高中數學(xué)說(shuō)課稿(通用20篇)
作為一名為他人授業(yè)解惑的教育工作者,時(shí)常需要用到說(shuō)課稿,借助說(shuō)課稿可以更好地提高教師理論素養和駕馭教材的能力。如何把說(shuō)課稿做到重點(diǎn)突出呢?以下是小編為大家收集的高中數學(xué)說(shuō)課稿,歡迎閱讀與收藏。
高中數學(xué)說(shuō)課稿 篇1
我說(shuō)課的課題是《任意角的三角函數》,內容取自蘇教版高中實(shí)驗教科書(shū)《數學(xué)》第四冊 第1.2節
先對教材進(jìn)行分析
教學(xué)內容:任意角三角函數的定義、定義域,三角函數值的符號。
地位和作用: 任意角的三角函數是本章教學(xué)內容的基本概念對三角內容的整體學(xué)習至關(guān)重要。同時(shí)它又為平面向量、解析幾何等內容的學(xué)習作必要的準備,通過(guò)這部分內容的學(xué)習,又可以幫助學(xué)生更加深入理解函數這一基本概念。所以這個(gè)內容要認真探討教材,精心設計過(guò)程。
教學(xué)重點(diǎn):任意角三角函數的定義
教學(xué)難點(diǎn):正確理解三角函數可以看作以實(shí)數為自變量的函數、初中用邊長(cháng)比值來(lái)定義轉變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀(guān)念的轉換以及坐標定義的合理性的理解;
學(xué)情分析:
學(xué)生已經(jīng)掌握的內容,學(xué)生學(xué)習能力
1、初中學(xué)生已經(jīng)學(xué)習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見(jiàn)的知識和求法。
2、我們南山區經(jīng)過(guò)多年的初中課改,學(xué)生已經(jīng)具備較強的自學(xué)能力,多數同學(xué)對數學(xué)的學(xué)習有相當的興趣和積極性。
3、在探究問(wèn)題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進(jìn)行
針對對教材內容重難點(diǎn)的和學(xué)生實(shí)際情況的分析我們制定教學(xué)目標如下
知識目標:
。1)任意角三角函數的定義;三角函數的'定義域;三角函數值的符號,
能力目標:
。1)理解并掌握任意角的三角函數的定義;
。2)正確理解三角函數是以實(shí)數為自變量的函數;
。3)通過(guò)對定義域,三角函數值的符號的推導,提高學(xué)生分析探究解決問(wèn)題的能力。
德育目標:
。1)學(xué)習轉化的思想
。2)培養學(xué)生嚴謹治學(xué)、一絲不茍的科學(xué)精神;
針對學(xué)生實(shí)際情況為達到教學(xué)目標須精心設計教學(xué)方法
教法學(xué)法:溫故知新,逐步拓展
。1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發(fā)展新知識,形成新的概念;
。2)通過(guò)例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
。1)提高直觀(guān)性增強趣味性。
教學(xué)過(guò)程分析
總體來(lái)說(shuō), 由舊及新,由易及難,
逐步加強,逐步推進(jìn)
先由初中的直角三角形中銳角三角函數的定義
過(guò)度到直角坐標系中銳角三角函數的定義
再發(fā)展到直角坐標系中任意角三角函數的定義
給定定義后通過(guò)應用定義又逐步發(fā)現新知識拓展完善定義。
具體教學(xué)過(guò)程安排
引入: 復習提問(wèn):初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學(xué)生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。
我們知道,隨著(zhù)角的概念的推廣,研究角時(shí)多放在直角坐標系里, 那么三角函數的定義能否也放到坐標系去研究呢?
引導學(xué)生發(fā)現B的坐標和邊長(cháng)的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現由于相似三角形的相似比導致OB上任一P點(diǎn)都可以代換B,把三角函數的定義發(fā)展到用終邊上任一點(diǎn)的坐標來(lái)表示, 從而銳角三角函數可以使用直角坐標系來(lái)定義,自然地,要想定義任意一個(gè)角三角函數,便考慮放在直角坐標中進(jìn)行合理進(jìn)行定義了
從而得到
知識點(diǎn)一:任意一個(gè)角的三角函數的定義
提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個(gè)比值的大小和P點(diǎn)在角的終邊上的位置無(wú)關(guān)。
精心設計例題,引出新內容深化概念,完善定義
例1已知角A 的終邊經(jīng)過(guò)P(2,—3),求角A的三個(gè)三角函數值
。ù祟}由學(xué)生自己分析獨立動(dòng)手完成)
例題變式1,已知角A 的大小是30度,由定義求角A的三個(gè)三角函數值
結合變式我們發(fā)現三個(gè)三角函數值的大小與角的大小有關(guān),只會(huì )隨角的大小而變化,符合當初函數的定義,而我們又一直稱(chēng)呼為三角函數,
提出問(wèn)題:這三個(gè)新的定義確實(shí)問(wèn)是函數嗎?為什么?
從而引出函數極其定義域
由學(xué)生分析討論,得出結論
知識點(diǎn)二:三個(gè)三角函數的定義域
同時(shí)教師強調:由于弧度制使角和實(shí)數建立了一一對應關(guān)系,所以三角函數是以實(shí)數為自變量的函數
例題變式2, 已知角A 的終邊經(jīng)過(guò)P(—2a,—3a)( a不為0),求角A的三個(gè)三角函數值
解答中需要對變量的正負即角所在象限進(jìn)行討論, 讓學(xué)生意識到三角函數值的正負與角所在象限有關(guān),從而導出第三個(gè)知識點(diǎn)
知識點(diǎn)三:三角函數值的正負與角所在象限的關(guān)系
由學(xué)生推出結論,教師總結符號記憶方法,便于學(xué)生記憶
例題2:已知A在第二象限且 sinA=0.2 求cosA,tanA
求cosA,tanA
綜合練習鞏固提高,更為下節的同角關(guān)系式打下基礎
拓展,如果不限制A的象限呢,可以留作課外探討
小結回顧課堂內容
課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解
課堂作業(yè)P16 1,2,4
。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)
課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)
高中數學(xué)說(shuō)課稿 篇2
一、說(shuō)教材:
1、 地位及作用:
“橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書(shū)的重點(diǎn)內容之一,也是歷年高考、會(huì )考的必考內容,是在學(xué)完求曲線(xiàn)方程的基礎上,進(jìn)一步研究橢圓的特性,以完成對圓錐曲線(xiàn)的全面研究,為今后的學(xué)習打好基礎,因此本節內容具有承前啟后的作用。
2、 教學(xué)目標:
根據《教學(xué)大綱》,《考試說(shuō)明》的要求,并根據教材的具體內容和學(xué)生的實(shí)際情況,確定本節課的教學(xué)目標:
。1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。
。2)能力目標:
。╝)培養學(xué)生靈活應用知識的能力。
。╞) 培養學(xué)生全面分析問(wèn)題和解決問(wèn)題的能力。
。╟)培養學(xué)生快速準確的運算能力。
。3)德育目標:培養學(xué)生數形結合思想,類(lèi)比、分類(lèi)討論的思想以及確立從感性到理性認識的辯證唯物主義觀(guān)點(diǎn)。
3、 重點(diǎn)、難點(diǎn)和關(guān)鍵點(diǎn):
因為橢圓的定義和標準方程是解決與橢圓有關(guān)問(wèn)題的重要依據,也是研究雙曲線(xiàn)和拋物線(xiàn)的基礎,因此,它是本節教材的重點(diǎn);由于學(xué)生推理歸納能力較低,在推導橢圓的標準方程時(shí)涉及到根式的兩次平方,并且運算也較繁,因此它是本節課的難點(diǎn);坐標系建立的好壞直接影響標準方程的推導和化簡(jiǎn),因此建立一個(gè)適當的直角坐標系是本節的關(guān)鍵。
二、 說(shuō)教材處理
為了完成本節課的教學(xué)目標,突出重點(diǎn)、分散難點(diǎn)、根據教材的內容和學(xué)生的實(shí)際情況,對教材做以下的'處理:
1、學(xué)生狀況分析及對策:
2、教材內容的組織和安排:
本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進(jìn),層層深入的原則組織和安排如下:
。1)復習提問(wèn)
。2)引入新課
。3)新課講解
。4)反饋練習
。5)歸納總結
。6)布置作業(yè)
三、 說(shuō)教法和學(xué)法
1、為了充分調動(dòng)學(xué)生學(xué)習的積極性,是學(xué)生變被動(dòng)學(xué)習為主動(dòng)而愉快的學(xué)習,引導學(xué)生自己動(dòng)手,讓學(xué)生的思維活動(dòng)在教師的引導下層層展開(kāi)。請學(xué)生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課采用“引導教學(xué)法”。
2、利用電腦所畫(huà)圖形的動(dòng)態(tài)演示總結規律。同時(shí)利用電腦的動(dòng)態(tài)演示激發(fā)學(xué)生的學(xué)習興趣。
四、 教學(xué)過(guò)程
教學(xué)環(huán)節
3、設a(-2,0),b(2,0),三角形abp周長(cháng)為10,動(dòng)點(diǎn)p軌跡方程。
例1屬基礎,主要反饋學(xué)生掌握基本知識的程度。
例2可強化基本技能訓練和基本知識的靈活運用。
小結
為使學(xué)生對本節內容有一個(gè)完整深刻的認識,教師引導學(xué)生從以下幾個(gè)方面進(jìn)行小結。
1、橢圓的定義和標準方程及其應用。
2、橢圓標準方程中a,b,c諸關(guān)系。
3、求橢圓方程常用方法和基本思路。
通過(guò)小結形成知識體系,加深對本節知識的理解培養學(xué)生的歸納總結能力,增強學(xué)生學(xué)好圓錐曲線(xiàn)的信心。
布置作業(yè)
。1) 77頁(yè)——78頁(yè) 1,2,3,79頁(yè) 11
。2) 預習下節內容
鞏固本節所學(xué)概念,強化基本技能訓練,培養學(xué)生良好的學(xué)習習慣和品質(zhì),發(fā)現和彌補教學(xué)中的遺漏和不足。
高中數學(xué)說(shuō)課稿 篇3
我說(shuō)課的內容是高中數學(xué)第二冊(上冊)第七章《直線(xiàn)和圓的方程》中的第六節“曲線(xiàn)和方程”的第一課時(shí),下面我的說(shuō)課將從以下幾個(gè)方面進(jìn)行闡述:
一、教材分析
教材的地位和作用
“曲線(xiàn)和方程”這節教材揭示了幾何中的形與代數中的數相統一的關(guān)系,為“作形判數”與“就數論形”的相互轉化開(kāi)辟了途徑,這正體現了解析幾何這門(mén)課的基本思想,對全部解析幾何教學(xué)有著(zhù)深遠的影響。學(xué)生只有透徹理解了曲線(xiàn)和方程的意義,才算是尋得了解析幾何學(xué)習的入門(mén)之徑。如果以為學(xué)生不真正領(lǐng)悟曲線(xiàn)和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說(shuō)是一種“舍本逐題”的偏見(jiàn),應該認識到這節“曲線(xiàn)和方程”的開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!
根據以上分析,確立教學(xué)重點(diǎn)是:“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;難點(diǎn)是:怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程。
二、教學(xué)目標
根據教學(xué)大綱的要求以及本教材的地位和作用,結合高二學(xué)生的認知特點(diǎn)確定教學(xué)目標如下:
知識目標:
1、了解曲線(xiàn)上的點(diǎn)與方程的解之間的一一對應關(guān)系;
2、初步領(lǐng)會(huì )“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的.概念;
3、學(xué)會(huì )根據已有的情景資料找規律,進(jìn)而分析、判斷、歸納結論;
4、強化“形”與“數”一致并相互轉化的思想方法。
能力目標:
1、通過(guò)直線(xiàn)方程的引入,加強學(xué)生對方程的解和曲線(xiàn)上的點(diǎn)的一一對應關(guān)系的認識;
2、在形成曲線(xiàn)和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀(guān)察、分析、討論等數學(xué)活動(dòng)過(guò)程,探索出結論,并能有條理的闡述自己的觀(guān)點(diǎn);
3、能用所學(xué)知識理解新的概念,并能運用概念解決實(shí)際問(wèn)題,從中體會(huì )轉化化歸的思想方法,提高思維品質(zhì),發(fā)展應用意識。
情感目標:
1、通過(guò)概念的引入,讓學(xué)生感受從特殊到一般的認知規律;
2、通過(guò)反例辨析和問(wèn)題解決,培養合作交流、獨立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng )新的科學(xué)精神。
三、重難點(diǎn)突破
“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念是本節的重點(diǎn),這是由于本節課是由直觀(guān)表象上升到抽象概念的過(guò)程,學(xué)生容易對定義中為什么要規定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線(xiàn)、拋物線(xiàn)等實(shí)際模型,積累了感性認識的基礎,所以可用舉反例的方法來(lái)解決困惑,通過(guò)反例揭示“兩者缺一”與直覺(jué)的矛盾,從而又促使學(xué)生對概念表述的嚴密性進(jìn)行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來(lái)解釋曲線(xiàn)和方程的對應關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程是本節的難點(diǎn)。因為學(xué)生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線(xiàn)建立方程的時(shí)候,不驗證方程的解為坐標的點(diǎn)在曲線(xiàn)上,就斷然得出所求的是曲線(xiàn)方程。這種現象在高考中也屢見(jiàn)不鮮。為了突破難點(diǎn),本節課設計了三種層次的問(wèn)題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線(xiàn)的方程。通過(guò)這些例題讓學(xué)生再一次體會(huì )“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標系后平面內的點(diǎn)和有序實(shí)數對之間建立了一一對應關(guān)系,已有了用方程(有時(shí)以函數式的形式出現)表示曲線(xiàn)的感性認識(特別是二元一次方程表示直線(xiàn)),現在要進(jìn)一步研究平面內的曲線(xiàn)和含有兩個(gè)變數的方程之間的關(guān)系,是由直觀(guān)表象上升到抽象概念的過(guò)程,對學(xué)生有相當大的難度。學(xué)生在學(xué)習時(shí)容易產(chǎn)生的問(wèn)題是,不理解“曲線(xiàn)上的點(diǎn)的坐標都是方程的解”和“以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)”這兩句話(huà)在揭示“曲線(xiàn)和方程”關(guān)系時(shí)各自所起的作用。本節課的教學(xué)目標也只能是初步領(lǐng)會(huì ),要求學(xué)生能答出曲線(xiàn)和方程間必須滿(mǎn)足兩個(gè)關(guān)系時(shí)才能稱(chēng)作“曲線(xiàn)的方程”和“方程的曲線(xiàn)”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區別。
高中數學(xué)說(shuō)課稿 篇4
說(shuō)教材
。1)地位和作用
向量是近代數學(xué)中重要和基本的概念之一,有著(zhù)深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質(zhì)轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著(zhù)極其豐富的實(shí)際背景,在數學(xué)和物理學(xué)科中具有廣泛的應用。
平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎上進(jìn)一步對向量的深入學(xué)習。為學(xué)習向量的知識體系奠定了知識和方法基礎。
。2)教學(xué)結構的調整
課本在這一部分內容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長(cháng)度,零向量,單位向量,平行向量,共線(xiàn)向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調整:將本節教學(xué)中認知過(guò)程的教學(xué)內容適當集中,以突出這節課的主題;例題,習題部分主要由學(xué)生依照概念自行分析,獨立完成。
。3)重點(diǎn),難點(diǎn),關(guān)鍵
由于本節課是本章內容的第一節課,是學(xué)生學(xué)習本章的基礎。為了本章后面知識的學(xué)習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點(diǎn)。本節課是為高一后半學(xué)期學(xué)生設計的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習方法和習慣,但根據以往的教學(xué)經(jīng)驗,多數學(xué)生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認為向量概念也是這節課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復雜的幾何圖形中相等的有向線(xiàn)段讓學(xué)生進(jìn)行辨認,加深對向量的理解。
說(shuō)教學(xué)目標的確定
根據本課教材的特點(diǎn),新大綱對本節課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標:
。1)基礎知識目標:理解向量,零向量,單位向量,共線(xiàn)向量,平行向量,相等向量的概念,會(huì )用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì )根據圖形判定向量是否平行,共線(xiàn),相等。
。2)能力訓練目標:培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等發(fā)現規律的一般方法,培養學(xué)生觀(guān)察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
。3)情感目標:讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習的樂(lè )趣。
說(shuō)教學(xué)方法的.選擇
、窠虒W(xué)方法
本節課我采用了”啟發(fā)探究式的教學(xué)方法,根據本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):
。1)由教材的特點(diǎn)確立類(lèi)比思維為教學(xué)的主線(xiàn)。
從教材內容看平面向量無(wú)論從形式還是內容都與物理學(xué)中的有向線(xiàn)段,矢量的概念類(lèi)似。因此在教學(xué)中運用類(lèi)比作為思維的主線(xiàn)進(jìn)行教學(xué)。讓學(xué)生充分體會(huì )數學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。
。2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習方法
通常學(xué)生對于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習興趣,另外,學(xué)生都有表現自己的欲望,希望得到老師和其他同學(xué)的認可,要多表?yè)P,多肯定來(lái)激勵他們的學(xué)習熱情?紤]到我校學(xué)生的基礎較好,思維較為活躍,對自主探索式的學(xué)習方法也有一定的認識,所以在教學(xué)中我通過(guò)創(chuàng )設問(wèn)題情境,啟發(fā)引導學(xué)生運用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。
、蚪虒W(xué)手段
本節課中,除使用常規的教學(xué)手段外,我還使用了多媒體投影儀和計算機來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過(guò)程則有助于滲透數形結合思想,更易于對概念的理解和難點(diǎn)的突破。
四教學(xué)過(guò)程的設計
、裰R引入階段———提出學(xué)習課題,明確學(xué)習目標
。1)創(chuàng )設情境——引入概念
數學(xué)學(xué)習應該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現數學(xué)、探究數學(xué)、認識并掌握數學(xué)。
由生活中具體的向量的實(shí)例引入:大海中船只的航線(xiàn),中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習興趣。
。2)觀(guān)察歸納——形成概念
由實(shí)例得出有向線(xiàn)段的概念,有向線(xiàn)段的三個(gè)要素:起點(diǎn),方向,長(cháng)度。明確知道了有向線(xiàn)段的起點(diǎn),方向和長(cháng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設計,引導學(xué)生概括總結出本課新的知識點(diǎn):向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進(jìn)行歸納,深化,之后向學(xué)生提出以下三個(gè)問(wèn)題:
、傧蛄康囊厥鞘裁?
、谙蛄恐g能否比較大?
、巯蛄颗c數量的區別是什么?
同時(shí)指出這就是本節課我們要研究和學(xué)習的主題。
、蛑R探索階段———探索平面向量的平行向量。相等向量等概念
。1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線(xiàn)向量,并且規定0與任一向量平行。長(cháng)度相等且方向相同的向量叫相等向量,規定零向量與零向量相等。平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
。2)即時(shí)訓練—鞏固新知
為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時(shí)訓練題,通過(guò)學(xué)生的觀(guān)察嘗試,討論研究,教師引導來(lái)鞏固新知識。
。劬毩1]判斷下列命題是否正確,若不正確,請簡(jiǎn)述理由。
、傧蛄颗c是共線(xiàn)向量,則A、B、C、D四點(diǎn)必在一直線(xiàn)上;
、趩挝幌蛄慷枷嗟;
、廴我幌蛄颗c它的相反向量不相等;
、芩倪呅蜛BCD是平行四邊形的充要條件是=;
、菽0是一個(gè)向量方向不確定的充要條件;
、薰簿(xiàn)的向量,若起點(diǎn)不同,則終點(diǎn)一定不同。
。劬毩2]下列命題正確的是( )
A。a與b共線(xiàn),b與c共線(xiàn),則a與c也共線(xiàn)
B。任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)
C。向量a與b不共線(xiàn),則a與b都是非零向量
D。有相同起點(diǎn)的兩個(gè)非零向量不平行
、笾R應用階段————共線(xiàn)向量,相等向量等概念的初步應用
在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復雜圖形中觀(guān)察,辨認平行,相等的有向線(xiàn)段。選用本題的目的是讓學(xué)生進(jìn)行獨立思考,自主探究,交流討論等探索活動(dòng),加深對概念的理解和對難點(diǎn)的突破。
例如圖所示,設O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)
具體教學(xué)安排如下:
。1)分析解決問(wèn)題
先引導學(xué)生分析解決問(wèn)題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當它們的模相等,同時(shí)方向又相同時(shí),才能稱(chēng)它們相等。進(jìn)而進(jìn)行正確的辨認,直至最終解決問(wèn)題。
。2)歸納解題方法
主要引導學(xué)生歸納以下兩個(gè)問(wèn)題:①零向量的方向是任意的,它只與零向量相
等;②兩個(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。
、魧W(xué)習,小結階段———歸納知識方法,布置課后作業(yè)
本階段通過(guò)學(xué)習小結進(jìn)行課堂教學(xué)的反饋,組織和指導學(xué)生歸納知識,技能,方法的一般規律,為后續學(xué)習打好基礎。
具體的教學(xué)安排如下:
。1)知識,方法小結在知識層面上我首先引導學(xué)生回顧本節課的主要內容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類(lèi)比,加深對每個(gè)概念的理解。
在方法層面上我將帶領(lǐng)學(xué)生回顧探索過(guò)程中用到的思維方法和數學(xué)方法如:
類(lèi)比,數形結合,等價(jià)轉化等進(jìn)行強調。
。2)布置課后作業(yè)
閱讀教材96至97頁(yè)內容,整理課堂筆記,習題5.1第1,2,3題。
高中數學(xué)說(shuō)課稿 篇5
1、對教材地位與作用的認識
在高中數學(xué)教學(xué)中,作為數學(xué)思想應向學(xué)生滲透,強化的有:函數與方程思想;數形結合思想;分類(lèi)討論思想;等價(jià)轉化及運動(dòng)變化思想。不是所有的課都能把這些思想自然的容納進(jìn)去,但由于“曲線(xiàn)和方程”這一節在教材中的特殊地位,它把代數和幾何兩個(gè)單科自然而緊密地結合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視!扒(xiàn)和方程”這節教材揭示了幾何中的形與代數中的數相統一的關(guān)系,為“依形判數”與“就數論形”的相互轉化開(kāi)辟了途徑,這正體現了解析幾何這門(mén)課的基本思想,用代數的方法研究幾何問(wèn)題!鼻(xiàn)與方程”是解析幾何中最為重要的基本內容之一。在理論上它是基礎,在應用上它是工具,對全部解析幾何的教學(xué)有著(zhù)深遠的影響,另外在高考中也是考察的重點(diǎn)內容,尤其是求曲線(xiàn)的方程,學(xué)生只有透徹理解了曲線(xiàn)與方程的含義,才算是找到了解析幾何學(xué)習得入門(mén)之路。應該認識到這節“曲線(xiàn)和方程”得開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!
2、教學(xué)目標的確定及依據
(大綱的要求)通過(guò)本小節的學(xué)習,要使學(xué)生了解解析幾何的基本思想,了解用坐標法研究幾何問(wèn)題的初步知識和觀(guān)點(diǎn),理解曲線(xiàn)的方程和方程的曲線(xiàn)的意義,初步掌握求曲線(xiàn)的方程的方法。所以第一課我在教學(xué)目標上是這樣設定的:
1).了解曲線(xiàn)上的點(diǎn)與方程的解之間的一一對應關(guān)系,領(lǐng)會(huì )“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念及其關(guān)系,并能作簡(jiǎn)單的判斷與推理;
2).在形成概念的過(guò)程中,培養分析、抽象和概括等思維能力;
3)會(huì )證明已知曲線(xiàn)的方程。
本節課的教學(xué)目標定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應在學(xué)生的學(xué)習行為上,即要求學(xué)生能答出曲線(xiàn)與方程間必須滿(mǎn)足的兩個(gè)關(guān)系,才能稱(chēng)作“方程的曲線(xiàn)”和“曲線(xiàn)的方程”,兩者缺一不可,并能借助實(shí)例進(jìn)一步明確這二者的區別。知識的學(xué)習與能力的培養是同步的,在具體操作上結合圖形分析與反例,來(lái)辨析“兩個(gè)關(guān)系”之間的區別,從認識特例到歸納出曲線(xiàn)的方程和方程的曲線(xiàn)一般概念,因而在形成概念的過(guò)程中,培養學(xué)生分析、抽象、概括的思維能力。會(huì )證明已知曲線(xiàn)的方程就能更進(jìn)一步的理解曲線(xiàn)和方程概念的含義并為下節課求曲線(xiàn)的方程打基礎。
3、如何突破重難點(diǎn)
本小節的重點(diǎn)是理解曲線(xiàn)與方程的有關(guān)概念與相互聯(lián)系,以及求曲線(xiàn)方程的方法、步驟只有深刻理解了曲線(xiàn)與方程的含義,才能真正掌握好求曲線(xiàn)軌跡方程的一般方法,進(jìn)一步學(xué)好后面的內容曲線(xiàn)和方程的概念比較抽象,由直觀(guān)表象到抽象概念有相當難度,對學(xué)生理解上可能遇到的問(wèn)題是學(xué)生不理解“曲線(xiàn)上的點(diǎn)的坐標都是方程的解”和”“以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)”這兩句話(huà)在揭示“曲線(xiàn)和方程”關(guān)系各自所起的作用。有的學(xué)生只從字面上死記硬背;有的學(xué)生甚至誤以為這兩句話(huà)是同義反復。要突破這一點(diǎn),關(guān)鍵在于利用充要條件,函數圖象,直線(xiàn)和方程,軌跡等知識,正反兩方面說(shuō)明問(wèn)題。
本節課的難點(diǎn)在于對定義中為什么要規定兩個(gè)關(guān)系(純粹性和完備性)產(chǎn)生困惑,原因是不理解兩者缺任何一個(gè)都將擴大概念的外延。
4、對教學(xué)過(guò)程的設計
今天要講的“曲線(xiàn)和方程”這部分教材的內容主要包括“曲線(xiàn)方程的概念”,“已知曲線(xiàn)求它的方程”、“已知方程作出它的曲線(xiàn)”等。在課時(shí)安排上分為3個(gè)課時(shí)進(jìn)行教學(xué),具體的課時(shí)分配是:第一課時(shí)講解“曲線(xiàn)與方程”和“方程與曲線(xiàn)”的概念及其關(guān)系;第二課時(shí)講解求曲線(xiàn)的方程一般方法,第三課時(shí)為習題課,通過(guò)練習來(lái)總結、鞏固和深化本節知識。如果以為學(xué)生不真正領(lǐng)悟曲線(xiàn)和方程得關(guān)系照樣能求出方程,照樣能計算某些難題,因而可以忽視這個(gè)基本概念得教學(xué),這不能不說(shuō)是一種“舍本逐末”得偏見(jiàn)。
在教材中,曲線(xiàn)和方程這一概念是隨著(zhù)知識的講授而不斷深化,逐步為學(xué)生所理解,因而教材中從直線(xiàn)開(kāi)始,多次,重復地闡述,這說(shuō)明其重要性同時(shí)也說(shuō)明理解它,掌握它確實(shí)需要一個(gè)過(guò)程數學(xué)本身是很抽象,把數學(xué)和實(shí)際問(wèn)題相結合才能激發(fā)學(xué)生的學(xué)習興趣,真正達到素質(zhì)教育的要求。根據以上考慮,確定了這節課教學(xué)過(guò)程的基本線(xiàn)索是:實(shí)際問(wèn)題引入,提出課題→運用反例,揭示內涵→討論歸納,得出定義→集合表述,強化理解→知識應用,反復辨析。
教材的編寫(xiě)也往往體現著(zhù)教法,例如,本節一開(kāi)頭說(shuō)“我們研究過(guò)直線(xiàn)的各種方程,討論了直線(xiàn)和二元一次方程的關(guān)系!睂W(xué)生已經(jīng)有了用方程(有時(shí)用函數式的形式出現)表示曲線(xiàn)的感性認識,在本節教學(xué)中充分發(fā)揮這些感性認識的作用。從人造地球衛星運行的軌道等生動(dòng)形象的實(shí)際問(wèn)題引入,引起學(xué)生的興趣和好奇心以及對數學(xué)的'應用有了更高的認識,更激發(fā)他們進(jìn)一步學(xué)好數學(xué)的決心。(具體……)提出課題。運用學(xué)生熟知的知識,1)求線(xiàn)段AB的垂直平分線(xiàn)方程和2)作出方程y=x2的圖象作為引例,從曲線(xiàn)到方程,從方程到曲線(xiàn)兩方面入手分析了曲線(xiàn)上的點(diǎn)和方程的解之間的關(guān)系,為形成曲線(xiàn)和方程的概念提供了實(shí)際模型,但是如果就此而由教師直接給出結論,那就不僅會(huì )失去開(kāi)發(fā)學(xué)生思維的機會(huì ),影響學(xué)生的理解,而且會(huì )使教學(xué)變得枯燥乏味,抑制了學(xué)生學(xué)習的主動(dòng)性和積極性,接著(zhù)用反例來(lái)突破難點(diǎn)。通過(guò)反例1)直線(xiàn)去掉第三象限部分,則方程y=x的解為坐標的點(diǎn)不都在曲線(xiàn)上,以及2)改方程為,那么曲線(xiàn)上就混有不滿(mǎn)足方程的點(diǎn)坐標就此揭示“兩者缺一”與直覺(jué)的矛盾,通過(guò)舉反例和步步追問(wèn)使我要的答案逐步明了,從而又促使學(xué)生對概念表述的嚴格性進(jìn)行探索,學(xué)生自已認識曲線(xiàn)和方程的概念必須要具備的兩個(gè)關(guān)系,培養學(xué)生分析,歸納問(wèn)題的能力,自然得出定義。并且把這個(gè)關(guān)系板書(shū)到黑板上,以示這就是這節課的重點(diǎn)。為了在重難點(diǎn)有所突破后強化其認識,又用集合相等的概念來(lái)解釋曲線(xiàn)和方程的對應關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
然后通過(guò)運用與練習,糾正錯誤的認識,促使對概念的正確理解,通過(guò)反復重現,可以不斷領(lǐng)悟,加強識記。所以安排了例1,例2(見(jiàn)課件)目的也在于幫助學(xué)生正確理解概念,通過(guò)解題辨析“兩個(gè)關(guān)系”,實(shí)現本節課的教學(xué)目標,為此題目中的“曲線(xiàn)”和“方程”都力求簡(jiǎn)單,由此得出點(diǎn)在曲線(xiàn)上的充要條件。
曲線(xiàn)是符合某種條件的點(diǎn)的軌跡,為了下節課“求曲線(xiàn)的方程”的教學(xué),安排了例3(見(jiàn)課件)證明曲線(xiàn)的方程,增加學(xué)生的感性認識,由于教材上有嚴謹的證明過(guò)程,讓學(xué)生閱讀并總結證明已知曲線(xiàn)的方程的方法和步驟,上升到理論上,可以培養學(xué)生獨立思考,閱讀歸納的能力。為了讓學(xué)生更深入的理解這節課的主要內容,通過(guò)4個(gè)變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個(gè)練習:(略)簡(jiǎn)單評講后小結本課的主要內容,進(jìn)一步強化“曲線(xiàn)和方程”概念中兩個(gè)關(guān)系缺一不可,只有符合關(guān)系1)2)才能進(jìn)行數與形的轉化。由于下節課的內容是求曲線(xiàn)的方程,特地安排了一個(gè)思考探索題。
5、對學(xué)生學(xué)習活動(dòng)的引導和組織
教案的設計與教案的實(shí)施往往有一定的距離,本節課有著(zhù)概念性強,思維量大,例題與練習題不多的特點(diǎn),這就決定了整節課將以學(xué)生的觀(guān)察、思考、討論為主,通過(guò)提問(wèn),舉例,啟發(fā),互動(dòng)完成教學(xué),在具體操作上比較靈活,視學(xué)生的具體情況而定,把握學(xué)生的思維規律于數學(xué)思想的基本方法。例如,在概念教學(xué)中引導學(xué)生看反例,通過(guò)正反對比的方法,當學(xué)生觀(guān)察了例1回答不清為什么,可以舉出幾個(gè)點(diǎn)的坐標作檢驗,這就是”從特殊到一般“的方法:或引導學(xué)生看圖,比比劃劃,這就是“從直觀(guān)到抽象”的方法。只要啟發(fā)方法符合學(xué)生的認識規律,學(xué)生的認識活動(dòng)就會(huì )順利展開(kāi),而且在認知的過(guò)程中訓練了探索的能力。強化數形結合、化歸與轉化的數學(xué)思想方法,完善學(xué)生的數學(xué)的結構,讓學(xué)生動(dòng)手、動(dòng)腦,以及觀(guān)察、聯(lián)想、猜測、歸納等合理推理,鼓勵學(xué)生多向思維、積極思考,勇于探索,從中培養學(xué)生合情推理能力,數學(xué)交流與合作能力以及主動(dòng)參與的精神。
高中數學(xué)說(shuō)課稿 篇6
一、 說(shuō)教材
。ㄒ唬┙滩牡牡匚缓妥饔
本節內容著(zhù)重介紹了三角形的三種特殊線(xiàn)段,已學(xué)過(guò)的過(guò)直線(xiàn)外一點(diǎn)作已知直線(xiàn)的垂線(xiàn)、線(xiàn)段的中點(diǎn)、角的平分線(xiàn)等知識是學(xué)習本節新知識的基礎,其中三角形的高學(xué)生從小學(xué)起已開(kāi)始接觸,教材從學(xué)生已有認知出發(fā),從高入手,利用圖形,給高作了具體定義,使學(xué)生了解三角形的高為線(xiàn)段,進(jìn)而引出三角形的另外幾種特殊線(xiàn)段——中線(xiàn)、角平分線(xiàn)。通過(guò)本節內容學(xué)習,可使學(xué)生掌握三角形的高、中線(xiàn)、角平分線(xiàn)與垂線(xiàn)、角平分線(xiàn)的聯(lián)系與區別。通過(guò)學(xué)習作圖、觀(guān)察與探究,會(huì )發(fā)現三角形的三條高所在的直線(xiàn)、三條角平分線(xiàn)、三條中線(xiàn)都各自交于一點(diǎn),這為以后三角形的內心、重心等知識的學(xué)習打下一定的基礎,另外,本節內容也是日后學(xué)習等腰三角形等特殊三角形的墊腳石。故學(xué)好本節內容是十分必要的。因此,對三角的高、中線(xiàn)、角平分線(xiàn)定義的理解及畫(huà)法的掌握是本節教學(xué)的重點(diǎn),而三角形的高由于三角形的形狀改變而使其位置呈現多樣性,學(xué)生難以掌握,故在各類(lèi)三角形中作出它們是本課的難點(diǎn)。
。ǘ┙虒W(xué)目標分析
本節課的教學(xué)設計力圖體現“尊重學(xué)生,注重發(fā)展”的教學(xué)理念,著(zhù)重培養和發(fā)展學(xué)生基本作圖能力、語(yǔ)言表達能力、觀(guān)察能力等,根據這一目的確定本節教學(xué)目標為:
1、理解三角形的高、中線(xiàn)、角平分線(xiàn)的概念
2、能正確作出一個(gè)三角形的高、中線(xiàn)、角平分線(xiàn)
3、通過(guò)觀(guān)察、探究、畫(huà)一畫(huà)、折一折與描述等數學(xué)活動(dòng),感受數學(xué)語(yǔ)言的準確性,提高觀(guān)察能力,語(yǔ)言表達能力,發(fā)展推理能力。
重點(diǎn):掌握三角形的高、中線(xiàn)、角平分線(xiàn)的概念,并能在具體三角形中畫(huà)出它們
難點(diǎn):在各種三角形中作出它們的高
二、 說(shuō)教法
1、情境創(chuàng )設法 :利用張師傅如何將一塊三角形的地分成面積相等的兩塊三角形地創(chuàng )設問(wèn)題情境,并引導學(xué)生去簡(jiǎn)單分析思路,目的使數學(xué)能密切聯(lián)系實(shí)際體現知識的形成和應用過(guò)程。以實(shí)際問(wèn)題為出發(fā)點(diǎn)和歸宿,更能貼近學(xué)生生活,以激發(fā)學(xué)生對學(xué)習本節內容的求知欲,培養他們運用所學(xué)知識解決問(wèn)題的能力。
2、加強學(xué)生學(xué)習的主動(dòng)性與探究性 在課堂中要充分調動(dòng)學(xué)生自主學(xué)習的潛能,讓他們自由探究中發(fā)現,從而發(fā)展他們的創(chuàng )新能力,讓他們感受到成功的喜悅。學(xué)生在畫(huà)一畫(huà)、折一折、何三個(gè)探究活動(dòng)中體驗數學(xué)知識的形成過(guò)程。當學(xué)生在探究過(guò)程中遇到困難時(shí),才取消組建的交流與合作,充分發(fā)揮學(xué)生的團隊作用,以更好地激發(fā)學(xué)生的積極思維,得到更大的收獲。
3、運用多媒體等作為教輔工具,增強學(xué)生的直觀(guān)感受,掃除學(xué)生從形象思維難以跨越到抽象思維的障礙,突出重點(diǎn),突破難點(diǎn)。
三、說(shuō)學(xué)法
1、本節重點(diǎn)是三角形的三種重要線(xiàn)段,難點(diǎn)是對三角形的角平分線(xiàn)、中線(xiàn)、高的準確理解、作圖與正確運用,而突破難點(diǎn)的關(guān)鍵是運用好數形結合的數學(xué)思想從畫(huà)圖入手,從大量的活動(dòng)入手獲得三種線(xiàn)段的直觀(guān)形象,進(jìn)一步架起數與形之間的橋梁,加強知識間的相互聯(lián)系。
2、小組討論、合作探究,既可讓學(xué)生互相啟發(fā),互相促進(jìn),積極交流,表達思想又可促進(jìn)數學(xué)思考,擴大和加深對問(wèn)題的認識,本節課中我讓學(xué)生以小組進(jìn)行探究,歸納圖形特征,做到仔細觀(guān)察,大膽探索,勇于發(fā)現,抽象概括。讓學(xué)生通過(guò)探索活動(dòng)來(lái)發(fā)現結論,經(jīng)歷知識的“再發(fā)現”過(guò)程,從而改變學(xué)生學(xué)習的方式,發(fā)展創(chuàng )新思維能力。
四、說(shuō)教學(xué)過(guò)程:
1、創(chuàng )設問(wèn)題情境,引出新知: 從生活實(shí)例引出新問(wèn)題,調動(dòng)學(xué)生學(xué)習積極性
2、預習檢查:以題組的形勢
考點(diǎn)1:三角形的高
1.如圖7.1.2-1,在△ABC中,BC邊上的高是________;在△AFC中,CF邊上的高是________;在△ABE中,AB邊上的高是_________.
2.如圖7.1.2-2,△ABC的三條高AD、BE、CF相交于點(diǎn)H,則△ABH的三條高是_______,這三條高交于________.BD是△________、△________、△________的高.
3.如圖7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,則下面說(shuō)話(huà)中錯誤的是( )
A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高
7.1.2
圖7.1.2-1 圖7.1.2-2 圖7.1.2-3
4.如果一個(gè)三角形的三條高的交點(diǎn)恰是三角形的一個(gè)頂點(diǎn),那么這個(gè)三角形是( )
A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定
5.三角形的三條高的交點(diǎn)一定在( )
A.三角形內部 B.三角形的外部 C.三角形的內部或外部 D.以上答案都不對
考點(diǎn)2:三角形的中線(xiàn)與角平分線(xiàn)
6.如圖7.1.2-5所示:(1)AD⊥BC,垂足為D,則AD是________的高,∠________=∠________=90°.
。2)AE平分∠BAC,交BC于E點(diǎn),則AE叫做△ABC的________,∠________=∠________=7.1.2∠________.
。3)若AF=FC,則△ABC的中線(xiàn)是________,S△ABF=________.
。4)若BG=GH=HF,則AG是________的中線(xiàn),AH是________的中線(xiàn).
圖7.1.2-5 圖7.1.2-6 圖7.1.2-7
7.如圖7.1.2-6,DE∥BC,CD是∠ACB的平分線(xiàn),∠ACB=60°,那么∠EDC=______度.
8.如圖7.1.2-7,BD=DC,∠ABN=7.1.2∠ABC,則AD是△ABC的________線(xiàn),BN是△ABC的________,
ND是△BNC的________線(xiàn).
9.下列判斷中,正確的個(gè)數為( )
。1)D是△ABC中BC邊上的一個(gè)點(diǎn),且BD=CD,則AD是△ABC的中線(xiàn)
。2)D是△ABC中BC邊上的一個(gè)點(diǎn),且∠ADC=90°,則AD是△ABC的.高
。3)D是△ABC中BC邊上的一個(gè)點(diǎn),且∠BAD=7.1.2∠BAC,則AD是△ABC的角平分線(xiàn)
。4)三角形的中線(xiàn)、高、角平分線(xiàn)都是線(xiàn)段
A.1 B.2 C.3 D.4
3、探究活動(dòng)1:探究三角形的高,師提出問(wèn)題,生獨立解答,教師關(guān)注學(xué)生對高和邊的對應關(guān)系是否明確,并結合圖形引出三角形高的定義,并且利用圖形,讓生用語(yǔ)言描述,師加以修正,目的發(fā)展學(xué)生的觀(guān)察力與語(yǔ)言表述能力。在此基礎上讓學(xué)生明確三角形的高是一條線(xiàn)段。為了培養學(xué)生的繪圖能力,讓小組之間合作完成銳角三角形、直角三角形、鈍角三角形各邊上的高。小組交流,歸納三角形高的特點(diǎn),再讓他們敘述小組所探究的結論,師加以適當修正與鼓勵。
在活動(dòng)中,師應重點(diǎn)關(guān)注:
、賹W(xué)生能否多方位的加以探究
、趯W(xué)生能否用流利的語(yǔ)言描述自己的發(fā)現
、蹖W(xué)生能否對不同的觀(guān)點(diǎn)進(jìn)行質(zhì)疑,感受數學(xué)結論的正確性。之后設計的是鞏固性練習,通過(guò)學(xué)生練習,對三角形高的的有關(guān)知識加以鞏固,讓學(xué)生從運用所學(xué)知識解決問(wèn)題的過(guò)程,獲得成功的體驗,從而激發(fā)他們學(xué)習的積極性。
3、探究活動(dòng)2 : 探究三角形的中線(xiàn):學(xué)生在畫(huà)一畫(huà)中體會(huì )三角形中線(xiàn)的定義,培養學(xué)生動(dòng)腦、動(dòng)手能力,語(yǔ)言表達能力。
4、探究活動(dòng)3:探究三角形的角平分線(xiàn)。首先讓學(xué)生折一折,在動(dòng)手操作中體會(huì )折痕是否平分三角形的內角,之后分小組折疊銳角三角形、直角三角形、鈍角三角形的角平分線(xiàn),小組交流,歸納三角形角平分線(xiàn)的特點(diǎn),再讓他們敘述小組所探究的結論,師加以適當修正與鼓勵。從而很好的培養了學(xué)生的動(dòng)手操作和探究能力。
5、練習鞏固,深化拓展
先以搶答形式解決問(wèn)題1、問(wèn)題2,讓學(xué)生利用所學(xué)知識,進(jìn)一步鞏固三角形的高、中線(xiàn)、角平分線(xiàn)的有關(guān)概念,提高學(xué)生獨立解決問(wèn)題的能力。拓展練習是一個(gè)綜合性題目,一方面引導學(xué)生從復雜圖形中抽取基本圖形,從而加強學(xué)生對概念的掌握,進(jìn)一步發(fā)展學(xué)生的思維,拓展能力,運用以增強直觀(guān)性。
6、感悟與收獲:進(jìn)一步提升學(xué)生對知識點(diǎn)理解。
7、作業(yè)布置:讓學(xué)生運用數學(xué)知識解決生活實(shí)例,是讓學(xué)生感受數學(xué)和生活的聯(lián)系及數學(xué)在生活中的重要性,充分體現數學(xué)于生活又還原于生活。
高中數學(xué)說(shuō)課稿 篇7
一、說(shuō)教材
1、從在教材中的地位與作用來(lái)看
《等比數列的前n項和》是數列這一章中的一個(gè)重要資料,它不僅僅在現實(shí)生活中有著(zhù)廣泛的實(shí)際應用,如儲蓄、分期付款的有關(guān)計算等等,并且公式推導過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習和工作中必備的數學(xué)素養。
2、從學(xué)生認知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節資料與等差數列前n項和從公式的構成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是進(jìn)取因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著(zhù)本質(zhì)的不一樣,這對學(xué)生的思維是一個(gè)突破,另外,對于q=1這一特殊情景,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯。
3、學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有必須的分析問(wèn)題和解決問(wèn)題的本事,邏輯思維本事也初步構成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴謹。
4、重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導、公式的特點(diǎn)和公式的運用。
教學(xué)難點(diǎn):公式的推導方法和公式的靈活運用。
公式推導所使用的“錯位相減法”是高中數學(xué)數列求和方法中最常用的方法之一,它蘊含了重要的數學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
二、說(shuō)目標
知識與技能目標:
理解并掌握等比數列前n項和公式的.推導過(guò)程、公式的特點(diǎn),在此基礎上能初步應用公式解決與之有關(guān)的問(wèn)題。
過(guò)程與方法目標:
經(jīng)過(guò)對公式推導方法的探索與發(fā)現,向學(xué)生滲透特殊到一般、類(lèi)比與轉化、分類(lèi)討論等數學(xué)思想,培養學(xué)生觀(guān)察、比較、抽象、概括等邏輯思維本事和逆向思維的本事。
情感與態(tài)度價(jià)值觀(guān):
經(jīng)過(guò)對公式推導方法的探索與發(fā)現,優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉化和理論聯(lián)系實(shí)際的辯證唯物主義觀(guān)點(diǎn)。
三、說(shuō)過(guò)程
學(xué)生是認知的主體,設計教學(xué)過(guò)程必須遵循學(xué)生的認知規律,盡可能地讓學(xué)生去經(jīng)歷知識的構成與發(fā)展過(guò)程,結合本節課的特點(diǎn),我設計了如下的教學(xué)過(guò)程:
1、創(chuàng )設情境,提出問(wèn)題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當時(shí)的印度國王大為贊賞,對他說(shuō):我能夠滿(mǎn)足你的任何要求。西薩說(shuō):請給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學(xué)家計算,結果出來(lái)后,國王大吃一驚。為什么呢
設計意圖:設計這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調動(dòng)學(xué)習的進(jìn)取性。故事資料緊扣本節課的主題與重點(diǎn)。
此時(shí)我問(wèn):同學(xué)們,你們明白西薩要的是多少粒小麥嗎引導學(xué)生寫(xiě)出麥?倲。帶著(zhù)這樣的問(wèn)題,學(xué)生會(huì )動(dòng)手算了起來(lái),他們想到用計算器依次算出各項的值,然后再求和。這時(shí)我對他們的這種思路給予肯定。
設計意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉過(guò)彎來(lái),因而在教學(xué)中應舍得花時(shí)間營(yíng)造知識構成過(guò)程的氛圍,突破學(xué)生學(xué)習的障礙。同時(shí),構成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆。
2、師生互動(dòng),探究問(wèn)題
在肯定他們的思路后,我之后問(wèn):1,2,22,…,263是什么數列有何特征應歸結為什么數學(xué)問(wèn)題呢
探討1:,記為(1)式,注意觀(guān)察每一項的特征,有何聯(lián)系(學(xué)生會(huì )發(fā)現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現
設計意圖:留出時(shí)間讓學(xué)生充分地比較,等比數列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,所以教學(xué)中應著(zhù)力在這兒做文章,從而抓住培養學(xué)生的辯證思維本事的良好契機。
經(jīng)過(guò)比較、研究,學(xué)生發(fā)現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。教師指出:這就是錯位相減法,并要求學(xué)生縱觀(guān)全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢
設計意圖:經(jīng)過(guò)繁難的計算之苦后,突然發(fā)現上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗,從而增強學(xué)習數學(xué)的興趣和學(xué)好數學(xué)的信心。
3、類(lèi)比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢引導學(xué)生將結論一般化,
那里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個(gè)別學(xué)生進(jìn)行指導。
設計意圖:在教師的指導下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自我探究公式,從而體驗到學(xué)習的愉快和成就感。
對不對那里的q能不能等于1等比數列中的公比能不能為1q=1時(shí)是什么數列此時(shí)sn=(那里引導學(xué)生對q進(jìn)行分類(lèi)討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎。)
再次追問(wèn):結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(lái)(引導學(xué)生得出公式的另一形式)
設計意圖:經(jīng)過(guò)反問(wèn)精講,一方面使學(xué)生加深對知識的認識,完善知識結構,另一方面使學(xué)生由簡(jiǎn)單地模仿和理解,變?yōu)閷χR的主動(dòng)認識,從而進(jìn)一步提高分析、類(lèi)比和綜合的本事。這一環(huán)節十分重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話(huà),然而卻有畫(huà)龍點(diǎn)睛之妙用。
4、討論交流,延伸拓展
高中數學(xué)說(shuō)課稿 篇8
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質(zhì)的第2小節。
奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。所以,本節課起著(zhù)承上啟下的重要作用。
2、學(xué)情分析
從學(xué)生的認知基礎看,學(xué)生在初中已經(jīng)學(xué)習了軸對稱(chēng)圖形和中心對稱(chēng)圖形,并且有了必須數量的簡(jiǎn)單函數的儲備。同時(shí),剛剛學(xué)習了函數單調性,已經(jīng)積累了研究函數的基本方法與初步經(jīng)驗。
從學(xué)生的思維發(fā)展看,高一學(xué)生思維本事正在由形象經(jīng)驗型向抽象理論型轉變,能夠用假設、推理來(lái)思考和解決問(wèn)題、
3、教學(xué)目標
基于以上對教材和學(xué)生的分析,以及新課標理念,我設計了這樣的教學(xué)目標:
【知識與技能】
1)能確定一些簡(jiǎn)單函數的奇偶性。
2)能運用函數奇偶性的代數特征和幾何意義解決一些簡(jiǎn)單的問(wèn)題。
【過(guò)程與方法】
經(jīng)歷奇偶性概念的構成過(guò)程,提高觀(guān)察抽象本事以及從特殊到一般的歸納概括本事。
【情感、態(tài)度與價(jià)值觀(guān)】
經(jīng)過(guò)自主探索,體會(huì )數形結合的思想,感受數學(xué)的對稱(chēng)美。
從課堂反應看,基本上到達了預期效果。
4、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):函數奇偶性的概念和幾何意義。
幾年的教學(xué)實(shí)踐證明,雖然函數奇偶性這一節知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現下頭的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了研究函數定義域的問(wèn)題。所以,在介紹奇、偶函數的定義時(shí),必須要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。所以,我把函數的奇偶性概念設計為本節課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強本節課重點(diǎn)問(wèn)題的講解。
難點(diǎn):奇偶性概念的數學(xué)化提煉過(guò)程。
由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數學(xué)化提煉過(guò)程設計為本節課的難點(diǎn)。
二、教法與學(xué)法分析
1、教法
根據本節教材資料和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認知規律,遵循教師為主導,學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用以引導發(fā)現法為主,直觀(guān)演示法、類(lèi)比法為輔。教學(xué)中,精心設計一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng )設問(wèn)題情景,誘導學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的進(jìn)取狀態(tài),從而培養思維本事。從課堂反應看,基本上到達了預期效果。
2、學(xué)法
讓學(xué)生在觀(guān)察一歸納一檢驗一應用的學(xué)習過(guò)程中,自主參與知識的發(fā)生、發(fā)展、構成的過(guò)程,從而使學(xué)生掌握知識。
三、教學(xué)過(guò)程
具體的教學(xué)過(guò)程是師生互動(dòng)交流的過(guò)程,共分六個(gè)環(huán)節:設疑導入、觀(guān)圖激趣;指導觀(guān)察、構成概念;學(xué)生探索、領(lǐng)會(huì )定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學(xué)以致用。下頭我對這六個(gè)環(huán)節進(jìn)行說(shuō)明。
。ㄒ唬┰O疑導入、觀(guān)圖激趣
由于本節資料相對獨立,專(zhuān)題性較強,所以我采用了開(kāi)門(mén)見(jiàn)山導入方式,直接點(diǎn)明要學(xué)的資料,使學(xué)生的思維迅速定向,到達開(kāi)始就明確目標突出重點(diǎn)的效果。
用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱(chēng)美。再讓學(xué)生觀(guān)察幾個(gè)特殊函數圖象。經(jīng)過(guò)讓學(xué)生觀(guān)察圖片導入新課,既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為學(xué)習新知識作好鋪墊。
。ǘ┲笇в^(guān)察、構成概念
在這一環(huán)節中共設計了2個(gè)探究活動(dòng)。
探究1、2數學(xué)中對稱(chēng)的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開(kāi)探究。這個(gè)探究主要是經(jīng)過(guò)學(xué)生的自主探究來(lái)實(shí)現的,由于有圖片的鋪墊,絕大多數學(xué)生很快就說(shuō)出函數圖象關(guān)于Y軸(原點(diǎn))對稱(chēng)。之后學(xué)生填表,從數值角度研究圖象的這種特征,體此刻自變量與函數值之間有何規律引導學(xué)生先把它們具體化,再用數學(xué)符號表示。借助課件演示(令比較得出等式,再令,得到)讓學(xué)生發(fā)現兩個(gè)函數的對稱(chēng)性反應到函數值上具有的特性,然后經(jīng)過(guò)解析式給出嚴格證明,進(jìn)一步說(shuō)明這個(gè)特性對定義域內任意一個(gè)都成立。最終給出偶函數(奇函數)定義(板書(shū))。
在這個(gè)過(guò)程中,學(xué)生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗。
。ㄈ⿲W(xué)生探索、領(lǐng)會(huì )定義
探究3下列函數圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱(chēng)。(突破了本節課的難點(diǎn))
。ㄋ模┲R應用,鞏固提高
在這一環(huán)節我設計了4道題
例1確定下列函數的奇偶性
選例1的第(1)及(3)小題板書(shū)來(lái)示范解題步驟,其他小題讓學(xué)生在下頭完成。
例1設計意圖是歸納出確定奇偶性的步驟:
(1)先求定義域,看是否關(guān)于原點(diǎn)對稱(chēng);
(2)再確定f(-x)=-f(x)還是f(-x)=f(x)。
例2確定下列函數的奇偶性:
例3確定下列函數的奇偶性:
例2、3設計意圖是探究一個(gè)函數奇偶性的可能情景有幾種類(lèi)型?
例4(1)確定函數的.奇偶性。
。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫(huà)出它在y軸左邊的圖象嗎?
例4設計意圖加強函數奇偶性的幾何意義的應用。
在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。經(jīng)過(guò)這些問(wèn)題的解決,學(xué)生對函數的奇偶性認識、理解和應用都能提升很大一個(gè)高度,到達當堂消化吸收的效果。
。ㄎ澹┛偨Y反饋
在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現了啟發(fā)式、問(wèn)題式教學(xué)法的特色。
在本節課的最終對知識點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導學(xué)生總結出本節課應積累的解題經(jīng)驗。知識在于積累,而學(xué)習數學(xué)更在于知識的應用經(jīng)驗的積累。所以提高知識的應用本事、增強錯誤的預見(jiàn)本事是提高數學(xué)綜合本事的很重要的策略。
。┓謱幼鳂I(yè),學(xué)以致用
必做題:課本第36頁(yè)練習第1-2題。
選做題:課本第39頁(yè)習題1、3A組第6題。
思考題:課本第39頁(yè)習題1、3B組第3題。
設計意圖:面向全體學(xué)生,注重個(gè)人差異,加強作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步到達不一樣的人在數學(xué)上得到不一樣的發(fā)展。
高中數學(xué)說(shuō)課稿 篇9
一、本節資料的地位與重要性
"分類(lèi)計數原理與分步計數原理"是《高中數學(xué)》一節獨特資料。這一節課與排列、組合的基本概念有著(zhù)緊密的聯(lián)系,經(jīng)過(guò)對這一節課的學(xué)習,既能夠讓學(xué)生理解、理解分類(lèi)計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學(xué)做好準備,起到奠基的重要作用。
二、關(guān)于教學(xué)目標的確定
根據兩個(gè)基本原理的地位和作用,我認為本節課的教學(xué)目標是:
。1)使學(xué)生正確理解兩個(gè)基本原理的概念;
。2)使學(xué)生能夠正確運用兩個(gè)基本原理分析、解決一些簡(jiǎn)單問(wèn)題;
。3)提高分析、解決問(wèn)題的本事
。4)使學(xué)生樹(shù)立"由個(gè)別到一般,由一般到個(gè)別"的認識事物的辯證唯物主義哲學(xué)思想觀(guān)點(diǎn)。
三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理
中學(xué)數學(xué)課程中引進(jìn)的關(guān)于排列、組合的計算公式都是以?xún)蓚(gè)計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開(kāi)兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問(wèn)題是學(xué)習本章的重點(diǎn)資料。
正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類(lèi),學(xué)生不是一下子就能理解深刻的,應對復雜的事物和現象學(xué)生對分類(lèi)和分步的選擇容易產(chǎn)生錯誤的認識,所以分類(lèi)計數原理和分步計數原理的準確應用是本節課的教學(xué)難點(diǎn)。必需使學(xué)生認清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類(lèi)還是分步,才能使學(xué)生理解概念并對如何運用這兩個(gè)基本原理有正確清楚的認識。教學(xué)中兩個(gè)基本問(wèn)題的引用及引伸,就是為突破難點(diǎn)做準備。
四、關(guān)于教學(xué)方法和教學(xué)手段的選用
根據本節課的資料及學(xué)生的實(shí)際水平,我采取啟發(fā)引導式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。
啟發(fā)引導式作為一種啟發(fā)式教學(xué)方法,體現了認知心理學(xué)的基本理論。貼合教學(xué)論中的自覺(jué)性和進(jìn)取性、鞏固性、可理解性、教學(xué)與發(fā)展相結合、教師的主導作用與學(xué)生的主體地位相統一等原則,教學(xué)過(guò)程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生經(jīng)過(guò)主動(dòng)思考、動(dòng)手操作來(lái)到達對知識的"發(fā)現"和理解,進(jìn)而完成知識的內化,使書(shū)本的知識成為自我的知識。
電腦多媒體以聲音、動(dòng)畫(huà)、影像等多種形式強化對學(xué)生感觀(guān)的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,能夠極大提高學(xué)生的學(xué)習興趣,加大一堂課的信息容量,使教學(xué)目標更完美地體現。另外,電腦軟件具有良好的交互性,能夠將教師的思路和策略以軟件的形式來(lái)體現,更好地為教學(xué)服務(wù)。
五、關(guān)于學(xué)法的指導
"授人以魚(yú),不如授人以漁",在教學(xué)過(guò)程中,不但要傳授學(xué)生課本知識,還要培養學(xué)生主動(dòng)觀(guān)察、主動(dòng)思考、自我發(fā)現的學(xué)習本事,增強學(xué)生的綜合素質(zhì),從而到達教學(xué)的目標。教學(xué)中,教師創(chuàng )設疑問(wèn),學(xué)生想辦法解決疑問(wèn),經(jīng)過(guò)教師的啟發(fā)點(diǎn)撥,類(lèi)比推理,在進(jìn)取的雙邊活動(dòng)中,學(xué)生找到了解決疑難的方法。整個(gè)過(guò)程貫穿"設疑"——"思索"——"發(fā)現"——"解惑"四個(gè)環(huán)節,學(xué)生隨時(shí)對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過(guò)程,貼合學(xué)生認知水平,培養了學(xué)習本事。
六、關(guān)于教學(xué)程序的設計
。ㄒ唬┱n題導入
這是本章的第一節課,是起始課,講起始課時(shí),把這一學(xué)科的資料作一個(gè)大概的介紹,能使學(xué)生從一開(kāi)始就對將要學(xué)習的知識有一個(gè)初步的了解,并為下頭的學(xué)習打下思想基礎。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問(wèn)題,引出學(xué)習本節的必要性,明確研究計數方法是本章資料的獨特性,從應用的廣泛看學(xué)習本章資料的重要性。同時(shí)板書(shū)課題(分類(lèi)計數原理與分步計數原理)
這樣做,能使學(xué)生明白本節資料的地位和作用,激發(fā)其學(xué)習新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準備。
。ǘ┬抡n講授
經(jīng)過(guò)幻燈片給出問(wèn)題,配圖分析,講清坐火車(chē)與坐汽車(chē)兩類(lèi)方法均可,每類(lèi)中任一種辦法都能夠獨立地把從甲地到乙地這件事辦好。
緊跟著(zhù)給出:
引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不一樣的走法?
引伸2:若完成一件事,有類(lèi)辦法。在第1類(lèi)辦法中有種不一樣方法,在第2類(lèi)辦法中有種不一樣的方法,……,在第類(lèi)辦法中有種不一樣方法,每一類(lèi)中的每一種方法均可完成這件事,那么完成這件事共有多少種不一樣方法?
這個(gè)問(wèn)題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生理解分類(lèi)計數原理做好了準備。
板書(shū)分類(lèi)計數原理資料:
完成一件事,有類(lèi)辦法。在第1類(lèi)辦法中有種不一樣方法,在第2類(lèi)辦法中有種不一樣的方法,……,在第類(lèi)辦法中有種不一樣方法,那么完成這件事共有種不一樣的方法。(也稱(chēng)加法原理)
此時(shí),趁學(xué)生對于原理有了一個(gè)較清晰的認識,引導學(xué)生分析分類(lèi)計數原理資料,啟發(fā)總結得下頭三點(diǎn)注意:(出示幻燈片)
。1)各分類(lèi)之間相互獨立,都能完成這件事;
。2)根據問(wèn)題的特點(diǎn)在確定的分類(lèi)標準下進(jìn)行分類(lèi);
。3)完成這件事的任何一種方法必屬于某一類(lèi),并且分別屬于不一樣兩類(lèi)的兩種方法都是不一樣的方法。
這樣做加深學(xué)生對分類(lèi)計數原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。
接下來(lái)給出問(wèn)題2:(出示幻燈片)
由A村去B村的道路有3條,由B村去C村的道路有2條(見(jiàn)圖9-1),從A村經(jīng)B村去C村,共有多少種不一樣的走法?
提出問(wèn)題:?jiǎn)?wèn)題1與問(wèn)題2同是研究從甲地到乙地的不一樣走法,請找出這兩個(gè)問(wèn)題的不之處?學(xué)生會(huì )發(fā)現問(wèn)題1中采用乘火車(chē)或乘汽車(chē)都能夠從甲地到乙地,而問(wèn)題2中必須經(jīng)過(guò)先乘火車(chē)后乘汽車(chē)兩個(gè)步驟才能完成從甲地到乙地這件事。
問(wèn)題2的講授采用給出問(wèn)題,配圖分析,組織討論,強調分步。用多媒體配不一樣的顏色閃現出六種不一樣的走法,讓學(xué)生列式求出不一樣走法數,并列舉所有走法。
歸納得出:分步計數原理(板書(shū)原理資料)
分步計數原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不一樣的方法,做第二步有m2種不一樣的方法,……,做第n步有mn種不一樣的方法。那么,完成這件事共有
N=m1×m2×…×mn
種不一樣的'方法。
同樣趁學(xué)生對定理有必須的認識,引導學(xué)生分析分步計數原理資料,啟發(fā)總結得下頭三點(diǎn)注意:(出示幻燈片)
。1)各步驟相互依存,僅有各個(gè)步驟完成了,這件事才算完成;
。2)根據問(wèn)題的特點(diǎn)在確定的分步標準下分步;
。3)分步時(shí)要注意滿(mǎn)足完成一件事必須并且只需連續完成這N個(gè)步驟這件事才算完成。
。ㄈ⿷门e例
教材例1:(書(shū)架取書(shū)問(wèn)題)引導學(xué)生分析解答,注意區分是分類(lèi)還是分步。
例2:由數字0,1,2,3,4能夠組成多少個(gè)三位整數(各位上的數字允許重復)?本題設置了4個(gè)問(wèn)題:
。1)每一個(gè)三位數是由什么構成的?(三個(gè)整數字)
。2)023是一個(gè)三位數嗎?(百位上不能是0)
。3)組成一個(gè)三位數需要怎樣做?(分成三個(gè)步驟來(lái)完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個(gè)位上的數字)
。4)怎樣表述?
教師巡視指導、并歸納
解:要組成一個(gè)三位數,需要分成三個(gè)步驟:第一步確定百位上的數字,從1~4這4個(gè)數字中任選一個(gè)數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個(gè)位上的數字,仍有5種選法。根據分步計數原理,得到能夠組成的三位整數的個(gè)數是N=4×5×5=100.
答:能夠組成100個(gè)三位整數。
。ń處煹倪B續發(fā)問(wèn)、啟發(fā)、引導,幫忙學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問(wèn)題本事有所提高。
教師在第二個(gè)例題中給出板書(shū)示范,能幫忙學(xué)生進(jìn)一步加深對兩個(gè)基本原理實(shí)質(zhì)的理解,周密的研究,準確的表達、規范的書(shū)寫(xiě),對于學(xué)生周密思考、準確表達、規范書(shū)寫(xiě)良好習慣的構成有著(zhù)進(jìn)取的促進(jìn)作用,也能夠為學(xué)生后面應用兩個(gè)基本原理解排列、組合綜合題打下基礎)
。ㄋ模w納小結
師:什么時(shí)候用分類(lèi)計數原理、什么時(shí)候用分步計數原理呢?
生:分類(lèi)時(shí)用分類(lèi)計數原理,分步時(shí)用分步計數原理。
師:應用兩個(gè)基本原理時(shí)需要注意什么呢?
生:分類(lèi)時(shí)要求各類(lèi)辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨立的。
。ㄎ澹┱n堂練習
P222:練習1~4.學(xué)生板演第4題
。▽τ陬}4,教師有必要對三個(gè)多項式乘積展開(kāi)后各項的構成給以提示)
。┎贾米鳂I(yè)
P222:練習5,6,7.
補充題:
1.在所有的兩位數中,個(gè)位數字小于十位數字的共有多少個(gè)?
。ㄌ崾荆喊词簧蠑底值拇笮∧軌蚍譃9類(lèi),共有9+8+7+…+2+1=45個(gè)個(gè)位數字小于十位數字的兩位數)
2.某學(xué)生填報高考志愿,有m個(gè)不一樣的志愿可供選擇,若只能按第一、二、三志愿依次填寫(xiě)3個(gè)不一樣的志愿,求該生填寫(xiě)志愿的方式的種數。
。ㄌ崾荆盒枰慈齻(gè)志愿分成三步。共有m(m-1)(m-2)種填寫(xiě)方式)
3.在所有的三位數中,有且僅有兩個(gè)數字相同的三位數共有多少個(gè)?
。ㄌ崾荆耗軌蛴孟骂^方法來(lái)求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類(lèi)中每類(lèi)都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)僅有兩個(gè)數字相同的三位數)
4.某小組有10人,每人至少會(huì )英語(yǔ)和日語(yǔ)中的一門(mén),其中8人會(huì )英語(yǔ),5人會(huì )日語(yǔ),(1)從中任選一個(gè)會(huì )外語(yǔ)的人,有多少種選法?(2)從中選出會(huì )英語(yǔ)與會(huì )日語(yǔ)的各1人,有多少種不一樣的選法?
。ㄌ崾荆河捎8+5=13》10,所以10人中必有3人既會(huì )英語(yǔ)又會(huì )日語(yǔ)。(1)N=5+2+3;(2)N=5×2+5×3+2×3)
只要大家用心學(xué)習,認真復習,就有可能在高中的戰場(chǎng)上考取自我夢(mèng)想的成績(jì)。
高中數學(xué)說(shuō)課稿 篇10
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中"平面向量的線(xiàn)性運算"的第一節課。本節資料有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時(shí)。向量的加法是向量的線(xiàn)性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在"平面向量"及"空間向量"中有很重要的地位。
二、學(xué)情分析:
學(xué)生在上節課中學(xué)習了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動(dòng),這是學(xué)習本節資料的基礎。學(xué)生對數的運算了如指掌,并且在物理中學(xué)過(guò)力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過(guò)類(lèi)比數的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準確把握兩個(gè)加法法則的特點(diǎn)。
三、教學(xué)目的:
1、經(jīng)過(guò)對向量加法的探究,使學(xué)生掌握向量加法的概念,結合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì )向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個(gè)已知向量的和向量。
2、在應用活動(dòng)中,理解向量加法滿(mǎn)足交換律和結合律以及表述兩個(gè)運算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線(xiàn)向量,共起點(diǎn)向量、共終點(diǎn)向量等。
3、經(jīng)過(guò)本節的學(xué)習,培養學(xué)生類(lèi)比、遷移、分類(lèi)、歸納等數學(xué)方面的本事。
四、教學(xué)重、難點(diǎn)
重點(diǎn):向量的加法法則。探究向量的加法法則并正確應用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,可是三角形法則適用范圍更加廣泛,且簡(jiǎn)便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。
難點(diǎn):對三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認識到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線(xiàn)段之間必須構成三角形。
五、教學(xué)方法
本節采用以下教學(xué)方法:
1、類(lèi)比:由數的加法運算類(lèi)比向量的加法運算。
2、探究:由力的'合成引入平行四邊形法則,在法則的運用中觀(guān)察圖形得出三角形法則,探求共線(xiàn)向量的加法,發(fā)現三角形法則適用于任意向量相加;經(jīng)過(guò)圖形,觀(guān)察得出向量加法滿(mǎn)足交換律、結合律等,這些都體現探究式教學(xué)法的運用。
3、講解與練習:對兩個(gè)法則特點(diǎn)的分析,例題都采取了引導與講解的方法,學(xué)生課堂完成教材中的練習。
4、多媒體技術(shù)的運用,能直觀(guān)地表現向量的平移,相等向量的意義,更能說(shuō)清兩個(gè)法則的幾何意義及運算律。
六、數學(xué)思想的體現:
1、分類(lèi)的思想:總的來(lái)說(shuō)本課中向量的加法分為不共線(xiàn)向量及共線(xiàn)向量?jì)煞N形式,共線(xiàn)向量又分為方向相同與方向相反兩種情形,然后專(zhuān)門(mén)對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線(xiàn)索清楚。
2、類(lèi)比思想:使之與數的加法進(jìn)行類(lèi)比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺(jué),又能從比較中看出兩者的不一樣,效果較好。
3、歸納思想:主要體此刻以下三個(gè)環(huán)節:
、賹W(xué)完平行四邊形法則和三角形法則后,歸納總結,對不共線(xiàn)向量相加,兩個(gè)法則都能夠選用。
、谟晒簿(xiàn)向量的加法總結出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線(xiàn)向量相加。
、蹖ο蛄考臃ǖ慕Y合律和探討中,又使學(xué)生發(fā)現了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節中的運用,使得學(xué)生對兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。
七、教學(xué)過(guò)程:
1、回顧舊知:本節要進(jìn)行向量的平移,且對向量加法分共線(xiàn)與不共線(xiàn)兩種情景,所以要復習向量、相等向量、共線(xiàn)向量等概念,這些都是新課學(xué)習中必要的知識鋪墊。
2、引入新課:
。1)平行四邊形法則的引入。
學(xué)生在物理學(xué)中雖然接觸過(guò)位移的合成,可是并沒(méi)有構成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過(guò),很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,可是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒(méi)有深刻的認識,易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線(xiàn)段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要經(jīng)過(guò)講解例1,使學(xué)生認識到能夠經(jīng)過(guò)平移向量,使表示兩個(gè)向量的有向線(xiàn)段有共同的起點(diǎn)。這一點(diǎn)對理解及運用法則求兩向量的和很重要。
設計意圖:本著(zhù)從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點(diǎn),用學(xué)生熟知的方法來(lái)解決新的問(wèn)題——向量的加法,這樣新中有舊,學(xué)生容易理解,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的"起點(diǎn)相同"這一特點(diǎn)的認識,例1的講解使學(xué)生認識到當表示向量的有向線(xiàn)段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。
。2)三角形法則的引入。三角形法則沒(méi)有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。
所以這種把兩個(gè)向量相加的方法稱(chēng)為三角形法則。接下來(lái)用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過(guò)程對學(xué)生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來(lái)做。
這時(shí),總結出兩個(gè)不共線(xiàn)向量求和時(shí),平行四邊形法則與三角形法則都能夠用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學(xué)生從向何意義上認識到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),并且銜接自然,能夠使學(xué)生比較地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對兩個(gè)法則的特點(diǎn)有較深刻的印象。
。3)共線(xiàn)向量的加法
方向相同的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)較易完成,"將它們接在一起,取它們的方向及長(cháng)度之和,作為和向量的方向與長(cháng)度。"引導學(xué)生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。
方向相反的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),首先從作圖上不明白怎樣做?墒菍W(xué)生學(xué)過(guò)有理數加法中的異號兩數相加:"異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。"類(lèi)比異號兩數相加,他們會(huì )用較長(cháng)的模減去較短的模,方向取模較長(cháng)的向量的方向。具體做法由教師引導學(xué)生嘗試運用三角形法則去做,發(fā)現結論正確。
反思過(guò)程,學(xué)生自然會(huì )想到方向相同的兩個(gè)向量相加,類(lèi)似于同號兩數相加。這說(shuō)明兩個(gè)共線(xiàn)向量相加依然可用三角形法則經(jīng)過(guò)以上幾個(gè)環(huán)節的討論,能夠作個(gè)簡(jiǎn)單的小結:兩個(gè)不共線(xiàn)向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線(xiàn)向量相加在本課所學(xué)方法中只能用三角形法則,說(shuō)明三角形法則適用于任意兩個(gè)向量相加。
設計意圖:經(jīng)過(guò)對共線(xiàn)向量加法的探討,拓寬了學(xué)生對三角形法則的認識,使得不一樣位置的向量相加都有了依據,并且采用類(lèi)比的方法,使學(xué)生對共線(xiàn)向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,能夠化解難點(diǎn)。
。4)向量加法的運算律
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角
形法則得出,理解起來(lái)沒(méi)什么困難,再一次強化了學(xué)生對兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認識。
、诮Y合律:結合律是經(jīng)過(guò)三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結果相同。
接下來(lái)是對應的兩個(gè)練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來(lái)方便,從后面的練習中學(xué)生能夠體會(huì )到這點(diǎn)。由結合律還使學(xué)生發(fā)現,多個(gè)向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最終一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。
3、小結
先由學(xué)生小結,檢查學(xué)生對本課重要知識的認識,也給學(xué)生一個(gè)概括本節知識的機會(huì ),然后用課件展示小結資料,使學(xué)生印象更深。
。1)平行四邊形法則:起點(diǎn)相同,適用于不共線(xiàn)向量的求和。
。2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。
。3)運算律
高中數學(xué)說(shuō)課稿 篇11
一、教材分析:
1、教材的地位與作用。
本節資料是在學(xué)生學(xué)習了"事件的可能性的基礎上來(lái)學(xué)習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著(zhù)廣泛的應用,學(xué)習本單元知識,無(wú)論是今后繼續深造(高中學(xué)習概率的乘法定理)還是參加社會(huì )實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。
在教材的處理上,采取小單元教學(xué),本節課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統地理解概率的意義及求概率的方法,為下頭學(xué)習求比較復雜的情景的概率打下基礎。
2、重點(diǎn)與難點(diǎn)。
重點(diǎn):對概率意義的理解,經(jīng)過(guò)多次重復實(shí)驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點(diǎn):對概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導學(xué)生觀(guān)察試驗和統計的結果,進(jìn)而進(jìn)行分析、歸納、總結,了解并感受概率的`定義的過(guò)程,引導學(xué)生從數學(xué)的視角觀(guān)察客觀(guān)世界,用數學(xué)的思維思考客觀(guān)世界,以數學(xué)的語(yǔ)言描述客觀(guān)世界。
情感態(tài)度價(jià)值觀(guān):學(xué)生經(jīng)歷觀(guān)察、分析、歸納、確認等數學(xué)活動(dòng),感受數學(xué)活動(dòng)充滿(mǎn)了探索性與創(chuàng )造性,感受量變與質(zhì)變的對立統一規律,同時(shí)為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習數學(xué)的熱情,增強對數學(xué)價(jià)值觀(guān)的認識。
三、教法、學(xué)法分析:
引導學(xué)生自主探究、合作交流、觀(guān)察分析、歸納總結,讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數學(xué)活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能應用數學(xué)解決現實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習的組織者、合作者和指導者,精心設計教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿(mǎn)生機活力,體現"教"為"學(xué)"服務(wù)這一宗旨。
四、教學(xué)過(guò)程分析:
1、引導學(xué)生探究
精心設計問(wèn)題一,學(xué)生經(jīng)過(guò)對問(wèn)題一的探究,一方面復習前面學(xué)過(guò)的"確定事件和不確定事件"的知識,為學(xué)好本節資料理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習概率(如何預測隨機事件可能性發(fā)生大。。引導學(xué)生對問(wèn)題二的探究與觀(guān)察實(shí)驗數據,使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機事件的發(fā)生中存在著(zhù)統計規律性,感受數學(xué)規律的真實(shí)的發(fā)現過(guò)程。
2、歸納概括
學(xué)生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學(xué)生明確概率定義的由來(lái)。
引導學(xué)生重新對問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學(xué)生進(jìn)行理性思維,邏輯分析,既培養學(xué)生的分析問(wèn)題本事,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。
3、舉例應用
、乓龑W(xué)生對教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。
、埔龑W(xué)生對練習中的問(wèn)題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
4、深化發(fā)展
、旁O置3個(gè)小題目,引導學(xué)生歸納、分析、總結,加深對知識與方法的理解,并學(xué)會(huì )靈活運用。
、谱寣W(xué)生設計活動(dòng)資料,對知識進(jìn)行升華和拓展,引導學(xué)生創(chuàng )造性地運用知識思考問(wèn)題和解決問(wèn)題,從而培養學(xué)生的創(chuàng )新意識和創(chuàng )新本事。
高中數學(xué)說(shuō)課稿 篇12
一、教學(xué)背景分析
。ㄒ唬┙滩牡匚环治觯骸稒E圓及其標準方程》是繼學(xué)習圓以后運用“曲線(xiàn)與方程”思想解決二次曲線(xiàn)問(wèn)題的又一實(shí)例,從知識上說(shuō),本節課是對坐標法研究幾何問(wèn)題的又一次實(shí)際運用,同時(shí)也是進(jìn)一步研究橢圓幾何性質(zhì)的基礎;從方法上說(shuō),它為進(jìn)一步研究雙曲線(xiàn)、拋物線(xiàn)提供了基本模式和理論基礎,因此本節課起到了承上啟下的重要作用。
。ǘ┲攸c(diǎn)、難點(diǎn)分析:本節課的重點(diǎn)是橢圓的定義及其標準方程,標準方程的推導是本節課的難點(diǎn),要突破這一難點(diǎn),關(guān)鍵是引導學(xué)生正確選擇去根式的策略。
。ㄈ⿲W(xué)情分析:在學(xué)習本節課前,學(xué)生已經(jīng)學(xué)習了直線(xiàn)與圓的方程,對曲線(xiàn)和方程的思想方法有了一些了解和運用的經(jīng)驗,對坐標法研究幾何問(wèn)題也有了初步的認識,因此,學(xué)生已經(jīng)具備探究有關(guān)點(diǎn)的軌跡問(wèn)題的知識基礎和學(xué)習能力,但由于學(xué)生學(xué)習解析幾何時(shí)間還不長(cháng)、學(xué)習程度也較淺,并且還受到高二這一年齡段學(xué)習心理和認知結構的影響,在學(xué)習過(guò)程中難免會(huì )有些困難。如:由于學(xué)生對運用坐標法解決幾何問(wèn)題掌握還不夠,因此從研究圓到橢圓,學(xué)生思維上會(huì )存在障礙。
二、教學(xué)目標設計
。ㄒ唬┲R目標:掌握橢圓的定義及其標準方程;會(huì )根據條件寫(xiě)出橢圓的標準方程;通過(guò)對橢圓標準方程的探求,再次熟悉求曲線(xiàn)方程的一般方法。
。ǘ┠芰δ繕耍簩W(xué)生通過(guò)動(dòng)手畫(huà)橢圓、分組討論探究橢圓定義、推導橢圓標準方程等過(guò)程,提高動(dòng)手能力、合作學(xué)習能力和運用知識解決實(shí)際問(wèn)題的能力。
。ㄈ┣楦心繕耍涸谛纬芍R、提高能力的過(guò)程中,激發(fā)學(xué)生學(xué)習數學(xué)的興趣,提高學(xué)生的審美情趣,培養學(xué)生勇于探索、敢于創(chuàng )新的精神。
三、教法學(xué)法設計
。ㄒ唬┙虒W(xué)方法設計:為了更好地培養學(xué)生自主學(xué)習能力,提高學(xué)生的綜合素質(zhì),我主要采用探究式教學(xué)方法。一方面我通過(guò)設置情境、問(wèn)題誘導充分發(fā)揮主導作用;另一方面學(xué)生通過(guò)對我提供的素材進(jìn)行直觀(guān)觀(guān)察→動(dòng)手操作→討論探究→歸納抽象→總結規律的過(guò)程充分體現主體地位。
使用多媒體輔助教學(xué)與自制教具相結合的設計方案,實(shí)現多媒體快捷、形象、大容量的優(yōu)勢與自制教具直觀(guān)、實(shí)用的優(yōu)勢的結合,既突出了知識的產(chǎn)生過(guò)程,又增加了課堂的趣味性。
1、掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過(guò)程;
2、能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;
3、通過(guò)對橢圓概念的引入教學(xué),培養學(xué)生的觀(guān)察能力和探索能力;
4。通過(guò)橢圓的標準方程的推導,使學(xué)生進(jìn)一步掌握求曲線(xiàn)方程的一般方法,并滲透數形結合和等價(jià)轉化的思想方法,提高運用坐標法解決幾何問(wèn)題的能力;
5。通過(guò)讓學(xué)生大膽探索橢圓的定義和標準方程,激發(fā)學(xué)生學(xué)習數學(xué)的積極性,培養學(xué)生的學(xué)習興趣和創(chuàng )新意識。
四、教學(xué)建議
教材分析
1、知識結構
2、重點(diǎn)難點(diǎn)分析
重點(diǎn)是橢圓的定義及橢圓標準方程的兩種形式。難點(diǎn)是橢圓標準方程的建立和推導。關(guān)鍵是掌握建立坐標系與根式化簡(jiǎn)的方法。
橢圓及其標準方程這一節教材整體來(lái)看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程。橢圓是圓錐曲線(xiàn)這一章所要研究的三種圓錐曲線(xiàn)中首先遇到的,所以教材把對橢圓的研究放在了重點(diǎn),在雙曲線(xiàn)和拋物線(xiàn)的教學(xué)中鞏固和應用。先講橢圓也與第七章的圓的方程銜接自然。學(xué)好橢圓對于學(xué)生學(xué)好圓錐曲線(xiàn)是非常重要的。
。1)對于橢圓的定義的理解,要抓住橢圓上的點(diǎn)所要滿(mǎn)足的條件,即橢圓上點(diǎn)的幾何性質(zhì),可以對比圓的定義來(lái)理解。
另外要注意到定義中對“常數”的限定即常數要大于。這樣規定是為了避免出現兩種特殊情況,即:“當常數等于時(shí)軌跡是一條線(xiàn)段;當常數小于時(shí)無(wú)軌跡”。這樣有利于集中精力進(jìn)一步研究橢圓的標準方程和幾何性質(zhì)。但講解橢圓的定義時(shí)注意不要忽略這兩種特殊情況,以保證對橢圓定義的`準確性。
。2)根據橢圓的定義求標準方程,應注意下面幾點(diǎn):
、偾(xiàn)的方程依賴(lài)于坐標系,建立適當的坐標系,是求曲線(xiàn)方程首先應該注意的地方。應讓學(xué)生觀(guān)察橢圓的圖形或根據橢圓的定義進(jìn)行推理,發(fā)現橢圓有兩條互相垂直的對稱(chēng)軸,以這兩條對稱(chēng)軸作為坐標系的兩軸,不但可以使方程的推導過(guò)程變得簡(jiǎn)單,而且也可以使最終得出的方程形式整齊和簡(jiǎn)潔。
、谠O橢圓的焦距為,橢圓上任一點(diǎn)到兩個(gè)焦點(diǎn)的距離為,令,這些措施,都是為了簡(jiǎn)化推導過(guò)程和最后得到的方程形式整齊、簡(jiǎn)潔,要讓學(xué)生認真領(lǐng)會(huì )。
、墼诜匠痰耐茖н^(guò)程中遇到了無(wú)理方程的化簡(jiǎn),這既是我們今后在求軌跡方程時(shí)經(jīng)常遇到的問(wèn)題,又是學(xué)生的難點(diǎn)。要注意說(shuō)明這類(lèi)方程的化簡(jiǎn)方法:
、俜匠讨兄挥幸粋(gè)根式時(shí),需將它單獨留在方程的一側,把其他項移至另一側;
、诜匠讨杏袃蓚(gè)根式時(shí),需將它們分別放在方程的兩側,并使其中一側只有一項。
教科書(shū)上對橢圓標準方程的推導,實(shí)際上只給出了“橢圓上點(diǎn)的坐標都適合方程“而沒(méi)有證明,”方程的解為坐標的點(diǎn)都在橢圓上”。這實(shí)際上是方程的同解變形問(wèn)題,難度較大,對同學(xué)們不作要求。
。3)兩種標準方程的橢圓異同點(diǎn)
中心在原點(diǎn)、焦點(diǎn)分別在軸上,軸上的橢圓標準方程分別為:,。它們的相同點(diǎn)是:形狀相同、大小相同,都有,。不同點(diǎn)是:兩種橢圓相對于坐標系的位置不同,它們的焦點(diǎn)坐標也不同。
橢圓的焦點(diǎn)在軸上標準方程中項的分母較大;
橢圓的焦點(diǎn)在軸上標準方程中項的分母較大。
另外,形如中,只要,,同號,就是橢圓方程,它可以化為。
。4)教科書(shū)上通過(guò)例3介紹了另一種求軌跡方程的常用方法——中間變量法。例3有三個(gè)作用:第一是教給學(xué)生利用中間變量求點(diǎn)的軌跡的方法;第二是向學(xué)生說(shuō)明,如果求得的點(diǎn)的軌跡的方程形式與橢圓的標準方程相同,那么這個(gè)軌跡是橢圓;第三是使學(xué)生知道,一個(gè)圓按某一個(gè)方向作伸縮變換可以得到橢圓。
高中數學(xué)說(shuō)課稿 篇13
一、教材分析
本節知識是必修五第一章《解三角形》的第一節資料,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,并且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。
根據上述教材資料分析,研究到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的資料,推證正弦定理及簡(jiǎn)單運用正弦定理與三角形的內角和定理解斜三角形的兩類(lèi)問(wèn)題。
本事目標:引導學(xué)生經(jīng)過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維本事,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,經(jīng)過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和進(jìn)取性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習的興趣。
教學(xué)重點(diǎn):正弦定理的資料,正弦定理的證明及基本應用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)確定解的個(gè)數。
二、教法
根據教材的.資料和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究資料,以生活實(shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,進(jìn)取探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當的提示和指導。突破難點(diǎn)的方法:抓住學(xué)生的本事線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過(guò)例題和練習來(lái)突破難點(diǎn)
三、學(xué)法:
指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、團體等多種解難釋疑的嘗試活動(dòng),將自我所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維本事,構成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
第一:創(chuàng )設情景,大概用2分鐘
第二:實(shí)踐探究,構成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
。ㄒ唬﹦(chuàng )設情境,布疑激趣
“興趣是最好的教師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不明白AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習的興趣,從而進(jìn)入今日的學(xué)習課題。
。ǘ┨綄ぬ乩,提出猜想
1、激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。
2、那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。
3、讓學(xué)生總結實(shí)驗結果,得出猜想:
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。
。ㄈ┻壿嬐评,證明猜想
1、強調將猜想轉化為定理,需要嚴格的理論證明。
2、鼓勵學(xué)生經(jīng)過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3、提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
4。思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明
。ㄋ模w納總結,簡(jiǎn)單應用
1、讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。
2、正弦定理的資料,討論能夠解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
3、運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自我參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
。ㄎ澹┲v解例題,鞏固定理
1、例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2、例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
。┱n堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學(xué)生板演,教師巡視,及時(shí)發(fā)現問(wèn)題,并解答。
。ㄆ撸┬〗Y反思,提高認識
經(jīng)過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會(huì )?
1、用向量證明了正弦定理,體現了數形結合的數學(xué)思想。
2、它表述了三角形的邊與對角的正弦值的關(guān)系。
3、定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。
。◤膶(shí)際問(wèn)題出發(fā),經(jīng)過(guò)猜想、實(shí)驗、歸納等思維方法,最終得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅僅收獲著(zhù)結論,并且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生進(jìn)取性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。)
。ò耍┤蝿(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現正弦定理不適用了,那么自然過(guò)渡到下一節資料,余弦定理。布置作業(yè),預習下一節資料。
高中數學(xué)說(shuō)課稿 篇14
一、教材分析
1、《指數函數》在教材中的地位、作用和特點(diǎn)
《指數函數》是人教版高中數學(xué)(必修)第一冊第二章“函數”的第六節資料,是在學(xué)習了《指數》一節資料之后編排的。經(jīng)過(guò)本節課的學(xué)習,既能夠對指數和函數的概念等知識進(jìn)一步鞏固和深化,又能夠為后面進(jìn)一步學(xué)習對數、對數函數尤其是利用互為反函數的圖象間的關(guān)系來(lái)研究對數函數的性質(zhì)打下堅實(shí)的概念和圖象基礎,又因為《指數函數》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學(xué)習基礎,所以《指數函數》不僅僅是本章《函數》的重點(diǎn)資料,也是高中學(xué)段的主要研究資料之一,有著(zhù)不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著(zhù)緊密的聯(lián)系,尤其體此刻細胞分裂、貸款利率的計算和考古中的年代測算等方面,所以學(xué)習這部分知識還有著(zhù)廣泛的現實(shí)意義。本節資料的特點(diǎn)之一是概念性強,特點(diǎn)之二是凸顯了數學(xué)圖形在研究函數性質(zhì)時(shí)的重要作用。
2、教學(xué)目標、重點(diǎn)和難點(diǎn)
經(jīng)過(guò)初中學(xué)段的學(xué)習和高中對集合、函數等知識的系統學(xué)習,學(xué)生對函數和圖象的關(guān)系已經(jīng)構建了必須的認知結構,主要體此刻三個(gè)方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡(jiǎn)單的函數概念和性質(zhì)已有了初步認識,能夠從初中運動(dòng)變化的角度認識函數初步轉化到從集合與對應的觀(guān)點(diǎn)來(lái)認識函數。
技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質(zhì)做好準備。
素質(zhì)維度:由觀(guān)察到抽象的數學(xué)活動(dòng)過(guò)程已有必須的體會(huì ),已初步了解了數形結合的思想。
鑒于對學(xué)生已有的知識基礎和認知本事的分析,根據《教學(xué)大綱》的要求,我確定本節課的教學(xué)目標、教學(xué)重點(diǎn)和難點(diǎn)如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
、谡莆罩笖岛瘮档膱D象和性質(zhì);
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實(shí)際問(wèn)題;
(2)技能目標:
、贊B透數形結合的基本數學(xué)思想方法;
、谂囵B學(xué)生觀(guān)察、聯(lián)想、類(lèi)比、猜測、歸納的本事;
(3)情感目標:
、袤w驗從特殊到一般的學(xué)習規律,認識事物之間的普遍聯(lián)系與相互轉化,培養學(xué)生用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題;
、诮(jīng)過(guò)教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習興趣,提高學(xué)生抽象、概括、分析、綜合的本事;
、垲I(lǐng)會(huì )數學(xué)科學(xué)的應用價(jià)值。
(4)教學(xué)重點(diǎn):指數函數的圖象和性質(zhì)。
(5)教學(xué)難點(diǎn):指數函數的圖象性質(zhì)與底數a的關(guān)系。
突破難點(diǎn)的關(guān)鍵:尋找新知生長(cháng)點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎上充分結合圖象,利用數形結合來(lái)掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖經(jīng)過(guò)這一節課的教學(xué)到達不僅僅使學(xué)生初步理解并能簡(jiǎn)單應用指數函數的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數圖象性質(zhì)的一般思路和方法,為今后研究其它的函數做好準備,從而到達培養學(xué)生學(xué)習本事的目的,我根據自我對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結合起來(lái),主要突出了幾個(gè)方面:
1、創(chuàng )設問(wèn)題情景、按照指數函數的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調動(dòng)學(xué)生的學(xué)習興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2、強化“指數函數”概念、引導學(xué)生結合指數的有關(guān)概念來(lái)歸納出指數函數的定義,并向學(xué)生指出指數函數的形式特點(diǎn),請學(xué)生思考對于底數a是否需要限制,如不限制會(huì )有什么問(wèn)題出現,這樣避免了學(xué)生對于底數a范圍分類(lèi)的不清楚,也為研究指數函數的圖象做了“分類(lèi)討論”的鋪墊。
3、突出圖象的作用、在數學(xué)學(xué)習過(guò)程中,圖形始終使我們需要借助的重要輔助手段。一位數學(xué)家以往說(shuō)過(guò)“數離形時(shí)少直觀(guān),形離數時(shí)難入微”,而在研究指數函數的性質(zhì)時(shí),更是直接由圖象觀(guān)察得出性質(zhì),所以圖象發(fā)揮了主要的'作用。
4、注意數學(xué)與生活和實(shí)踐的聯(lián)系、數學(xué)的本質(zhì)是來(lái)源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關(guān)的生活問(wèn)題,力圖使學(xué)生了解到數學(xué)的基礎學(xué)科作用,培養學(xué)生的數學(xué)應用意識。
三、學(xué)法指導
本節課是在學(xué)習完“指數”的概念和運算后編排的,針對學(xué)生實(shí)際情景,我主要在以下幾個(gè)方面做了嘗試:
1、再現原有認知結構。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數的概念,幫忙學(xué)生再現原有認知結構,為理解指數函數的概念做好準備。
2、領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法。在借助圖象研究指數函數的性質(zhì)時(shí)會(huì )遇到分類(lèi)討論、數形結合等基本數學(xué)思想方法,這些方法將會(huì )貫穿整個(gè)高中的數學(xué)學(xué)習。
3、在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導入、指數函數的性質(zhì)研究、例題與訓練、課內小節等教學(xué)環(huán)節中都安排了學(xué)生的討論、分組、交流等活動(dòng),讓學(xué)生變被動(dòng)的理解和記憶知識為在合作學(xué)習的樂(lè )趣中主動(dòng)地建構新知識的框架和體系,從而完成知識的內化過(guò)程。
4、注意學(xué)習過(guò)程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應用、拓展的過(guò)程中按照先易后難的順序層層遞進(jìn),讓學(xué)生感到有挑戰、有收獲,跳一跳,夠得著(zhù),不一樣難度的題目設計將盡可能照顧到課堂學(xué)生的個(gè)體差異。
四、程序設計
在設計本節課的教學(xué)過(guò)程中,本著(zhù)遵循學(xué)生的認知規律、讓學(xué)生去經(jīng)歷知識的構成與發(fā)展過(guò)程的原則,我設計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現和認識指數函數的圖象和性質(zhì)。
1、創(chuàng )設情景、導入新課
教師活動(dòng):
、儆秒娔X展示兩個(gè)實(shí)例,第一個(gè)是計算機價(jià)格下降問(wèn)題,第二個(gè)是生物中細胞分裂的例子;
、趯W(xué)生按奇數列、偶數列分組。
學(xué)生活動(dòng):
、俜謩e寫(xiě)出計算機價(jià)格y與經(jīng)過(guò)月份x的關(guān)系式和細胞個(gè)數y與分裂次數x的關(guān)系式,并互相交流;
、诨貞浿笖档母拍;
、蹥w納指數函數的概念;
、芊治龀鰧χ笖岛瘮档讛涤懻摰谋匾砸约胺诸(lèi)的方法。
設計意圖:經(jīng)過(guò)生活實(shí)例激發(fā)學(xué)生的學(xué)習動(dòng)機,,掃清由概念不清而造成的知識障礙,培養學(xué)生思維的主動(dòng)性,為突破難點(diǎn)做好準備;
2、啟發(fā)誘導、探求新知
教師活動(dòng):
、俳o出兩個(gè)簡(jiǎn)單的指數函數并要求學(xué)生畫(huà)它們的圖象
、谠跍蕚浜玫男『诎迳弦幏兜禺(huà)出這兩個(gè)指數函數的圖象
、郯鍟(shū)指數函數的性質(zhì)。
學(xué)生活動(dòng):
、佼(huà)出兩個(gè)簡(jiǎn)單的指數函數圖象
、诮涣、討論
、蹥w納出研究函數性質(zhì)涉及的方面
、芸偨Y出指數函數的性質(zhì)。
設計意圖:讓學(xué)生動(dòng)手作簡(jiǎn)單的指數函數的圖象對深刻理解本節課的資料有著(zhù)必須的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,到達進(jìn)一步規范學(xué)生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情景,學(xué)生就會(huì )很自然的經(jīng)過(guò)觀(guān)察圖象總結出指數函數的性質(zhì),同時(shí)對于底數的討論也就變得順理成章。
高中數學(xué)說(shuō)課稿 篇15
一、說(shuō)教材
1、教材的地位、作用及編寫(xiě)意圖
《對數函數》出此刻職業(yè)高中數學(xué)第一冊第四章第四節。函數是高中數學(xué)的核心,對數函數是函數的重要分支,對數函數的知識在數學(xué)和其他許多學(xué)科中有著(zhù)廣泛的應用;學(xué)生已經(jīng)學(xué)習了對數、反函數以及指數函數等資料,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用;"對數函數"這節教材,指出對數函數和指數函數互為反函數,反映了兩個(gè)變量的相互關(guān)系,蘊含了函數與方程的數學(xué)思想與數學(xué)方法,是以后數學(xué)學(xué)習中不可缺少的部分,也是高考的必考資料。
2、教學(xué)目標的確定及依據。
依據教學(xué)大綱和學(xué)生獲得知識、培養本事及思想教育等方面的要求:我制定了如下教育教學(xué)目標:
。1)知識目標:理解對數函數的概念、掌握對數函數的圖象和性質(zhì)。
。2)本事目標:培養學(xué)生自主學(xué)習、綜合歸納、數形結合的本事。
。3)德育目標:培養學(xué)生對待知識的科學(xué)態(tài)度、勇于探索和創(chuàng )新的精神。
。4)情感目標:在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。
3、教學(xué)重點(diǎn)、難點(diǎn)及關(guān)鍵
重點(diǎn):對數函數的概念、圖象和性質(zhì);
難點(diǎn):利用指數函數的圖象和性質(zhì)得到對數函數的圖象和性質(zhì);
關(guān)鍵:抓住對數函數是指數函數的反函數這一要領(lǐng)。
二、說(shuō)教法
大部分學(xué)生數學(xué)基礎較差,理解本事,運算本事,思維本事等方面參差不齊;同時(shí)學(xué)生學(xué)好數學(xué)的自信心不強,學(xué)習進(jìn)取性不高。針對這種情景,在教學(xué)中,我引導學(xué)生從實(shí)例出發(fā)啟發(fā)指數函數的定義,在概念理解上,用步步設問(wèn)、課堂討論來(lái)加深理解。在對數函數圖像的畫(huà)法上,我借助多媒體,演示作圖過(guò)程及圖像變化的動(dòng)畫(huà)過(guò)程,從而使學(xué)生直接地理解并提高學(xué)生的學(xué)習興趣和進(jìn)取性,很好地突破難點(diǎn)和提高教學(xué)效率。
三、說(shuō)學(xué)法
教給學(xué)生方法比教給學(xué)生知識更重要,本節課注重調動(dòng)學(xué)生進(jìn)取思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導:
。1)對照比較學(xué)習法:學(xué)習對數函數,處處與指數函數相對照。
。2)探究式學(xué)習法:學(xué)生經(jīng)過(guò)分析、探索、得出對數函數的定義。
。3)自主性學(xué)習法:經(jīng)過(guò)實(shí)驗畫(huà)出函數圖象、觀(guān)察圖象自得其性質(zhì)。
。4)反饋練習法:檢驗知識的應用情景,找出未掌握的資料及其差距。
這樣可發(fā)揮學(xué)生的主觀(guān)能動(dòng)性,有利于提高學(xué)生的各種本事。
四、說(shuō)教學(xué)程序
1、復習導入
。1)復習提問(wèn):什么是對數?如何求反函數?指數函數的圖象和性質(zhì)如何?學(xué)生回答,并利用課件展示一下指數函數的圖象和性質(zhì)。
設計意圖:設計的提問(wèn)既與本節資料有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知識清除了障礙,有意識地培養學(xué)生分析問(wèn)題的本事。
。2)導言:指數函數有沒(méi)有反函數?如果有,如何求指數函數的反函數?它的反函數是什么?
設計意圖:這樣的導言可激發(fā)學(xué)生求知欲,使學(xué)生渴望明白問(wèn)題的答案。
2、認定目標(出示教學(xué)目標)
3、導學(xué)達標
按"教師為主導,學(xué)生為主體,訓練為主線(xiàn)"的原則,安排師生互動(dòng)活動(dòng)。
。1)對數函數的概念
引導學(xué)生從對數式與指數式的關(guān)系及反函數的概念進(jìn)行分析并推導出,指數函數有反函數,并且y=ax(a》0且a≠1)的反函數是y=logax,見(jiàn)課件。把函數y=logax叫做對數函數,其中a》0且a≠1.從而引出對數函數的概念,展示課件。
設計意圖:對數函數的概念比較抽象,利用已經(jīng)學(xué)過(guò)的知識逐步分析,這樣引出對數函數的概念過(guò)渡自然,學(xué)生易于理解。因為對數函數是指數函數的反函數,讓學(xué)生比較它們的定義域、值域、對應法則及圖象間的關(guān)系,培養學(xué)生參與意識,經(jīng)過(guò)比較充分體現指數函數及對數函數的內在聯(lián)系。
。2)對數函數的圖象
提問(wèn):同指數函數一樣,在學(xué)習了函數的定義之后,我們要畫(huà)函數的圖象,應如何畫(huà)對數函數的圖象呢?讓學(xué)生思考并回答,用描點(diǎn)法畫(huà)圖。教師肯定,我們每學(xué)習一種新的函數都能夠根據函數的解析式,列表、描點(diǎn)畫(huà)圖。再研究一下,我們還能夠用什么方法畫(huà)出對數函數的圖象呢?
讓學(xué)生回答,畫(huà)出指數函數關(guān)于直線(xiàn)y=x對稱(chēng)的圖象,就是對數函數的圖象。
教師總結:我們畫(huà)對數函數的圖象,既可用描點(diǎn)法,也可用圖象變換法,下邊我們利用兩種方法畫(huà)對數函數的圖象。
方法一(描點(diǎn)法)首先列出x,y(y=log2x,y=logx)值的對應表,因為對數函數的定義域為x》0,所以可取x=···,,,1,2,4,8···,請計算對應的y值,然后在坐標系內描點(diǎn)、畫(huà)出它們的圖象。
方法二(圖象變換法)因為對數函數和指數函數互為反函數,圖象關(guān)于直線(xiàn)y=x對稱(chēng),所以只要畫(huà)出y=ax的'圖象關(guān)于直線(xiàn)y=x對稱(chēng)的曲線(xiàn),就能夠得到y=logax.的圖象。學(xué)生動(dòng)手做實(shí)驗,先描出y=2x的圖象,畫(huà)出它關(guān)于直線(xiàn)y=x對稱(chēng)的曲線(xiàn),它就是y=log2x的圖象;類(lèi)似的從y=()x的圖象畫(huà)出y=logx的圖象,再出示課件,教師加以解釋。
設計意圖:用這種對稱(chēng)變換的方法畫(huà)函數的圖象,能夠加深和鞏固學(xué)生對互為反函數的兩個(gè)函數之間的認識,便于將對數函數的圖象和性質(zhì)與指數函數的圖象和性質(zhì)對照,但使用描點(diǎn)法畫(huà)函數圖象更為方便,兩種方法可同時(shí)進(jìn)行,分析畫(huà)法之后,可讓學(xué)生自由選擇畫(huà)法。這樣能夠充分調動(dòng)學(xué)生自主學(xué)習的進(jìn)取性。
。3)對數函數的性質(zhì)
在理解對數函數定義的基礎上,掌握對數函數的圖象和性質(zhì)是本節的重點(diǎn),關(guān)鍵在于抓住對數函數是指數函數的反函數這一要領(lǐng),講對數函數的性質(zhì),可先在同一坐標系內畫(huà)出上述兩個(gè)對數函數的圖象,根據圖象讓學(xué)生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補充。作了以上分析之后,再分a》1與0《a《1兩種情景列出對數函數圖象和性質(zhì)表,()體現了從"特殊到一般"、"從具體到抽象"的方法。出示課件并進(jìn)行詳細講解,把對數函數圖象和性質(zhì)列成一個(gè)表以便讓學(xué)生比較著(zhù)記憶。
設計意圖:這種講法既嚴謹又直觀(guān)易懂,還能讓學(xué)生主動(dòng)參與教學(xué)過(guò)程,對培養學(xué)生的創(chuàng )新本事有幫忙,學(xué)生易于理解易于掌握,并且利用表格,能夠突破難點(diǎn)。
由于對數函數和指數函數互為反函數,它們的定義域與值域正好互換,為了揭示這兩種函數之間的內在聯(lián)系,列出指數函數與對數函數對照表(見(jiàn)課件)
設計意圖:經(jīng)過(guò)比較對照的方法,學(xué)生更好地掌握兩個(gè)函數的定義、圖象和性質(zhì),認識兩個(gè)函數的內在聯(lián)系,提高學(xué)生對函數思想方法的認識和應用意識。
4、鞏固達標(見(jiàn)課件)
這一訓練是為了培養學(xué)生利用所學(xué)知識解決實(shí)際問(wèn)題的本事,經(jīng)過(guò)這個(gè)環(huán)節學(xué)生能夠加深對本節知識的理解和運用,并從講解過(guò)程中找出所涉及的知識點(diǎn),予以總結。充分體現"數形結合"和"分類(lèi)討論"的思想。
5、反饋練習(見(jiàn)課件)
習題是對學(xué)生所學(xué)知識的反饋過(guò)程,教師能夠了解學(xué)生對知識掌握的情景。
6、歸納總結(見(jiàn)課件)
引導學(xué)生對主要知識進(jìn)行回顧,使學(xué)生對本節有一個(gè)整體的把握,所以,從三方面進(jìn)行總結:對數函數的概念、對數函數的圖象和性質(zhì)、比較對數值大小的方法。
7、課外作業(yè):
。1)完成P782、3題
。2)當底數a》1與0《a《1時(shí),底數不一樣,對數函數圖象有什么持點(diǎn)?
五、說(shuō)板書(shū)
板書(shū)設計為表格式(見(jiàn)課件),這樣的板書(shū)簡(jiǎn)明清楚,重點(diǎn)突出,加深學(xué)生對圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學(xué)效果。
高中數學(xué)說(shuō)課稿 篇16
一、教材分析:
1、教材的地位與作用:
線(xiàn)性規劃是運籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著(zhù)廣泛的應用。本節內容是在學(xué)習了不等式、直線(xiàn)方程的基礎上,利用不等式和直線(xiàn)方程的有關(guān)知識展開(kāi)的,它是對二元一次不等式的深化和再認識、再理解。通過(guò)這一部分的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的.應用,體驗數形結合和轉化的思想方法,培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。
2、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):畫(huà)可行域;在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。
難點(diǎn):在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。
二、目標分析:
在新課標讓學(xué)生經(jīng)歷“學(xué)數學(xué)、做數學(xué)、用數學(xué)”的理念指導下,本節課的教學(xué)目標分設為知識目標、能力目標和情感目標。
知識目標:
1、了解線(xiàn)性規劃的意義,了解線(xiàn)性約束條件、線(xiàn)性目標函數、可行解、可行
域和最優(yōu)解等概念;
2、理解線(xiàn)性規劃問(wèn)題的圖解法;
3、會(huì )利用圖解法求線(xiàn)性目標函數的最優(yōu)解。
能力目標:
1、在應用圖解法解題的過(guò)程中培養學(xué)生的觀(guān)察能力、理解能力。
2、在變式訓練的過(guò)程中,培養學(xué)生的分析能力、探索能力。
3、在對具體事例的感性認識上升到對線(xiàn)性規劃的理性認識過(guò)程中,培養學(xué)生運用數形結合思想解題的能力和化歸能力。
情感目標:
1、讓學(xué)生體驗數學(xué)來(lái)源于生活,服務(wù)于生活,體驗數學(xué)在建設節約型社會(huì )中的作用,品嘗學(xué)習數學(xué)的樂(lè )趣。
2、讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索與創(chuàng )造,培養學(xué)生勤于思考、勇于探索的精神;
3、讓學(xué)生學(xué)會(huì )用運動(dòng)觀(guān)點(diǎn)觀(guān)察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。
三、過(guò)程分析:
數學(xué)教學(xué)是數學(xué)活動(dòng)的教學(xué)。因此,我將整個(gè)教學(xué)過(guò)程分為以下六個(gè)教學(xué)環(huán)節:
1、創(chuàng )設情境,提出問(wèn)題;
2、分析問(wèn)題,形成概念;
3、反思過(guò)程,提煉方法;
4、變式演練,深入探究;
5、運用新知,解決問(wèn)題;
6、歸納總結,鞏固提高。
1、創(chuàng )設情境,提出問(wèn)題:
在課堂教學(xué)的開(kāi)始,我以一組生動(dòng)的動(dòng)畫(huà)(配圖片)描述出在神奇的數學(xué)王國里,有一種算法廣泛應用于工農業(yè)、軍事、交通運輸、決策管理與規劃等領(lǐng)域,應用它已節約了億萬(wàn)財富,還被列為20世紀對科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習情境。
【高中數學(xué)說(shuō)課稿】相關(guān)文章:
高中數學(xué)的說(shuō)課稿04-19
高中數學(xué)經(jīng)典說(shuō)課稿11-25
高中數學(xué)優(yōu)秀說(shuō)課稿03-08
高中數學(xué)數列說(shuō)課稿11-20
高中數學(xué)優(yōu)秀說(shuō)課稿03-03
高中數學(xué)全套說(shuō)課稿06-08
高中數學(xué)說(shuō)課稿06-12
高中數學(xué)數列說(shuō)課稿06-07