數集的記號。并讓學(xué)生完成習題1.1A組第1題。
6.教師引導學(xué)生閱讀教材中的相關(guān)內容,并思考。討論下列問(wèn)題:
。1)要表示一個(gè)集合共有幾種方式?
。2)試比較自然語(yǔ)言。列舉法和描述法在表示集合時(shí),各自有什么特點(diǎn)?適用的對象是什么?
。3)如何根據問(wèn)題選擇適當的集合表示法?
使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì )它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。
。ㄋ模╈柟躺罨,反饋矯正
教師投影學(xué)習:
。1)用自然語(yǔ)言描述集合{1,3,5,7,9};
。2)用例舉法表示集合
。3)試選擇適當的方法表示下列集合:教材第6頁(yè)練習第2題。
設計意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì )三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業(yè)
小結:在師生互動(dòng)中,讓學(xué)生了解或體會(huì )下例問(wèn)題:
1.本節課我們學(xué)習了哪些知識內容?
2.你認為學(xué)習集合有什么意義?
3.選擇集合的表示法時(shí)應注意些什么?
設計意圖:通過(guò)回顧,對概念的發(fā)生與發(fā)展過(guò)程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書(shū)面作業(yè):第13頁(yè)習題1.1A組第4題。
2. 元素與集合的關(guān)系有多少種?如何表示?類(lèi)似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過(guò)預習教材。
高中數學(xué)說(shuō)課稿 10
尊敬的各位評委、各位老師大家好!我說(shuō)課的題目是《函數的單調性》,我將從四個(gè)方面來(lái)闡述我對這節課的設計.
一、教材分析
1、 教材的地位和作用
。1)本節課主要對函數單調性的學(xué)習;
。2)它是在學(xué)習函數概念的基礎上進(jìn)行學(xué)習的,同時(shí)又為基本初等函數的學(xué)習奠定了基礎,所以他在教材中起著(zhù)承前啟后的重要作用;(可以看看這一課題的前后章節來(lái)寫(xiě))
。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題
。ǜ鶕唧w的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問(wèn)題就刪掉)
2、 教材重、難點(diǎn)
重點(diǎn):函數單調性的定義
難點(diǎn):函數單調性的證明
重難點(diǎn)突破:在學(xué)生已有知識的基礎上,通過(guò)認真觀(guān)察思考,并通過(guò)小組合作探究的.辦法來(lái)實(shí)現重難點(diǎn)突破。(這個(gè)必須要有)
二、教學(xué)目標
知識目標:
。1)函數單調性的定義
。2)函數單調性的證明
能力目標:培養學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復雜,由特殊到一般的化歸思想
情感目標:培養學(xué)生勇于探索的精神和善于合作的意識
。ㄟ@樣的教學(xué)目標設計更注重教學(xué)過(guò)程和情感體驗,立足教學(xué)目標多元化)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無(wú)定法”,只有方法得當才會(huì )有效。新課程標準之處教師是教學(xué)的組織者、引導者、合作者,在教學(xué)過(guò)程要充分調動(dòng)學(xué)生的積極性、主動(dòng)性。本著(zhù)這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價(jià)法
2、學(xué)法分析
“授人以魚(yú),不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀(guān)察發(fā)現法、合作交流法、歸納總結法。
。ㄇ叭糠钟脮r(shí)控制在三分鐘以?xún),可適當刪減)
四、教學(xué)過(guò)程
1、以舊引新,導入新知
通過(guò)課前小研究讓學(xué)生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀(guān)察函數圖象的特點(diǎn),總結歸納。通過(guò)課上小組討論歸納,引導學(xué)生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線(xiàn)上升的,而二次函數f(x)=x^2的圖像是一個(gè)曲線(xiàn),在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來(lái)更自然)
2、創(chuàng )設問(wèn)題,探索新知
緊接著(zhù)提出問(wèn)題,你能用二次函數f(x)=x^2表達式來(lái)描述函數在(-∞,0)的圖像?教師總結,并板書(shū),揭示函數單調性的定義,并注意強調可以利用作差法來(lái)判斷這個(gè)函數的單調性。
讓學(xué)生模仿剛才的表述法來(lái)描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規范學(xué)生的數學(xué)用語(yǔ)。
讓學(xué)生自主學(xué)習函數單調區間的定義,為接下來(lái)例題學(xué)習打好基礎。
3、 例題講解,學(xué)以致用
例1主要是對函數單調區間的鞏固運用,通過(guò)觀(guān)察函數定義在(—5,5)的圖像來(lái)找出函數的單調區間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評來(lái)糾正答案,檢查學(xué)生對函數單調區間的掌握。強調單調區間一般寫(xiě)成半開(kāi)半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習效果。
例2是將函數單調性運用到其他領(lǐng)域,通過(guò)函數單調性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對例題進(jìn)行證明,以規范總結證明步驟。一設二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過(guò)自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學(xué)習了函數單調性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養學(xué)生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學(xué)生學(xué)習不同的數學(xué),我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2
6、板書(shū)設計
我力求簡(jiǎn)潔明了地概括本節課的學(xué)習要點(diǎn),讓學(xué)生一目了然。
。ㄟ@部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說(shuō)明學(xué)生的活動(dòng))
五、教學(xué)評價(jià)
本節課是在學(xué)生已有知識的基礎上學(xué)習的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評、互評,讓內部動(dòng)機和外界刺激協(xié)調作用,促進(jìn)其數學(xué)素養不斷提高。
高中數學(xué)說(shuō)課稿 11
一、說(shuō)教材
1、教材的地位和作用
《集合的概念》是人教版第一章的內容(中職數學(xué))。本節課的主要內容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數學(xué)課本中已現了一些數和點(diǎn)的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數學(xué)中的含義,集合是一個(gè)基礎性的概念,也是也是中職數學(xué)的開(kāi)篇,是我們后續學(xué)習的重要工具,如:用集合的語(yǔ)言表示函數的定義域、值域、方程與不等式的解集,曲線(xiàn)上點(diǎn)的集合等。通過(guò)本章節的學(xué)習,能讓學(xué)生領(lǐng)會(huì )到數學(xué)語(yǔ)言的簡(jiǎn)潔和準確性,幫助學(xué)生學(xué)會(huì )用集合的語(yǔ)言描述客觀(guān),發(fā)展學(xué)生運用數學(xué)語(yǔ)言交流的能力。
2、 教學(xué)目標
。1)知識目標:
a、通過(guò)實(shí)例了解集合的含義,理解集合以及有關(guān)概念;
b、初步體會(huì )元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。
。2)能力目標:
a、讓學(xué)生感知數學(xué)知識與實(shí)際生活得密切聯(lián)系,培養學(xué)生解決實(shí)際的能力;
b、學(xué)會(huì )借助實(shí)例分析,探究數學(xué)問(wèn)題,發(fā)展學(xué)生的觀(guān)察歸納能力。
。3)情感目標:
a、通過(guò)聯(lián)系生活,提高學(xué)生學(xué)習數學(xué)的積極性,形成積極的學(xué)習態(tài)度;
b、通過(guò)主動(dòng)探究,合作交流,感受探索的.樂(lè )趣和成功的體驗,體會(huì )數學(xué)的理性和嚴謹。
3、重點(diǎn)和難點(diǎn)
重點(diǎn):集合的概念,元素與集合的關(guān)系。
難點(diǎn):準確理解集合的概念。
二、學(xué)情分析(說(shuō)學(xué)情)
對于中職生來(lái)說(shuō),學(xué)生的數學(xué)基礎相對薄弱,他們還沒(méi)具備一定的觀(guān)察、分析理解、解決實(shí)際問(wèn)題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數學(xué)的自信心不強,學(xué)習積極性不高,有厭學(xué)情緒。
三、說(shuō)教法
針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習興趣。在創(chuàng )設情境認知策略上給予適當的點(diǎn)撥和引導,引導學(xué)生主動(dòng)思、交流、討論,提出問(wèn)題。在此基礎上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數學(xué)學(xué)習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。
四、學(xué)習指導(說(shuō)學(xué)法)
教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì )學(xué)是目的,因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。根據數學(xué)的特點(diǎn)這節課主要是教學(xué)生動(dòng)腦思考、多訓練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機會(huì ),增強了參與的意識,教學(xué)生獲取知識的途徑,思考問(wèn)題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達到預期的教學(xué)目的和效果。
五、教學(xué)過(guò)程
1、引入新課:
a、創(chuàng )設情境,揭示本課主題,同時(shí)對集合的整體性有個(gè)初步的感性認識。
b、介紹集合論的創(chuàng )始者康托爾
2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現有的認知水平, 以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng )造出一種自然和諧的氛圍,充分調動(dòng)學(xué)生的學(xué)習熱情接待探究過(guò)程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導學(xué)生尋找實(shí)例中的共同特征,培養學(xué)生觀(guān)察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。
3、集合的概念,本課的重點(diǎn)。結合探究中的實(shí)例,讓學(xué)生說(shuō)出集合和元素各是什么?知識的呈現由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問(wèn)題中的集合和元素為后面學(xué)習兩者間的關(guān)系做好鋪墊。
教師在這一環(huán)節做好學(xué)習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。
4、 熟悉鞏固集合的概念通過(guò)例題,練習、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。
5、集合的符號記法,為本節重點(diǎn)做好鋪墊。
6、從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語(yǔ)言描述,如何用數學(xué)語(yǔ)言描述,給出元素與集合關(guān)系符號表示,在這個(gè)環(huán)節教師適當引導學(xué)生積極主動(dòng)參與到知識逐步形成過(guò)程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習指導:⑴集合元素的確定。⑵理解兩符號的含義。
7、 思考交流本課的重要環(huán)節在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過(guò)自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達自己見(jiàn)解的能力。
8、 從所舉的例子中抽象出數集的概念,并給出常見(jiàn)數集的記法。
9、 學(xué)生練習:通過(guò)練習,識記常見(jiàn)數集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。
10、知識的實(shí)際應用:
問(wèn)題不難,落實(shí)課本能力目標,培養學(xué)生運用數學(xué)的意識和能力初步培養學(xué)生應用集合的眼光觀(guān)看世界。
11、課堂小節
以學(xué)生小節為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認識到要學(xué)會(huì )梳理所學(xué)內容,要學(xué)會(huì )總結反思,使學(xué)生的認識進(jìn)一步升華,培養學(xué)生的鬼納總結能力。
六、評價(jià)
教學(xué)評價(jià)的及時(shí)能有效調動(dòng)課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著(zhù)積極作用,教學(xué)過(guò)程尊重學(xué)生之間的差異培養學(xué)生應用集合的眼光看研究對象,注重過(guò)程評價(jià)與多元評價(jià)將教學(xué)評價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節。
七、教學(xué)反思
1、 通過(guò)現實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學(xué)生理解接受。
2、 啟發(fā)探究教學(xué),營(yíng)造學(xué)生的學(xué)習氛圍,培養學(xué)生自主學(xué)習,合作交流的能力。
高中數學(xué)說(shuō)課稿 12
一、說(shuō)教材
。1)說(shuō)教材的內容和地位
本次說(shuō)課的內容是人教版高一數學(xué)必修一第一單元第一節《集合》(第一課時(shí))。集合這一課里,首先從初中代數與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結合實(shí)例對集合的概念作了說(shuō)明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數學(xué)的最開(kāi)始,是因為在高中數學(xué)中,這些知識與其他內容有著(zhù)密切聯(lián)系,它們是學(xué)習、掌握以及使用數學(xué)語(yǔ)言的基礎。從知識結構上來(lái)說(shuō)是為了引入函數的定義。因此在高中數學(xué)的模塊中,集合就顯得格外的舉足輕重了。
。2)說(shuō)教學(xué)目標
根據教材結構和內容以及教材地位和作用,考慮到學(xué)生已有的認知結構與心理特征,依據新課標制定如下教學(xué)目標:
1.知識與技能:掌握集合的基本概念及表示方法。了解“屬于”關(guān)系的意義,掌握集合元素的特征。
2.過(guò)程與方法:通過(guò)情景設置提出問(wèn)題,揭示課題,培養學(xué)生主動(dòng)探究新知的習慣,并通過(guò)“自主、合作與探究”實(shí)現“一切以學(xué)生為中心”的理念。
3.情感態(tài)度與價(jià)值觀(guān):感受數學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習數學(xué)的興趣,由集合的學(xué)習感受數學(xué)的簡(jiǎn)潔美與和諧統一美。同時(shí)通過(guò)自主探究領(lǐng)略獲取新知識的喜悅。
。3)說(shuō)教學(xué)重點(diǎn)和難點(diǎn)
依據課程標準和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為教學(xué)重點(diǎn):集合的基本概念及元素特征。
教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì )元素與集合的屬于關(guān)系。
二、說(shuō)教法和學(xué)法
接下來(lái)則是說(shuō)教法、學(xué)法。
教法與學(xué)法是互相聯(lián)系和統一的,不能孤立去研究。什么樣的教法必帶來(lái)相應的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節課而言,我采用“生活實(shí)例與數學(xué)實(shí)例”相結合,“師生互動(dòng)與課堂布白”相輔助的方法。通過(guò)不同層次的練習體驗,憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習的主人,以學(xué)生為主體,創(chuàng )造條件讓學(xué)生參與探究活動(dòng),不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習的技能和激發(fā)學(xué)生的學(xué)習興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀(guān)察發(fā)現、合作交流、歸納總結等。
總之,不管采取什么教法和學(xué)法,每節課都應不斷研究學(xué)生的學(xué)習心理機制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng )造和諧的課堂氛圍。
三、說(shuō)教學(xué)過(guò)程
接著(zhù)我來(lái)說(shuō)一下最重要的部分,本節課的教學(xué)過(guò)程:
這節課的流程主要分為六個(gè)環(huán)節:創(chuàng )設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價(jià))、作業(yè)布置(反饋矯正)。
上述六個(gè)環(huán)節由淺入深,層層遞進(jìn). 多層次、多角度地加深對概念的理解. 提高學(xué)生學(xué)習的興趣,以達到良好的教學(xué)效果。
第一環(huán)節:創(chuàng )設問(wèn)題情境,引入目標
課堂開(kāi)始我將提出兩個(gè)問(wèn)題:
問(wèn)題1:班級有20名男生,16名女生,問(wèn)班級一共多少人?
問(wèn)題2:某次運動(dòng)會(huì )上,班級有20人參加田賽,16人參加徑賽,問(wèn)一共多少人參加比賽?
這里我會(huì )讓學(xué)生以小組討論的形式進(jìn)行討論問(wèn)題,事實(shí)上小組合作的形式是本節課主要形式。
待學(xué)生討論完畢以后我將作歸納總結:?jiǎn)?wèn)題2已無(wú)法用學(xué)過(guò)的知識加以解釋?zhuān)@是與集合有關(guān)的問(wèn)題,因此需用集合的語(yǔ)言加以描述(同時(shí)我將板書(shū)標題:集合)。
安排這一過(guò)程的意圖是為了從實(shí)際問(wèn)題引入,讓學(xué)生了解數學(xué)來(lái)源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習的欲望。
很自然地進(jìn)入到第二環(huán)節:自主探究讓學(xué)生閱讀教材,并思考下列問(wèn)題:
。1)有那些概念?
。2)有那些符號?
。3)集合中元素的特性是什么?
安排這一過(guò)程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構自己的知識結構。培養學(xué)生的探究能力。
讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節:討論辨析
小組合作探究(1)
讓學(xué)生觀(guān)察下列實(shí)例
。1)1~20以?xún)鹊乃匈|(zhì)數;
。2)所有的正方形;
。3)到直線(xiàn) 的距離等于定長(cháng) 的所有的點(diǎn);
。4)方程 的所有實(shí)數根;
通過(guò)以上實(shí)例,辨析概念:
。1)集合含義:一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集。而集合中的每個(gè)對象叫做這個(gè)集合的元素。
。2)表示方法:集合通常用大括號{ }或大寫(xiě)的拉丁字母A,B,C?表示,而元素用小寫(xiě)的拉丁字母a,b,c?表示。
小組合作探究(2)——集合元素的特征
問(wèn)題3:任意一組對象是否都能組成一個(gè)集合?集合中的元素有什么特征?
問(wèn)題4:某單位所有的“帥哥”能否構成一個(gè)集合?由此說(shuō)明什么?
集合中的元素必須是確定的
問(wèn)題5:在一個(gè)給定的集合中能否有相同的元素?由此說(shuō)明什么?
集合中的元素是不重復出現的
問(wèn)題6:咱班的全體同學(xué)組成一個(gè)集合,調整座位后這個(gè)集合有沒(méi)有變化?由此說(shuō)明什么?
集合中的元素是沒(méi)有順序的
我如此設計的'意圖是因為:?jiǎn)?wèn)題是數學(xué)的心臟,感受問(wèn)題是學(xué)習數學(xué)的根本動(dòng)力。
小組合作探究(3)——元素與集合的關(guān)系
問(wèn)題7:設集合A表示“1~20以?xún)鹊乃匈|(zhì)數”,那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?
問(wèn)題8:如果元素a是集合A中的元素,我們如何用數學(xué)化的語(yǔ)言表達?
a屬于集合A,記作a∈A
問(wèn)題9:如果元素a不是集合A中的元素,我們如何用數學(xué)化的語(yǔ)言表達?
a不屬于集合A,記作a?A
小組合作探究(4)——常用數集及其表示方法
問(wèn)題10:自然數集,正整數集,整數集,有理數集,實(shí)數集等一些常用數集,分別用什么符號表示?
自然數集(非負整數集):記作 N
正整數集:記作 N或 N? 整數集:記作 Z
有理數集:記作 Q 實(shí)數集:記作 R
設計意圖:由于不同的人對同一問(wèn)題有不同的體驗和理解。讓學(xué)生通過(guò)合作交流相互得到啟發(fā),從而不斷完善自己的知識結構。
第四環(huán)節:理論遷移 變式訓練
1.下列指定的對象,能構成一個(gè)集合的是
、 很小的數
、 不超過(guò)30的非負實(shí)數
、 直角坐標平面內橫坐標與縱坐標相等的點(diǎn)
、 π的近似值
、 所有無(wú)理數
A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④
第五環(huán)節:課堂小結,自我評價(jià)
1.這節課學(xué)習的主要內容是什么?
2.這節課主要解釋了什么數學(xué)思想?
設計意圖:引導學(xué)生對所學(xué)知識、思想方法進(jìn)行小結,形成知識系統.教師用激勵性的語(yǔ)言加一點(diǎn)評,讓學(xué)生的思想敞亮的發(fā)揮出來(lái)。
第六環(huán)節:作業(yè)布置,反饋矯正
1.必做題 課本習題1.1—1、2、3。
2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實(shí)數a 的值。 設計意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗。
四、板書(shū)設計
好的板書(shū)就像一份微型教案,為了讓學(xué)生直觀(guān)易懂的看筆記,板書(shū)應設計得有條理性、概括性、指導性,所以我設計的板書(shū)如下:
集 合
1.集合的概念 4.范例研究
2.集合元素的特征
。▽W(xué)生板演)
3.常見(jiàn)集合的表示?
以上,我是從教材、教法和學(xué)法、教學(xué)過(guò)程和板書(shū)設計四個(gè)方面對本課進(jìn)行了說(shuō)明,我的說(shuō)課到此結束,謝謝各位評委老師,并請各位評委老師指正!
高中數學(xué)說(shuō)課稿 13
一、教材分析
1、教材中的地位與作用:“2.1直線(xiàn)與方程”是蘇教版數學(xué)必修2的第二章的內容,是解析幾何的開(kāi)篇之作。而“2.1.1直線(xiàn)的斜率”這一節是這一章的第一節,是用斜率與傾斜角來(lái)刻畫(huà)直線(xiàn)方向的,它學(xué)習的內容是基礎的,學(xué)習方法是重要的。是為今后用代數的方法研究解析幾何問(wèn)題的的學(xué)習奠定基礎,起到了啟下的作用。
2、教學(xué)的重點(diǎn)與難點(diǎn):根據課程標準的要求,本節教學(xué)的重點(diǎn)為:直線(xiàn)斜率的本質(zhì)認識與直線(xiàn)斜率的坐標公式。因為過(guò)定點(diǎn)的直線(xiàn)的傾斜程度就是用直線(xiàn)的斜率來(lái)刻畫(huà)的,斜率的是通過(guò)直線(xiàn)上兩點(diǎn)的縱坐標的差與橫坐標的差的比來(lái)計算的,反映了用代數的方法來(lái)研究幾何問(wèn)題的核心思想。教學(xué)的難點(diǎn)為:直線(xiàn)斜率、傾斜角的定義和本質(zhì)的理解、斜率與傾斜角之間的關(guān)系。因為傾斜角實(shí)際上是直線(xiàn)相對x軸的傾斜程度來(lái)反映直線(xiàn)的傾斜程度的,它與斜率一樣,都是刻畫(huà)直線(xiàn)的傾斜程度,但兩者的角度不同,所以存在一定的`聯(lián)系,這一聯(lián)系正是教學(xué)的難點(diǎn)所在。
二、教學(xué)目標的確定
由于“2.1.1直線(xiàn)的斜率”是“直線(xiàn)與方程”的第一課時(shí),又是解析幾何的開(kāi)始部分。從學(xué)生原有的認知上分析,確定教學(xué)的目標為:
1、知識目標:
。1)理解直線(xiàn)的斜率,掌握過(guò)兩點(diǎn)的直線(xiàn)的斜率公式
。2)理解直線(xiàn)的傾斜角的定義,知道直線(xiàn)的傾斜角的范圍
。3)掌握直線(xiàn)的斜率與傾斜角之間的關(guān)系
。4)使學(xué)生初步感受直線(xiàn)的方向與直線(xiàn)的斜率之間的對應關(guān)系,從而體會(huì )到要研究直線(xiàn)的方向的變化規律,只要研究直線(xiàn)的斜率的變化的規律
2、能力目標:培養學(xué)生的主動(dòng)探究知識、合作交流的意識,觀(guān)測、探究、分析問(wèn)題、解決問(wèn)題的能力
3、情感目標:通過(guò)課堂教學(xué)培養學(xué)生的數行結合的美感與嚴謹治學(xué)的生活態(tài)度
三、教學(xué)與學(xué)法
1、學(xué)法指導:學(xué)生原有對直線(xiàn)知識的掌握情況為:在坐標系中能畫(huà)出直線(xiàn)的圖形,而高中則要求學(xué)生能用幾何量:斜率與傾斜角來(lái)刻畫(huà)直線(xiàn)的傾斜程度,能用代數的方法研究斜率的問(wèn)題,所以在學(xué)法上要指導學(xué)生:觀(guān)測生活中的樓梯的坡度;探究坡度的大小與數學(xué)中的斜率有關(guān)系;領(lǐng)悟斜率的計算公式;理解斜率與傾斜角的關(guān)系。
2、教法指導:引導學(xué)生學(xué)會(huì )觀(guān)測目標,點(diǎn)撥生活中的量與量關(guān)系的數學(xué)本質(zhì),合理、嚴格的定義直線(xiàn)的傾斜角。正確推倒斜率與傾斜角的關(guān)系式。
四、教學(xué)過(guò)程設計
1、問(wèn)題情境,提出課題:從生活實(shí)例上樓梯出發(fā):有的樓梯陡一些,有的樓梯平一些。
問(wèn)題1:這種“陡”與“平”可以用坡度來(lái)刻畫(huà),即“高度”與“寬度”的比值大小來(lái)刻畫(huà),那么直線(xiàn)的傾斜程度又如何來(lái)刻畫(huà)呢?是從學(xué)生的生活發(fā)展區出發(fā),調動(dòng)學(xué)生的積極性。類(lèi)比發(fā)現在直角坐標系中直線(xiàn)的傾斜程度可以用縱坐標的增量與橫坐標的增量的比來(lái)刻畫(huà)。從而引出將要學(xué)習的課題――直線(xiàn)的斜率。這樣引入課題顯得比較自然,也符合學(xué)生的思維認知規律。
2、自主探究,形成概念:
問(wèn)題2:刻畫(huà)直線(xiàn)的傾斜程度—斜率,那么用什么量來(lái)表示這種“坡度”呢?
在直線(xiàn)上任取兩點(diǎn),如果,那么直線(xiàn)PQ的斜率為(),同時(shí)提醒學(xué)生要注意:
。1)斜率公式與兩點(diǎn)的順序無(wú)關(guān),與所選擇的直線(xiàn)上兩點(diǎn)的位置無(wú)關(guān);
。2)它是一個(gè)比值,是一個(gè)定值;
。3)前提是,當時(shí),即與軸垂直的直線(xiàn),它的斜率是不存在。
3、解決問(wèn)題,理解概念
通過(guò)對例1的分析與講解目的是幫助學(xué)生理解經(jīng)過(guò)兩點(diǎn)的直線(xiàn)的斜率公式,使學(xué)生掌握直線(xiàn)斜率的符號與直線(xiàn)的方向之間的對應關(guān)系。還可以進(jìn)一步提出思考:
。1)給出斜率,畫(huà)出符合條件的直線(xiàn);
。2)給出直線(xiàn)讓學(xué)生分析直線(xiàn)斜率的特征。對題目作進(jìn)一步的探討。這樣有利于培養學(xué)生的發(fā)散思維,促使良好思維習慣的形成
例2是畫(huà)圖問(wèn)題,使學(xué)生進(jìn)一步理解斜率的幾何意義,在例2的畫(huà)圖過(guò)程中讓學(xué)生感受直線(xiàn)相對x軸的傾斜程度,應該還與一個(gè)角有關(guān)系。從而引出直線(xiàn)傾斜角的概念
問(wèn)3:如何定義直線(xiàn)的傾斜角呢??jì)A斜角概念得出后,教師總結:
。1)直線(xiàn)的傾斜角與斜率一樣,也是刻畫(huà)直線(xiàn)的傾斜程度的量,但直線(xiàn)的傾斜角側重與直觀(guān)形象,直線(xiàn)的斜率則側重與數量關(guān)系;
。2)任何直線(xiàn)都有傾斜角,但不是任何直線(xiàn)都有斜率。
五、鞏固練習,及時(shí)反饋
課本練習1、2、3、4。通過(guò)練習一方面可以加深學(xué)生對定義、公式的理解;另一方面也旨在了解學(xué)生對概念的掌握情況,以便調節后面的教學(xué)節奏。
六、回顧反思,形成系統
我是引導學(xué)生從知識內容和思想方法兩個(gè)方面進(jìn)行小結的。通過(guò)小結使學(xué)生對本節課的知識結構有一個(gè)清晰的認識。在小結時(shí)不僅概括所學(xué)知識,而且還對所用到的數學(xué)方法和涉及的數學(xué)思想也進(jìn)行歸納,這樣既可以使學(xué)生完成知識建構,又可以培養其能力。
七、作業(yè)布置
所布置的作業(yè)都是緊緊圍繞著(zhù)“直線(xiàn)的斜率”的概念及運用。通過(guò)作業(yè)來(lái)反饋知識掌握效果,鞏固所學(xué)知識,強化基本技能的訓練,培養學(xué)生良好的學(xué)習習慣和品質(zhì)。
八、關(guān)于評價(jià)
在授課過(guò)程中,我根據學(xué)生對課堂提問(wèn)及例習題的解答情況,及時(shí)調節課堂節奏,“易”則可加快,“難”則應放慢速度,并借用富有啟發(fā)性的、階梯性的提問(wèn)對學(xué)生進(jìn)行思維引導。
課后,我將通過(guò)批改作業(yè)以及與學(xué)生談話(huà)等方式,來(lái)了解學(xué)生對“直線(xiàn)的斜率”概念的掌握情況,檢查教學(xué)目的的實(shí)現程度。同時(shí),對下一步教學(xué)工作作出必要的調整和改進(jìn)。另外,通過(guò)對作業(yè)的評判和統計課堂練習完成情況,有助于學(xué)生認識自我,讓他們獲得成就感,從而增強其自信心,培養學(xué)生積極進(jìn)取的學(xué)習態(tài)度。
高中數學(xué)說(shuō)課稿 14
尊敬的各位評委、各位老師:
大家好!
我說(shuō)課的題目是《函數的單調性》,我將從四個(gè)方面來(lái)闡述我對這節課的設計。
一、教材分析
函數的單調性是函數的重要性質(zhì)。從知識的網(wǎng)絡(luò )結構上看,函數的單調性既是函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性等內容的基礎,在研究各種具體函數的性質(zhì)和應用、解決各種問(wèn)題中都有著(zhù)廣泛的應用。函數單調性概念的建立過(guò)程中蘊涵諸多數學(xué)思想方法,對于進(jìn)一步探索、研究函數的其他性質(zhì)有很強的啟發(fā)與示范作用。
根據函數單調性在整個(gè)教材內容中的地位與作用,本節課教學(xué)應實(shí)現如下教學(xué)目標:
知識與技能使學(xué)生理解函數單調性的概念,初步掌握判別函數單調性的方法;
過(guò)程與方法引導學(xué)生通過(guò)觀(guān)察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
情感態(tài)度與價(jià)值觀(guān)在函數單調性的學(xué)習過(guò)程中,使學(xué)生體驗數學(xué)的科學(xué)價(jià)值和應用價(jià)值,培養學(xué)生善于觀(guān)察、勇于探索的良好習慣和嚴謹的科學(xué)態(tài)度。
根據上述教學(xué)目標,本節課的教學(xué)重點(diǎn)是函數單調性的概念形成和初步運用。雖然高一學(xué)生已經(jīng)有一定的抽象思維能力,但函數單調性概念對他們來(lái)說(shuō)還是比較抽象的因此,本節課的學(xué)習難點(diǎn)是函數單調性的概念形成。
二、教法學(xué)法
為了實(shí)現本節課的教學(xué)目標,在教法上我采取了:
1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)學(xué)生求知欲,調動(dòng)學(xué)生主體參與的積極性。
2、在形成概念的過(guò)程中,緊扣概念中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,正確地形成概念。
3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并順利地完成書(shū)面表達。
在學(xué)法上我重視了:
1、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和分析解決問(wèn)題的能力。
三、教學(xué)過(guò)程
函數單調性的概念產(chǎn)生和形成是本節課的難點(diǎn),為了突破這一難點(diǎn),在教學(xué)設計上采用了下列四個(gè)環(huán)節。
。ㄒ唬﹦(chuàng )設情境,提出問(wèn)題
。▎(wèn)題情境)(播放中央電視臺天氣預報的音樂(lè ))。如圖為某地區20xx年元旦這一天24小時(shí)內的氣溫變化圖,觀(guān)察這張氣溫變化圖:
[教師活動(dòng)]引導學(xué)生觀(guān)察圖象,提出問(wèn)題:
問(wèn)題1:說(shuō)出氣溫在哪些時(shí)段內是逐步升高的或下降的?
問(wèn)題2:怎樣用數學(xué)語(yǔ)言刻畫(huà)上述時(shí)段內“隨著(zhù)時(shí)間的增大氣溫逐漸升高”這一特征?
[設計意圖]問(wèn)題是數學(xué)的心臟,問(wèn)題是學(xué)生思維的開(kāi)始,問(wèn)題是學(xué)生興趣的開(kāi)始。這里,通過(guò)兩個(gè)問(wèn)題,引發(fā)學(xué)生的進(jìn)一步學(xué)習的好奇心。
。ǘ┨骄堪l(fā)現建構概念
[學(xué)生活動(dòng)]對于問(wèn)題1,學(xué)生容易給出答案。問(wèn)題2對學(xué)生來(lái)說(shuō)較為抽象,不易回答。
[教師活動(dòng)]為了引導學(xué)生解決問(wèn)題2,先讓學(xué)生觀(guān)察圖象,通過(guò)具體情形,例如,“t1=8時(shí),f(t1)=1,t2=10時(shí),f(t2)=4”這一情形進(jìn)行描述。引導學(xué)生回答:對于自變量8<10,對應的函數值有1<4。舉幾個(gè)例子表述一下。然后給出一個(gè)鋪墊性的問(wèn)題:結合圖象,請你用自己的語(yǔ)言,描述“在區間[4,14]上,氣溫隨時(shí)間增大而升高”這一特征。
在學(xué)生對于單調增函數的特征有一定直觀(guān)認識時(shí),進(jìn)一步提出:
問(wèn)題3:對于任意的t1、t2∈[4,16]時(shí),當t1 [學(xué)生活動(dòng)]通過(guò)觀(guān)察圖象、進(jìn)行實(shí)驗(計算機)、正反對比,發(fā)現數量關(guān)系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調增函數概念的本質(zhì)屬性,并嘗試用符號語(yǔ)言進(jìn)行初步的表述。 [教師活動(dòng)]為了獲得單調增函數概念,對于不同學(xué)生的表述進(jìn)行分析、歸類(lèi),引導學(xué)生得出關(guān)鍵詞“區間內”、“任意”、“當時(shí),都有”。告訴他們“把滿(mǎn)足這些條件的函數稱(chēng)之為單調增函數”,之后由他們集體給出單調增函數概念的數學(xué)表述。提出: 問(wèn)題4:類(lèi)比單調增函數概念,你能給出單調減函數的概念嗎? 最后完成單調性和單調區間概念的整體表述。 [設計意圖]數學(xué)概念的形成來(lái)自解決實(shí)際問(wèn)題和數學(xué)自身發(fā)展的需要。但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習活動(dòng)中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷“數學(xué)化”、“再創(chuàng )造”的活動(dòng)過(guò)程。剛升入高一的學(xué)生已經(jīng)具備了一定的幾何形象思維能力,但抽象思維能力不強。從日常的描述性語(yǔ)言概念升華到用數學(xué)符號語(yǔ)言精確刻畫(huà)概念是本節課的難點(diǎn)。 。ㄈ┳晕覈L試運用概念 1.為了理解函數單調性的概念,及時(shí)地進(jìn)行運用是十分必要的. [教師活動(dòng)]問(wèn)題5: 。1)你能找出氣溫圖中的單調區間嗎? 。2)你能說(shuō)出你學(xué)過(guò)的函數的單調區間嗎?請舉例說(shuō)明. [學(xué)生活動(dòng)]對于(1),學(xué)生容易看出:氣溫圖中分別有兩個(gè)單調減區間和一個(gè)單調增區間。對于(2),學(xué)生容易舉出具體函數如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫(huà)出函數的草圖,根據函數的圖象說(shuō)出函數的單調區間。 [教師活動(dòng)]利用實(shí)物投影儀,投影出學(xué)生畫(huà)出的草圖和標出的單調區間,并指出學(xué)生回答問(wèn)題時(shí)可能出現的錯誤,如:在敘述函數的單調區間時(shí)寫(xiě)成并集。 [設計意圖]在學(xué)生已有認知結構的基礎上提出新問(wèn)題,使學(xué)生明了,過(guò)去所研究的函數的相關(guān)特征,就是現在所學(xué)的函數的單調性,從而加深對函數單調性概念的`理解。 2.對于給定圖象的函數,借助于圖象,我們可以直觀(guān)地判定函數的單調性,也能找到單調區間.而對于一般的函數,我們怎樣去判定函數的單調性呢? [教師活動(dòng)]問(wèn)題6:證明在區間(0,+∞)上是單調減函數. [學(xué)生活動(dòng)]學(xué)生相互討論,嘗試自主進(jìn)行函數單調性的證明,可能會(huì )出現不知如何比較f(x1)與f(x2)的大小、不會(huì )正確表述、變形不到位或根本不會(huì )變形等困難。 [教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,投影學(xué)生的證明過(guò)程,糾正出現的錯誤,規范書(shū)寫(xiě)的格式。 [學(xué)生活動(dòng)]學(xué)生自我歸納證明函數單調性的一般方法和操作流程:取值、作差變形、定號、判斷。 [設計意圖]有效的數學(xué)學(xué)習過(guò)程,不能單純的模仿與記憶,數學(xué)思想的領(lǐng)悟和學(xué)習過(guò)程更是如此。利用學(xué)生自己提出的問(wèn)題,讓學(xué)生在解題過(guò)程中親身經(jīng)歷和實(shí)踐體驗,師生互動(dòng)學(xué)習,生生合作交流,共同探究。 。ㄋ模┗仡櫡此忌罨拍 [教師活動(dòng)]給出一組題: 1、定義在R上的單調函數f(x)滿(mǎn)足f(2)>f(1),那么函數f(x)是R上的單調增函數還是單調減函數? 2、若定義在R上的單調減函數f(x)滿(mǎn)足f(1+a)的取值范圍嗎? [學(xué)生活動(dòng)]學(xué)生互相討論,探求問(wèn)題的解答和問(wèn)題的解決過(guò)程,并通過(guò)問(wèn)題,歸納總結本節課的內容和方法。 [設計意圖]通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對函數單調性認識的再次深化。 [教師活動(dòng)]作業(yè)布置: 。1)閱讀課本P34—35例2 。2)書(shū)面作業(yè): 必做:教材P431、7、11 選做:二次函數y=x2+bx+c在[0,+∞)是增函數,滿(mǎn)足條件的實(shí)數的值唯一嗎? 探究:函數y=x在定義域內是增函數,函數有兩個(gè)單調減區間,由這兩個(gè)基本函數構成的函數的單調性如何?請證明你得到的結論。 [設計意圖]通過(guò)兩方面的作業(yè),使學(xué)生養成先看書(shū),后做作業(yè)的習慣;诤瘮祮握{性?xún)热莸奶攸c(diǎn)及學(xué)生實(shí)際,對課后書(shū)面作業(yè)實(shí)施分層設置,安排基本練習題、鞏固理解題和深化探究題三層。學(xué)生完成作業(yè)的形式為必做、選做和探究三種,使學(xué)生在完成必修教材基本學(xué)習任務(wù)的同時(shí),拓展自主發(fā)展的空間,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習氛圍的形成。 四、教學(xué)評價(jià) 學(xué)生學(xué)習的結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。教師應當高度重視學(xué)生學(xué)習過(guò)程中的參與度、自信心、團隊精神、合作意識、獨立思考習慣的養成、數學(xué)發(fā)現的能力,以及學(xué)習的興趣和成就感。學(xué)生熟悉的問(wèn)題情境可以激發(fā)學(xué)生的學(xué)習興趣,問(wèn)題串的設計可以讓更多的學(xué)生主動(dòng)參與,師生對話(huà)可以實(shí)現師生合作,適度的研討可以促進(jìn)生生交流以及團隊精神,知識的生成和問(wèn)題的解決可以讓學(xué)生感受到成功的喜悅,縝密的思考可以培養學(xué)生獨立思考的習慣。讓學(xué)生在教師評價(jià)、學(xué)生評價(jià)以及自我評價(jià)的過(guò)程中體驗知識的積累、探索能力的長(cháng)進(jìn)和思維品質(zhì)的提高,為學(xué)生的可持續發(fā)展打下基礎。 一、教材分析。 1、教學(xué)目標: 。1)理解并掌握等差數列的概念;了解等差數列的通項公式的推導過(guò)程及思想; 。2)培養學(xué)生觀(guān)察、分析、歸納、推理的能力;在領(lǐng)會(huì )函數與數列關(guān)系的前提下,把研究函數的方法遷移來(lái)研究數列,培養學(xué)生的知識、方法遷移能力;通過(guò)階梯性練習,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。 。3)通過(guò)對等差數列的研究,培養學(xué)生主動(dòng)探索、勇于發(fā)現的求知精神;養成細心觀(guān)察、認真分析、善于總結的良好思維習慣。 2、教學(xué)重點(diǎn)和難點(diǎn): 。1)等差數列的概念。 。2)等差數列的通項公式的推導過(guò)程及應用。用不完全歸納法推導等差數列的通項公式。 二、教法分析。 采用啟發(fā)式、討論式以及講練結合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數學(xué)實(shí)踐活動(dòng),以獨立思考和相互交流的形式,在教師的指導下發(fā)現、分析和解決問(wèn)題。 三、教學(xué)程序。 本節課的教學(xué)過(guò)程由: 。ㄒ唬⿵土曇; 。ǘ┬抡n探究; 。ㄈ⿷美; 。ㄋ模┓答伨毩; 。ㄎ澹w納小結; 。┎贾米鳂I(yè),六個(gè)教學(xué)環(huán)節構成。 。ㄒ唬⿵土曇耄 1、全國統一鞋號中成年女鞋的各種尺碼(表示鞋底長(cháng),單位是cm)分別是21,22,23,24,25。 2、某劇場(chǎng)前10排的座位數分別是:38,40,42,44,46,48,50,52,54,56。 3、某長(cháng)跑運動(dòng)員7天里每天的訓練量(單位:m)是:7500,8000,8500,9000,9500,10000,10500。 共同特點(diǎn):從第2項起,每一項與前一項的差都等于同一個(gè)常數。 。ǘ 新課探究。 1、給出等差數列的.概念: 如果一個(gè)數列,從第二項開(kāi)始它的每一項與前一項之差都等于同一常數,這個(gè)數列就叫等差數列, 這個(gè)常數叫做等差數列的公差,通常用字母d來(lái)表示。強調: 。1)“從第二項起”滿(mǎn)足條件; 。2)公差d一定是由后項減前項所得; 。3)公差可以是正數、負數,也可以是0。 2、推導等差數列的通項公式:若等差數列{an }的首項是 ,公差是d, 則據其定義可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……進(jìn)而歸納出等差數列的通項公式:= +(n—1)d 此時(shí)指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學(xué)生嚴謹的學(xué)習態(tài)度,在這里向學(xué)生介紹另外一種求數列通項公式的辦法——————迭加法:– =d;– =d;– =d……– =d。 將這(n—1)個(gè)等式左右兩邊分別相加,就可以得到 – = (n—1) d即 = +(n—1) d 當n=1時(shí),上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時(shí)上面公式都成立,因此它就是等差數列{an }的通項公式。 接著(zhù)舉例說(shuō)明:若一個(gè)等差數列{ }的首項是1,公差是2,得出這個(gè)數列的通項公式是: =1+(n—1)×2 , 即 =2n—1 以此來(lái)鞏固等差數列通項公式運用 。ㄈ⿷门e例。 這一環(huán)節是使學(xué)生通過(guò)例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實(shí)際問(wèn)題的能力。通過(guò)例1和例2向學(xué)生表明:要用運動(dòng)變化的觀(guān)點(diǎn)看等差數列通項公式中的 、d、n、 這4個(gè)量之間的關(guān)系。當其中的部分量已知時(shí),可根據該公式求出另一部分量。 例1 : 。1)求等差數列8,5,2,…的第20項; 。2)—401是不是等差數列—5,—9,—13,…的項?如果是,是第幾項? 第二問(wèn)實(shí)際上是求正整數解的問(wèn)題,而關(guān)鍵是求出數列的通項公式。 例2: 在等差數列{an}中,已知 =10, =31,求首項 與公差d。 在前面例1的基礎上將例2當作練習作為對通項公式的鞏固。 例3: 梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。 。ㄋ模┓答伨毩。 1、小節后的練習中的第1題和第2題(要求學(xué)生在規定時(shí)間內完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進(jìn)行基本技能訓練。 2、若數列{ } 是等差數列,若 = k ,(k為常數)試證明:數列{ }是等差數列。 此題是對學(xué)生進(jìn)行數列問(wèn)題提高訓練,學(xué)習如何用定義證明數列問(wèn)題同時(shí)強化了等差數列的概念。 。ㄎ澹w納小結 。(由學(xué)生總結這節課的收獲) 1、等差數列的概念及數學(xué)表達式。 強調關(guān)鍵字:從第二項開(kāi)始它的每一項與前一項之差都等于同一常數 2、等差數列的通項公式 = +(n—1) d會(huì )知三求一 。 布置作業(yè)。 1、必做題:課本P114 習題3。2第2,6 題。 2、選做題:已知等差數列{ }的首項 = —24,從第10項開(kāi)始為正數,求公差d的取值范圍。(目的:通過(guò)分層作業(yè),提高同學(xué)們的求知欲和滿(mǎn)足不同層次的學(xué)生需求) 四、板書(shū)設計。 在板書(shū)中突出本節重點(diǎn),將強調的地方如定義中,“從第二項起”及“同一常數”等幾個(gè)字用紅色粉筆標注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書(shū)充分體現了精講多練的教學(xué)方法。 【高中數學(xué)說(shuō)課稿】相關(guān)文章: 高中數學(xué)的說(shuō)課稿04-19 高中數學(xué)經(jīng)典說(shuō)課稿11-25 高中數學(xué)說(shuō)課稿06-12 高中數學(xué)優(yōu)秀說(shuō)課稿03-08 高中數學(xué)數列說(shuō)課稿06-07 高中數學(xué)優(yōu)秀說(shuō)課稿03-03 高中數學(xué)全套說(shuō)課稿06-08 高中數學(xué)說(shuō)課稿06-13 高中數學(xué)數列說(shuō)課稿11-20 高中數學(xué)說(shuō)課稿 15