實(shí)用的高中數學(xué)說(shuō)課稿匯編六篇
作為一名默默奉獻的教育工作者,常常要根據教學(xué)需要編寫(xiě)說(shuō)課稿,說(shuō)課稿是進(jìn)行說(shuō)課準備的文稿,有著(zhù)至關(guān)重要的作用。那要怎么寫(xiě)好說(shuō)課稿呢?以下是小編精心整理的高中數學(xué)說(shuō)課稿6篇,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數學(xué)說(shuō)課稿 篇1
各位評委,老師們:大家好!
很高興參加這次說(shuō)課活動(dòng)。這對我來(lái)說(shuō)也是一次難得的學(xué)習和鍛煉的機會(huì ),感謝各位老師在百忙之中來(lái)此予以指導。希望各位評委和老師們對我的說(shuō)課內容提出寶貴意見(jiàn)。
我說(shuō)課的內容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(shū)(試驗修訂本—必修)<數學(xué)>第一冊下,教學(xué)內容為第96頁(yè)至98頁(yè)第五章第一節。本校是浙江省一級重點(diǎn)中學(xué),學(xué)生基礎相對較好。我在進(jìn)行教學(xué)設計時(shí),也充分考慮到了這一點(diǎn)。
下面我從教材分析,教學(xué)目標的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設計四個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。
一說(shuō)教材
。1)地位和作用
向量是近代數學(xué)中重要和基本的概念之一,有著(zhù)深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質(zhì)轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著(zhù)極其豐富的實(shí)際背景,在數學(xué)和物理學(xué)科中具有廣泛的應用。
平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎上進(jìn)一步對向量的深入學(xué)習。為學(xué)習向量的知識體系奠定了知識和方法基礎。
。2)教學(xué)結構的調整
課本在這一部分內容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長(cháng)度,零向量,單位向量,平行向量,共線(xiàn)向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調整:將本節教學(xué)中認知過(guò)程的教學(xué)內容適當集中,以突出這節課的主題;例題,習題部分主要由學(xué)生依照概念自行分析,獨立完成。
。3)重點(diǎn),難點(diǎn),關(guān)鍵
由于本節課是本章內容的第一節課,是學(xué)生學(xué)習本章的基礎。為了本章后面知識的學(xué)習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點(diǎn)。本節課是為高一后半學(xué)期學(xué)生設計的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習方法和習慣,但根據以往的教學(xué)經(jīng)驗,多數學(xué)生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認為向量概念也是這節課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復雜的幾何圖形中相等的有向線(xiàn)段讓學(xué)生進(jìn)行辨認,加深對向量的理解。
二說(shuō)教學(xué)目標的確定
根據本課教材的特點(diǎn),新大綱對本節課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標:
。1)基礎知識目標:理解向量,零向量,單位向量,共線(xiàn)向量,平行向量,相等向量的概念,會(huì )用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì )根據圖形判定向量是否平行,共線(xiàn),相等。
。2)能力訓練目標:培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等發(fā)現規律的一般方法,培養學(xué)生觀(guān)察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
。3)情感目標:讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習的樂(lè )趣。
三說(shuō)教學(xué)方法的選擇
、窠虒W(xué)方法
本節課我采用了”啟發(fā)探究式的教學(xué)方法,根據本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):
。1)由教材的特點(diǎn)確立類(lèi)比思維為教學(xué)的主線(xiàn)。
從教材內容看平面向量無(wú)論從形式還是內容都與物理學(xué)中的有向線(xiàn)段,矢量的概念類(lèi)似。因此在教學(xué)中運用類(lèi)比作為思維的主線(xiàn)進(jìn)行教學(xué)。讓學(xué)生充分體會(huì )數學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。
。2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習方法
通常學(xué)生對于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習興趣,另外,學(xué)生都有表現自己的欲望,希望得到老師和其他同學(xué)的認可,要多表?yè)P,多肯定來(lái)激勵他們的學(xué)習熱情?紤]到我校學(xué)生的基礎較好,思維較為活躍,對自主探索式的學(xué)習方法也有一定的認識,所以在教學(xué)中我通過(guò)創(chuàng )設問(wèn)題情境,啟發(fā)引導學(xué)生運用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。
、蚪虒W(xué)手段
本節課中,除使用常規的教學(xué)手段外,我還使用了多媒體投影儀和計算機來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過(guò)程則有助于滲透數形結合思想,更易于對概念的理解和難點(diǎn)的突破。
四教學(xué)過(guò)程的設計
、裰R引入階段———提出學(xué)習課題,明確學(xué)習目標
。1)創(chuàng )設情境——引入概念
數學(xué)學(xué)習應該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現數學(xué)、探究數學(xué)、認識并掌握數學(xué)。
由生活中具體的向量的實(shí)例引入:大海中船只的航線(xiàn),中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習興趣。
。2)觀(guān)察歸納——形成概念
由實(shí)例得出有向線(xiàn)段的概念,有向線(xiàn)段的三個(gè)要素:起點(diǎn),方向,長(cháng)度。明確知道了有向線(xiàn)段的起點(diǎn),方向和長(cháng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設計,引導學(xué)生概括總結出本課新的知識點(diǎn):向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進(jìn)行歸納,深化,之后向學(xué)生提出以下三個(gè)問(wèn)題:
、傧蛄康囊厥鞘裁?
、谙蛄恐g能否比較大?
、巯蛄颗c數量的區別是什么?
同時(shí)指出這就是本節課我們要研究和學(xué)習的主題。
、蛑R探索階段———探索平面向量的平行向量。相等向量等概念
。1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線(xiàn)向量,并且規定0與任一向量平行.長(cháng)度相等且方向相同的向量叫相等向量,規定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
。2)即時(shí)訓練—鞏固新知
為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時(shí)訓練題,通過(guò)學(xué)生的觀(guān)察嘗試,討論研究,教師引導來(lái)鞏固新知識。
。劬毩1]判斷下列命題是否正確,若不正確,請簡(jiǎn)述理由.
、傧蛄颗c是共線(xiàn)向量,則A、B、C、D四點(diǎn)必在一直線(xiàn)上;
、趩挝幌蛄慷枷嗟;
、廴我幌蛄颗c它的相反向量不相等;
、芩倪呅蜛BCD是平行四邊形的充要條件是=;
、菽0是一個(gè)向量方向不確定的充要條件;
、薰簿(xiàn)的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.
。劬毩2]下列命題正確的是( )
A.a(chǎn)與b共線(xiàn),b與c共線(xiàn),則a與c也共線(xiàn)
B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)
C.向量a與b不共線(xiàn),則a與b都是非零向量
D.有相同起點(diǎn)的兩個(gè)非零向量不平行
、笾R應用階段————共線(xiàn)向量,相等向量等概念的初步應用
在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復雜圖形中觀(guān)察,辨認平行,相等的有向線(xiàn)段。選用本題的目的是讓學(xué)生進(jìn)行獨立思考,自主探究,交流討論等探索活動(dòng),加深對概念的理解和對難點(diǎn)的突破。
例如圖所示,設O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)
具體教學(xué)安排如下:
。1)分析解決問(wèn)題
先引導學(xué)生分析解決問(wèn)題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當它們的模相等,同時(shí)方向又相同時(shí),才能稱(chēng)它們相等。進(jìn)而進(jìn)行正確的辨認,直至最終解決問(wèn)題。
。2)歸納解題方法
主要引導學(xué)生歸納以下兩個(gè)問(wèn)題:①零向量的方向是任意的,它只與零向量相
等;②兩個(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。
、魧W(xué)習,小結階段———歸納知識方法,布置課后作業(yè)
本階段通過(guò)學(xué)習小結進(jìn)行課堂教學(xué)的反饋,組織和指導學(xué)生歸納知識,技能,方法的一般規律,為后續學(xué)習打好基礎。
具體的教學(xué)安排如下:
。1)知識,方法小結在知識層面上我首先引導學(xué)生回顧本節課的主要內容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類(lèi)比,加深對每個(gè)概念的理解。
在方法層面上我將帶領(lǐng)學(xué)生回顧探索過(guò)程中用到的思維方法和數學(xué)方法如:
類(lèi)比,數形結合,等價(jià)轉化等進(jìn)行強調。
。2)布置課后作業(yè)
閱讀教材96至97頁(yè)內容,整理課堂筆記,習題5。1第1,2,3題。
高中數學(xué)說(shuō)課稿 篇2
一、地位作用
數列是高中數學(xué)重要的內容之一,等比數列是在學(xué)習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個(gè)高中數學(xué)內容中數列與已學(xué)過(guò)的函數及后面的數列極限有密切聯(lián)系,它也是培養學(xué)生數學(xué)能力的良好題材,它可以培養學(xué)生的觀(guān)察、分析、歸納、猜想及綜合解決問(wèn)題的能力。
基于此,設計本節的數學(xué)思路上:
利用類(lèi)比的思想,聯(lián)系等差數列的概念及通項公式的學(xué)習方法,采取自學(xué)、引導、歸納、猜想、類(lèi)比總結的教學(xué)思路,充分發(fā)揮學(xué)生主觀(guān)能動(dòng)性,調動(dòng)學(xué)生的主體地位,充分體現教為主導、學(xué)為主體、練為主線(xiàn)的教學(xué)思想。
二、教學(xué)目標
知識目標:1)理解等比數列的概念
2)掌握等比數列的通項公式
3)并能用公式解決一些實(shí)際問(wèn)題
能力目標:培養學(xué)生觀(guān)察能力及發(fā)現意識,培養學(xué)生運用類(lèi)比思想、解決分析問(wèn)題的能力。
三、教學(xué)重點(diǎn)
1)等比數列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)
2)等比數列的通項公式的推導及應用
四、教學(xué)難點(diǎn)
“等比”的理解及利用通項公式解決一些問(wèn)題。
五、教學(xué)過(guò)程設計
(一)預習自學(xué)環(huán)節。(8分鐘)
首先讓學(xué)生重新閱讀課本105頁(yè)國際象棋發(fā)明者的故事,并出示預習提綱,要求學(xué)生閱讀課本P122至P123例1上面。
回答下列問(wèn)題
1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數列的定義。
2)觀(guān)察以下幾個(gè)數列,回答下面問(wèn)題:
1, , , ,……
。1,-2,-4,-8……
1,2,-4,8……
。1,-1,-1,-1,……
1,0,1,0……
、儆心膸讉(gè)是等比數列?若是公比是什么?
、诠萹為什么不能等于零?首項能為零嗎?
、酃萹=1時(shí)是什么數列?
、躴>0時(shí)數列遞增嗎?q<0時(shí)遞減嗎?
3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?
4)等比數列通項公式與函數關(guān)系怎樣?
(二)歸納主導與總結環(huán)節(15分鐘)
這一環(huán)節主要是通過(guò)學(xué)生回答為主體,教師引導總結為主線(xiàn)解決本節兩個(gè)重點(diǎn)內容。
通過(guò)回答問(wèn)題(1)(2)給出等比數列的定義并強調以下幾點(diǎn):①定義關(guān)鍵字“第二項起”“常數”;
、谝龑W(xué)生用數學(xué)語(yǔ)言表達定義: =q(n≥2);③q=1時(shí)為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類(lèi)討論的思想。
、躴>0時(shí)等比數列單調性不定,q<0為擺動(dòng)數列,類(lèi)比等差數列d>0為遞增數列,d<0為遞減數列。
通過(guò)回答問(wèn)題(3)回憶等差數列的推導方法,比較兩個(gè)數列定義的不同,引導推出等比數列通項公式。
法一:歸納法,學(xué)會(huì )從特殊到一般的方法,并從次數中發(fā)現規律,培養觀(guān)察力。
法二:迭乘法,聯(lián)系等差數列“迭加法”,培養學(xué)生類(lèi)比能力及新舊知識轉化能力。
高中數學(xué)說(shuō)課稿 篇3
一、教材分析
集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。
本節課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。
二、教學(xué)目標
1、學(xué)習目標
。1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合之間的關(guān)系以及理解“屬
于”關(guān)系;
。2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;
2、能力目標
。1)能夠把一句話(huà)一個(gè)事件用集合的方式表示出來(lái)。
。2)準確理解集合與及集合內的元素之間的關(guān)系。
3、情感目標
通過(guò)本節的把實(shí)際事件用集合的方式表示出來(lái),從而培養數學(xué)敏感性,了 解到數學(xué)于生活中。
三、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn) 集合的基本概念與表示方法;
難點(diǎn) 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;
四、教學(xué)方法
。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養,后進(jìn)生也有所收獲的效果;
。2)學(xué)生在老師的引導下,通過(guò)閱讀教材,自主學(xué)習、思考、交流、討論和概括,從而完成本節課的教學(xué)目標。
五、學(xué)習方法
。1)主動(dòng)學(xué)習法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認識的同時(shí),
教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識,培養學(xué)生思維想象 的綜合能力。
。2)反饋補救法:在練習中,注意觀(guān)察學(xué)生對學(xué)習的反饋情況,以實(shí)現“培
優(yōu)扶差,滿(mǎn)足不同!
六、教學(xué)思路
具體的思路如下
復習的引入:講一些集合的相關(guān)數學(xué)及相關(guān)數學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數學(xué)史從何使學(xué)生對數學(xué)更加感興趣,有助于上課的效率!因為時(shí)間關(guān)系這里我就不說(shuō)相關(guān)數學(xué)史咯。
一、 引入課題
軍訓前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓動(dòng)員;試問(wèn)這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習一個(gè)新的概念——集合,即是一些研究對象的總體。
二、 正體部分
學(xué)生閱讀教材,并思考下列問(wèn)題:
。1)集合有那些概念?
。2)集合有那些符號?
。3)集合中元素的特性是什么?
。4)如何給集合分類(lèi)?
(一)集合的有關(guān)概念
。1)對象:我們可以感覺(jué)到的客觀(guān)存在以及我們思想中的事物或抽象符號,
都可以稱(chēng)作對象.
。2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說(shuō)這個(gè)整體是由
這些對象的全體構成的集合.
。3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素.
集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、??元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、??
1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,
對學(xué)生的例子予以討論、點(diǎn)評,進(jìn)而講解下面的問(wèn)題。
2、元素與集合的關(guān)系
。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A
。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作a?A
要注意“∈”的方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě). (舉例)
集合A={3,4,6,9}a=2 因此我們知道a?A
3、集合中元素的特性
。1)確定性:給定一個(gè)集合,任何對象是不是這個(gè)集合的元素是確定的了.
。2)互異性:集合中的元素一定是不同的.
。3)無(wú)序性:集合中的元素沒(méi)有固定的順序.
4、集合分類(lèi)
根據集合所含元素個(gè)屬不同,可把集合分為如下幾類(lèi):
。1)把不含任何元素的集合叫做空集Ф
。2)含有有限個(gè)元素的集合叫做有限集
。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集
注:應區分?,{?},{0},0等符號的含義
5、常用數集及其表示方法
。1)非負整數集(自然數集):全體非負整數的集合.記作N
。2)正整數集:非負整數集內排除0的集.記作N*或N+
。3)整數集:全體整數的集合.記作Z
。4)有理數集:全體有理數的集合.記作Q
。5)實(shí)數集:全體實(shí)數的集合.記作R
注:(1)自然數集包括數0.
。2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排
除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*
(二)集合的表示方法
我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。
。1) 列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
例1.(課本例1)
思考2,引入描述法
說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。
。2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號{}內。 具體方法:在大括號內先寫(xiě)上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫(huà)一條豎線(xiàn),在豎線(xiàn)后寫(xiě)出這個(gè)集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2.(課本例2)
說(shuō)明:(課本P5最后一段)
思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數}。下列寫(xiě)法{實(shí)數集},{R}也是錯誤的。
說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應該根據具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。
(三)課堂練習(課本P6練習)
三、 歸納小結與作業(yè)
本節課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結合實(shí)例對集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書(shū)面作業(yè):習題1.1,第1- 4題
高中數學(xué)說(shuō)課稿 篇4
一、教材分析:
1、教材的地位與作用。
本節內容是在學(xué)生學(xué)習了“事件的可能性的基礎上來(lái)學(xué)習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小!庇酶怕暑A測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著(zhù)廣泛的應用,學(xué)習本單元知識,無(wú)論是今后繼續深造(高中學(xué)習概率的乘法定理)還是參加社會(huì )實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。
在教材的處理上,采取小單元教學(xué),本節課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統地理解概率的意義及求概率的方法,為下面學(xué)習求比較復雜的情況的概率打下基礎。
2、重點(diǎn)與難點(diǎn)。
重點(diǎn):對概率意義的理解,通過(guò)多次重復實(shí)驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點(diǎn):對概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導學(xué)生觀(guān)察試驗和統計的結果,進(jìn)而進(jìn)行分析、歸納、總結,了解并感受概率的定義的過(guò)程,引導學(xué)生從數學(xué)的視角觀(guān)察客觀(guān)世界,用數學(xué)的思維思考客觀(guān)世界,以數學(xué)的語(yǔ)言描述客觀(guān)世界。
情感態(tài)度價(jià)值觀(guān):學(xué)生經(jīng)歷觀(guān)察、分析、歸納、確認等數學(xué)活動(dòng),感受數學(xué)活動(dòng)充滿(mǎn)了探索性與創(chuàng )造性,感受量變與質(zhì)變的對立統一規律,同時(shí)為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習數學(xué)的熱情,增強對數學(xué)價(jià)值觀(guān)的認識。
三、教法、學(xué)法分析:
引導學(xué)生自主探究、合作交流、觀(guān)察分析、歸納總結,讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數學(xué)活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能應用數學(xué)解決現實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習的組織者、合作者和指導者,精心設計教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿(mǎn)生機活力,體現“教” 為“學(xué)”服務(wù)這一宗旨。
四、教學(xué)過(guò)程分析:
1、引導學(xué)生探究
精心設計問(wèn)題一,學(xué)生通過(guò)對問(wèn)題一的探究,一方面復習前面學(xué)過(guò)的“確定事件和不確定事件”的知識,為學(xué)好本節內容理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習概率(如何預測隨機事件可能性發(fā)生大小)。引導學(xué)生對問(wèn)題二的探究與觀(guān)察實(shí)驗數據,使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機事件的發(fā)生中存在著(zhù)統計規律性,感受數學(xué)規律的真實(shí)的發(fā)現過(guò)程。
2、歸納概括
學(xué)生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學(xué)生明確概率定義的由來(lái)。
引導學(xué)生重新對問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學(xué)生進(jìn)行理性思維,邏輯分析,既培養學(xué)生的分析問(wèn)題能力,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。
P(A)= = = (m
3、舉例應用
、乓龑W(xué)生對教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。
、埔龑W(xué)生對練習中的問(wèn)題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
深化發(fā)展
、旁O置3個(gè)小題目,引導學(xué)生歸納、分析、總結,加深對知識與方法的理解,并學(xué)會(huì )靈活運用。
、谱寣W(xué)生設計活動(dòng)內容,對知識進(jìn)行升華和拓展,引導學(xué)生創(chuàng )造性地運用知識思考問(wèn)題和解決問(wèn)題,從而培養學(xué)生的創(chuàng )新意識和創(chuàng )新能力。
高中數學(xué)說(shuō)課稿 篇5
高三第一階段復習,也稱(chēng)“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復習鞏固各個(gè)知識點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過(guò)的知識產(chǎn)生全新認識。在高一、高二時(shí),是以知識點(diǎn)為主線(xiàn)索,依次傳授講解的,由于后面的相關(guān)知識還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復習時(shí),以章節為單位,將那些零碎的、散亂的知識點(diǎn)串聯(lián)起來(lái),并將他們系統化、綜合化,把各個(gè)知識點(diǎn)融會(huì )貫通。對于普通高中的學(xué)生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實(shí)效。
一、內容分析說(shuō)明
1、本小節內容是初中學(xué)習的多項式乘法的繼續,它所研究的二項式的乘方的展開(kāi)式,與數學(xué)的其他部分有密切的聯(lián)系:
。1)二項展開(kāi)式與多項式乘法有聯(lián)系,本小節復習可對多項式的變形起到復習深化作用。
。2)二項式定理與概率理論中的二項分布有內在聯(lián)系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò )。
。3)二項式定理是解決某些整除性、近似計算等問(wèn)題的一種方法。
2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的
試題,考察的`題型穩定,通常以選擇題或填空題出現,有時(shí)也與應用題結合在一起求某些數、式的
近似值。
二、學(xué)校情況與學(xué)生分析
。1)我校是一所鎮普通高中,學(xué)生的基礎不好,記憶力較差,反應速度慢,普遍感到數學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀(guān)上有學(xué)好數學(xué)的愿望。
。2)授課班是政治、地理班,學(xué)生聽(tīng)課積極性不高,聽(tīng)課率低(60﹪),注意力不能持久,不能連續從事某項數學(xué)活動(dòng)。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學(xué)生好記筆記。
三、教學(xué)目標
復習課二項式定理計劃安排兩個(gè)課時(shí),本課是第一課時(shí),主要復習二項展開(kāi)式和通項。根據歷年高考對這部分的考查情況,結合學(xué)生的特點(diǎn),設定如下教學(xué)目標:
1、知識目標:(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個(gè)特征熟記它的展開(kāi)式。
。2)會(huì )運用展開(kāi)式的通項公式求展開(kāi)式的特定項。
2、能力目標:(1)教給學(xué)生怎樣記憶數學(xué)公式,如何提高記憶的持久性和準確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數學(xué)能力,是其它能力的基礎。
。2)樹(shù)立由一般到特殊的解決問(wèn)題的意識,了解解決問(wèn)題時(shí)運用的數學(xué)思想方法。
3、情感目標:通過(guò)對二項式定理的復習,使學(xué)生感覺(jué)到能掌握數學(xué)的部分內容,樹(shù)立學(xué)好數學(xué)的信心。有意識地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗到成功,在明年的高考中,他們也能得分。
四、教學(xué)過(guò)程
1、知識歸納
。1)創(chuàng )設情景:①同學(xué)們,還記得嗎? 、 、 展開(kāi)式是什么?
、趯W(xué)生一起回憶、老師板書(shū)。
設計意圖:①提出比較容易的問(wèn)題,吸引學(xué)生的注意力,組織教學(xué)。
、跒閷W(xué)生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。
。2)二項式定理:①設問(wèn) 展開(kāi)式是什么?待學(xué)生思考后,老師板書(shū)
= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)
、诶蠋熞髮W(xué)生說(shuō)出二項展開(kāi)式的特征并熟記公式:共有 項;各項里a的指數從n起依次減小1,直到0為止;b的指數從0起依次增加1,直到n為止。每一項里a、b的指數和均為n。
、垤柟叹毩 填空
設計意圖:①教給學(xué)生記憶的方法,比較分析公式的特點(diǎn),記規律。
、谧冇霉,熟悉公式。
。3) 展開(kāi)式中各項的系數C , C , C ,… , 稱(chēng)為二項式系數.
展開(kāi)式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開(kāi)式中第r+1項.
2、例題講解
例1求 的展開(kāi)式的第4項的二項式系數,并求的第4項的系數。
講解過(guò)程
設問(wèn):這里 ,要求的第4項的有關(guān)系數,如何解決?
學(xué)生思考計算,回答問(wèn)題;
老師指明①當項數是4時(shí), ,此時(shí) ,所以第4項的二項式系數是 ,
、诘4項的系數與的第4項的二項式系數區別。
板書(shū)
解:展開(kāi)式的第4項
所以第4項的系數為 ,二項式系數為 。
選題意圖:①利用通項公式求項的系數和二項式系數;②復習指數冪運算。
例2 求 的展開(kāi)式中不含的 項。
講解過(guò)程
設問(wèn):①不含的 項是什么樣的項?即這一項具有什么性質(zhì)?
、趩(wèn)題轉化為第幾項是常數項,誰(shuí)能看出哪一項是常數項?
師生討論 “看不出哪一項是常數項,怎么辦?”
共同探討思路:利用通項公式,列出項數的方程,求出項數。
老師總結思路:先設第 項為不含 的項,得 ,利用這一項的指數是零,得到關(guān)于 的方程,解出 后,代回通項公式,便可得到常數項。
板書(shū)
解:設展開(kāi)式的第 項為不含 項,那么
令 ,解得 ,所以展開(kāi)式的第9項是不含的 項。
因此 。
選題意圖:①鞏固運用展開(kāi)式的通項公式求展開(kāi)式的特定項,形成基本技能。
、谂袛嗟趲醉検浅淀椷\用方程的思想;找到這一項的項數后,實(shí)現了轉化,體現轉化的數學(xué)思想。
例3求 的展開(kāi)式中, 的系數。
解題思路:原式局部展開(kāi)后,利用加法原理,可得到展開(kāi)式中的 系數。
板書(shū)
解:由于 ,則 的展開(kāi)式中 的系數為 的展開(kāi)式中 的系數之和。
而 的展開(kāi)式含 的項分別是第5項、第4項和第3項,則 的展開(kāi)式中 的系數分別是: 。
所以 的展開(kāi)式中 的系數為
例4 如果在( + )n的展開(kāi)式中,前三項系數成等差數列,求展開(kāi)式中的有理項.
解:展開(kāi)式中前三項的系數分別為1, , ,
由題意得2× =1+ ,得n=8.
設第r+1項為有理項,T =C · ·x ,則r是4的倍數,所以r=0,4,8.
有理項為T(mén)1=x4,T5= x,T9= .
3、課堂練習
1.(20xx年江蘇,7)(2x+ )4的展開(kāi)式中x3的系數是
A.6B.12 C.24 D.48
解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數為C ·22=24.
答案:C
2.(20xx年全國Ⅰ,5)(2x3- )7的展開(kāi)式中常數項是
A.14 B.14 C.42 D.-42
解析:設(2x3- )7的展開(kāi)式中的第r+1項是T =C (2x3) (- )r=C 2 ·
。ǎ1)r·x ,
當- +3(7-r)=0,即r=6時(shí),它為常數項,∴C (-1)6·21=14.
答案:A
3.(20xx年湖北,文14)已知(x +x )n的展開(kāi)式中各項系數的和是128,則展開(kāi)式中x5的系數是_____________.(以數字作答)
解析:∵(x +x )n的展開(kāi)式中各項系數和為128,
∴令x=1,即得所有項系數和為2n=128.
∴n=7.設該二項展開(kāi)式中的r+1項為T(mén) =C (x ) ·(x )r=C ·x ,
令 =5即r=3時(shí),x5項的系數為C =35.
答案:35
五、課堂教學(xué)設計說(shuō)明
1、這是一堂復習課,通過(guò)對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數、項的二項式系數等有關(guān)概念的理解和認識,形成求二項式展開(kāi)式某些指定項的基本技能,同時(shí),要培養學(xué)生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。
2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng )造代入的條件,先判斷哪一項為所求,即先求項數,利用通項公式中指數的關(guān)系求出,此后轉化為第一層次的問(wèn)題。第三層次突出數學(xué)思想的滲透,例3需要變形才能求某一項的系數,恒等變形是實(shí)現轉化的手段。在求每個(gè)局部展開(kāi)式的某項系數時(shí),又有分類(lèi)討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過(guò)程中,運用等差數列、組合數n等知識,求出后,有化歸為前面的問(wèn)題。
六、個(gè)人見(jiàn)解
高中數學(xué)說(shuō)課稿 篇6
一、說(shuō)設計理念
《數學(xué)課程標準》指出要讓學(xué)生感受生活中處處有數學(xué),用數學(xué)知識解決生活中的實(shí)際問(wèn)題。
基于這一理念,我在教學(xué)過(guò)程中力求聯(lián)系學(xué)生生活實(shí)際和已有的知識經(jīng)驗,從學(xué)生感興趣的素材,設計新穎的導入與例題教學(xué),給數學(xué)課富予新的生命力。課堂中力求構建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識的探究過(guò)程,培養學(xué)生感受生活中的數學(xué)和用數學(xué)知識解決生活問(wèn)題的能力,體驗數學(xué)的應用價(jià)值。
二、教材分析:
。ㄒ唬┙滩牡牡匚缓妥饔
有關(guān)統計圖的認識,小學(xué)階段主要認識條形統計圖、折線(xiàn)統計圖和扇形統計圖?紤]到扇形統計圖在日常生活中的廣泛應用,《標準》把它作為必學(xué)內容安排在本單元。本單元是在前面學(xué)習了條形統計圖和折線(xiàn)統計圖的特點(diǎn)和作用的基礎上進(jìn)行教學(xué)的。主要通過(guò)熟悉的事例使學(xué)生體會(huì )到扇形統計圖的實(shí)用價(jià)值。
。ǘ┙虒W(xué)目標
1、聯(lián)系生活情境了解扇形統計圖的特點(diǎn)和作用
2、能讀懂扇形統計圖,從中獲取有效的信息。
3、讓學(xué)生在觀(guān)察、比較、討論和交流中體會(huì )扇形統計圖反映的是整體和部分的關(guān)系。
。ㄈ┙虒W(xué)重點(diǎn):
1、能讀懂扇形統計圖,理解扇形統計圖的特點(diǎn)和作用,并能從中獲取有效信息。
2、認識折線(xiàn)統計圖,了解折線(xiàn)統計圖的特點(diǎn)。
。ㄋ模┙虒W(xué)難點(diǎn):
1、能從扇形統計圖中獲得有用信息,并做出合理推斷。
2、能根據統計圖和數據進(jìn)行數據變化趨勢的分析。
二、學(xué)情分析
本單元的教學(xué)是在學(xué)生已有統計經(jīng)驗的基礎上,學(xué)習新知的。六年級的學(xué)生已經(jīng)學(xué)習了條形統計圖和折線(xiàn)統計圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎上,通過(guò)新舊知識對比,自然生成新知識點(diǎn)。
三、設計理念和教法分析
1、本堂課力爭做到由“關(guān)注知識”轉向“關(guān)注學(xué)生”,由“傳授知識”轉向“引導探索”,“教師是組織者、領(lǐng)導者!睂⒄n堂設置問(wèn)題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構建。
2、運用探究法。探究學(xué)習的內容以問(wèn)題的形式出現在教師的引導下,學(xué)生自主探究,讓學(xué)生在課堂上多活動(dòng)、多思考,自主構建知識體系。引導學(xué)生獲取信息并合作交流。
四、說(shuō)學(xué)法
《數學(xué)課程標準》指出有效的數學(xué)學(xué)習不能單純的依賴(lài)模仿和記憶,動(dòng)手操作、自主探索與合作交流是學(xué)生學(xué)習數學(xué)的重要方式。教學(xué)時(shí),我通過(guò)學(xué)生感興趣的話(huà)題引入,引導學(xué)生關(guān)注身邊的數學(xué),使學(xué)生體會(huì )到觀(guān)察、概括、想象、遷移等數學(xué)學(xué)習方法,在師生互動(dòng)中讓每個(gè)學(xué)生都動(dòng)口,動(dòng)手,動(dòng)腦。培養學(xué)生學(xué)習的主動(dòng)性和積極性。
五、說(shuō)教學(xué)程序
本課分成創(chuàng )設情境,感知特點(diǎn)——分析數據,理解特征——嘗試制圖,看圖分析——實(shí)踐應用,全課總結四環(huán)節。
六、說(shuō)教學(xué)過(guò)程
。ㄒ唬⿵土曇
1、復習舊知
提問(wèn):我們學(xué)習過(guò)哪些統計方法?其中條形統計圖和折線(xiàn)統計圖各有什么特點(diǎn)?
2、引入新課
。ǘ┳灾魈剿,學(xué)習新知
新知識教學(xué)分二步教學(xué):第一步整體感知,看懂統計圖,理解特征,這是本節課的重點(diǎn)。在教學(xué)中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學(xué)生獨立思考,互相合作,進(jìn)一步了解統計圖的特征。
第二步實(shí)踐應用環(huán)節。在教學(xué)中,精心地選取了大量的生活素材,使統計知識與生活建立緊密的聯(lián)系。根據統計圖回答問(wèn)題,是讓學(xué)生運用到剛才學(xué)習到的知識來(lái)解決生活中的一些問(wèn)題,并鞏固剛才所學(xué)的知識,為學(xué)生自己發(fā)現問(wèn)題、提出問(wèn)題及自己解決問(wèn)題提供了較大的空間。同時(shí),讓學(xué)生感悟由于數據變化帶來(lái)的啟示,并能合理地進(jìn)行推理與判斷
三、課堂總結
四、布置作業(yè)。
五、板書(shū)設計:
【實(shí)用的高中數學(xué)說(shuō)課稿匯編六篇】相關(guān)文章:
實(shí)用的高中數學(xué)說(shuō)課稿匯編9篇07-25
實(shí)用的高中數學(xué)說(shuō)課稿匯編七篇08-12
實(shí)用的高中數學(xué)說(shuō)課稿模板匯編7篇08-09
實(shí)用的高中數學(xué)說(shuō)課稿模板匯編6篇08-03
實(shí)用的高中數學(xué)說(shuō)課稿匯編十篇08-01
實(shí)用的高中數學(xué)說(shuō)課稿范文匯編5篇08-20
實(shí)用的高中數學(xué)說(shuō)課稿范文匯編8篇08-20