有關(guān)高中數學(xué)說(shuō)課稿范文錦集10篇
作為一位無(wú)私奉獻的人民教師,常常要寫(xiě)一份優(yōu)秀的說(shuō)課稿,說(shuō)課稿有助于提高教師的語(yǔ)言表達能力。寫(xiě)說(shuō)課稿需要注意哪些格式呢?下面是小編幫大家整理的高中數學(xué)說(shuō)課稿10篇,歡迎閱讀,希望大家能夠喜歡。
高中數學(xué)說(shuō)課稿 篇1
一、教材分析
集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。
本節課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。
二、教學(xué)目標
1、學(xué)習目標
。1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合之間的關(guān)系以及理解“屬
于”關(guān)系;
。2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;
2、能力目標
。1)能夠把一句話(huà)一個(gè)事件用集合的方式表示出來(lái)。
。2)準確理解集合與及集合內的元素之間的關(guān)系。
3、情感目標
通過(guò)本節的把實(shí)際事件用集合的方式表示出來(lái),從而培養數學(xué)敏感性,了 解到數學(xué)于生活中。
三、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn) 集合的基本概念與表示方法;
難點(diǎn) 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;
四、教學(xué)方法
。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養,后進(jìn)生也有所收獲的效果;
。2)學(xué)生在老師的引導下,通過(guò)閱讀教材,自主學(xué)習、思考、交流、討論和概括,從而完成本節課的教學(xué)目標。
五、學(xué)習方法
。1)主動(dòng)學(xué)習法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認識的同時(shí),
教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識,培養學(xué)生思維想象 的綜合能力。
。2)反饋補救法:在練習中,注意觀(guān)察學(xué)生對學(xué)習的反饋情況,以實(shí)現“培
優(yōu)扶差,滿(mǎn)足不同!
六、教學(xué)思路
具體的思路如下
復習的引入:講一些集合的相關(guān)數學(xué)及相關(guān)數學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數學(xué)史從何使學(xué)生對數學(xué)更加感興趣,有助于上課的效率!因為時(shí)間關(guān)系這里我就不說(shuō)相關(guān)數學(xué)史咯。
一、 引入課題
軍訓前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓動(dòng)員;試問(wèn)這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習一個(gè)新的概念——集合,即是一些研究對象的總體。
二、 正體部分
學(xué)生閱讀教材,并思考下列問(wèn)題:
。1)集合有那些概念?
。2)集合有那些符號?
。3)集合中元素的特性是什么?
。4)如何給集合分類(lèi)?
(一)集合的有關(guān)概念
。1)對象:我們可以感覺(jué)到的客觀(guān)存在以及我們思想中的事物或抽象符號,
都可以稱(chēng)作對象.
。2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說(shuō)這個(gè)整體是由
這些對象的全體構成的集合.
。3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素.
集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、??元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、??
1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,
對學(xué)生的例子予以討論、點(diǎn)評,進(jìn)而講解下面的問(wèn)題。
2、元素與集合的關(guān)系
。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A
。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作a?A
要注意“∈”的方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě). (舉例)
集合A={3,4,6,9}a=2 因此我們知道a?A
3、集合中元素的特性
。1)確定性:給定一個(gè)集合,任何對象是不是這個(gè)集合的元素是確定的了.
。2)互異性:集合中的元素一定是不同的.
。3)無(wú)序性:集合中的元素沒(méi)有固定的順序.
4、集合分類(lèi)
根據集合所含元素個(gè)屬不同,可把集合分為如下幾類(lèi):
。1)把不含任何元素的集合叫做空集Ф
。2)含有有限個(gè)元素的集合叫做有限集
。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集
注:應區分?,{?},{0},0等符號的含義
5、常用數集及其表示方法
。1)非負整數集(自然數集):全體非負整數的集合.記作N
。2)正整數集:非負整數集內排除0的集.記作N*或N+
。3)整數集:全體整數的集合.記作Z
。4)有理數集:全體有理數的集合.記作Q
。5)實(shí)數集:全體實(shí)數的集合.記作R
注:(1)自然數集包括數0.
。2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排
除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*
(二)集合的表示方法
我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。
。1) 列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
例1.(課本例1)
思考2,引入描述法
說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。
。2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號{}內。 具體方法:在大括號內先寫(xiě)上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫(huà)一條豎線(xiàn),在豎線(xiàn)后寫(xiě)出這個(gè)集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2.(課本例2)
說(shuō)明:(課本P5最后一段)
思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數}。下列寫(xiě)法{實(shí)數集},{R}也是錯誤的。
說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應該根據具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。
(三)課堂練習(課本P6練習)
三、 歸納小結與作業(yè)
本節課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結合實(shí)例對集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書(shū)面作業(yè):習題1.1,第1- 4題
高中數學(xué)說(shuō)課稿 篇2
一、說(shuō)教材
1、 教材的地位和作用
《集合的概念》是人教版第一章的內容(中職數學(xué))。本節課的主要內容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數學(xué)課本中已現了一些數和點(diǎn)的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數學(xué)中的含義,集合是一個(gè)基礎性的概念,也是也是中職數學(xué)的開(kāi)篇,是我們后續學(xué)習的重要工具,如:用集合的語(yǔ)言表示函數的定義域、值域、方程與不等式的解集,曲線(xiàn)上點(diǎn)的集合等。通過(guò)本章節的學(xué)習,能讓學(xué)生領(lǐng)會(huì )到數學(xué)語(yǔ)言的簡(jiǎn)潔和準確性,幫助學(xué)生學(xué)會(huì )用集合的語(yǔ)言描述客觀(guān),發(fā)展學(xué)生運用數學(xué)語(yǔ)言交流的能力。
2、 教學(xué)目標
。1)知識目標:a、通過(guò)實(shí)例了解集合的含義,理解集合以及有關(guān)概念;
b、初步體會(huì )元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。
。2)能力目標:a、讓學(xué)生感知數學(xué)知識與實(shí)際生活得密切聯(lián)系,培養學(xué)生解決實(shí)際的能力;
b、學(xué)會(huì )借助實(shí)例分析,探究數學(xué)問(wèn)題,發(fā)展學(xué)生的觀(guān)察歸納能力。
。3)情感目標:a、通過(guò)聯(lián)系生活,提高學(xué)生學(xué)習數學(xué)的積極性,形成積極的學(xué)習態(tài)度;
b、通過(guò)主動(dòng)探究,合作交流,感受探索的樂(lè )趣和成功的體驗,體會(huì )數學(xué)的理性和嚴謹。
3、重點(diǎn)和難點(diǎn)
重點(diǎn):集合的概念,元素與集合的關(guān)系。
難點(diǎn):準確理解集合的概念。
二、學(xué)情分析(說(shuō)學(xué)情)
對于中職生來(lái)說(shuō),學(xué)生的數學(xué)基礎相對薄弱,他們還沒(méi)具備一定的觀(guān)察、分析理解、解決實(shí)際問(wèn)題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數學(xué)的自信心不強,學(xué)習積極性不高,有厭學(xué)情緒。
三、說(shuō)教法
針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習興趣。在創(chuàng )設情境認知策略上給予適當的點(diǎn)撥和引導,引導學(xué)生主動(dòng)思、交流、討論,提出問(wèn)題。在此基礎上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數學(xué)學(xué)習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。
四、學(xué)習指導(說(shuō)學(xué)法)
教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì )學(xué)是目的,因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。根據數學(xué)的特點(diǎn)這節課主要是教學(xué)生動(dòng)腦思考、多訓練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機會(huì ),增強了參與的意識,教學(xué)生獲取知識的途徑,思考問(wèn)題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達到預期的教學(xué)目的和效果。
五、教學(xué)過(guò)程
1、引入新課:
a、創(chuàng )設情境,揭示本課主題,同時(shí)對集合的整體性有個(gè)初步的感性認識。
b、介紹集合論的創(chuàng )始者康托爾
2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現有的認知水平, 以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng )造出一種自然和諧的氛圍,充分調動(dòng)學(xué)生的學(xué)習熱情接待探究過(guò)程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導學(xué)生尋找實(shí)例中的共同特征,培養學(xué)生觀(guān)察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。
3、集合的概念,本課的重點(diǎn)。結合探究中的實(shí)例,讓學(xué)生說(shuō)出集合和元素各是什么?知識的呈現由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問(wèn)題中的集合和元素為后面學(xué)習兩者間的關(guān)系做好鋪墊。
教師在這一環(huán)節做好學(xué)習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。
4、 熟悉鞏固集合的概念通過(guò)例題,練習、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。
5、 集合的符號記法,為本節重點(diǎn)做好鋪墊。
6、 從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語(yǔ)言描述,如何用數學(xué)語(yǔ)言描述,給出元素與集合關(guān)系符號表示,在這個(gè)環(huán)節教師適當引導學(xué)生積極主動(dòng)參與到知識逐步形成過(guò)程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習指導:⑴集合元素的確定。⑵理解兩符號的含義。
7、 思考交流本課的重要環(huán)節在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過(guò)自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達自己見(jiàn)解的能力。
8、 從所舉的例子中抽象出數集的概念,并給出常見(jiàn)數集的記法。
9、 學(xué)生練習:通過(guò)練習,識記常見(jiàn)數集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。
10、知識的實(shí)際應用:
問(wèn)題不難,落實(shí)課本能力目標,培養學(xué)生運用數學(xué)的意識和能力初步培養學(xué)生應用集合的眼光觀(guān)看世界。
11、課堂小節
以學(xué)生小節為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認識到要學(xué)會(huì )梳理所學(xué)內容,要學(xué)會(huì )總結反思,使學(xué)生的認識進(jìn)一步升華,培養學(xué)生的鬼納總結能力。
六、評價(jià)
教學(xué)評價(jià)的及時(shí)能有效調動(dòng)課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著(zhù)積極作用,教學(xué)過(guò)程遵重學(xué)生之間的差異培養學(xué)生應用集合的眼光看研究對象,注重過(guò)程評價(jià)與多元評價(jià)將教學(xué)評價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節。
七、教學(xué)反思
1、 通過(guò)現實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學(xué)生理解接受。
2、 啟發(fā)探究教學(xué),營(yíng)造學(xué)生的學(xué)習氛圍,培養學(xué)生自主學(xué)習,合作交流的能力。
八、板書(shū)設計
高中數學(xué)說(shuō)課稿 篇3
今天我說(shuō)課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對本課的教學(xué)設計進(jìn)行說(shuō)明。
一、說(shuō)教材
1、本節在教材中的地位和作用:
本節是棱柱的后續內容,又是學(xué)習球的必要基礎。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎知識,同時(shí)培養學(xué)生猜想、類(lèi)比、比較、轉化的能力。著(zhù)名的生物學(xué)家達爾文說(shuō):“最有價(jià)值的知識是關(guān)于方法和能力的知識”,因此,應該利用這節課培養學(xué)生學(xué)習方法、提高學(xué)習能力。
2. 教學(xué)目標確定:
(1)能力訓練要求
、偈箤W(xué)生了解棱錐及其底面、側面、側棱、頂點(diǎn)、高的概念。
、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標
、倥囵B學(xué)生善于通過(guò)觀(guān)察分析實(shí)物形狀到歸納其性質(zhì)的能力。
、谔岣邔W(xué)生對事物的感性認識到理性認識的能力。
、叟囵B學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀(guān)點(diǎn)。
3. 教學(xué)重點(diǎn)、難點(diǎn)確定:
重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點(diǎn):培養學(xué)生善于比較,從比較中發(fā)現事物與事物的區別。
二、說(shuō)教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標志,以啟迪學(xué)生思維,培養學(xué)生創(chuàng )新能力為核心”。
在教學(xué)中根據高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設置一些啟發(fā)性題目,采用啟發(fā)式誘導法,講練結合,發(fā)揮教師主導作用,體現學(xué)生主體地位。
2、教學(xué)手段:
根據《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節課概念性強,思維量大,整節課以啟發(fā)學(xué)生觀(guān)察思考、分析討論為主,采用“多媒體引導點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學(xué)生沿著(zhù)積極的思維方向,逐步達到即定的教學(xué)目標,發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識,掌握規律、主動(dòng)發(fā)現、積極探索。
三、說(shuō)學(xué)法:
這節課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發(fā)學(xué)生反復思考,不斷內化成為自己的認知結構。
四、 學(xué)程序:
[復習引入新課]
1.棱柱的性質(zhì):
。1)側棱都相等,側面是平行四邊形
。2)兩個(gè)底面與平行于底面的截面是全等的多邊形
。3)過(guò)不相鄰的兩條側棱的截面是平行四邊形
2.幾個(gè)重要的四棱柱:
平行六面體、直平行六面體、長(cháng)方體、正方體
思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì )是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
。1).棱錐及其底面、側面、側棱、頂點(diǎn)、高、對角面的概念
。2).棱錐的表示方法、分類(lèi)
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:
如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
、俑鱾壤庀嗟,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;
棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形
引申:
、僬忮F的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
(3)正棱錐的`各元素間的關(guān)系
下面我們結合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。
引申:
、儆^(guān)察圖中三棱錐S-OBM的側面三角形狀有何特點(diǎn)?
。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)
、谌舴謩e假設正棱錐的高SO= h,斜高SM= h’,底面邊長(cháng)的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過(guò)三角形得出以上各元素間的關(guān)系式。
。ㄕn后思考題)
[例題分析]
例1.若一個(gè)正棱錐每一個(gè)側面的頂角都是600,則這個(gè)棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
。ù鸢福篋)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過(guò)SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。
﹙解析及圖略﹚
例3.已知正四棱錐的棱長(cháng)和底面邊長(cháng)均為a,求:
。1)側面與底面所成角α的余弦(2)相鄰兩個(gè)側面所成角β的余弦
﹙解析及圖略﹚
[課堂練習]
1、 知一個(gè)正六棱錐的高為h,側棱為L(cháng),求它的底面邊長(cháng)和斜高。
﹙解析及圖略﹚
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結]
一:棱錐的基本概念及表示、分類(lèi)
二:棱錐的性質(zhì)
截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質(zhì)
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
。2)棱錐的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形
引申: ①正棱錐的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
、壅忮F中各元素間的關(guān)系
[課后作業(yè)]
1:課本P52 習題9.8 : 2、 4
2:課時(shí)訓練:訓練一
高中數學(xué)說(shuō)課稿 篇4
一、教學(xué)背景分析
1、教材結構分析
《圓的方程》安排在高中數學(xué)第二冊(上)第七章第六節。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著(zhù)廣泛的應用。圓的方程屬于解析幾何學(xué)的基礎知識,是研究二次曲線(xiàn)的開(kāi)始,對后續直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內容的學(xué)習,無(wú)論在知識上還是方法上都有著(zhù)積極的意義,所以本節內容在整個(gè)解析幾何中起著(zhù)承前啟后的作用。
2、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎上進(jìn)行研究的。但由于學(xué)生學(xué)習解析幾何的時(shí)間還不長(cháng)、學(xué)習程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習過(guò)程中難免會(huì )出現困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學(xué)生已有的認知結構和心理特征,我制定如下教學(xué)目標:
3、教學(xué)目標
(1) 知識目標:①掌握圓的標準方程;
、跁(huì )由圓的標準方程寫(xiě)出圓的半徑和圓心坐標,能根據條件寫(xiě)出圓的標準方程;
、劾脠A的標準方程解決簡(jiǎn)單的實(shí)際問(wèn)題。
(2) 能力目標:①進(jìn)一步培養學(xué)生用代數方法研究幾何問(wèn)題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W(xué)生用數學(xué)的意識。
(3) 情感目標:①培養學(xué)生主動(dòng)探究知識、合作交流的意識;
、谠隗w驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣。
根據以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4、教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標準方程的求法及其應用。
(2)難點(diǎn): ①會(huì )根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題。
為使學(xué)生能達到本節設定的教學(xué)目標,我再從教法和學(xué)法上進(jìn)行分析:
二、教法學(xué)法分析
1、教法分析 為了充分調動(dòng)學(xué)生學(xué)習的積極性,本節課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區上。另外我恰當的利用多媒體課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng )設實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習興趣,又直觀(guān)的引導了學(xué)生建模的過(guò)程。
2、學(xué)法分析 通過(guò)推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過(guò)求圓的標準方程,理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。通過(guò)應用圓的標準方程,熟悉用待定系數法求的過(guò)程。
下面我就對具體的教學(xué)過(guò)程和設計加以說(shuō)明:
三、教學(xué)過(guò)程與設計
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅動(dòng)的,共分為五個(gè)環(huán)節:
創(chuàng )設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設計意圖。
首先:縱向敘述教學(xué)過(guò)程
(一)創(chuàng )設情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?
通過(guò)對這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(cháng)度轉移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結論的同時(shí)學(xué)生自己推導出了圓心在原點(diǎn),半徑為4的圓的標準方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng )設問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應用于實(shí)際,激發(fā)了學(xué)生的學(xué)習興趣和學(xué)習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過(guò)對問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節。
(二)深入探究——獲得新知
問(wèn)題二 1、根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2、如果圓心在,半徑為時(shí)又如何呢?
這一環(huán)節我首先讓學(xué)生對問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標準方程后,引導學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預設了三種方法等待著(zhù)學(xué)生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個(gè)應用平臺,進(jìn)入第三環(huán)節。
(三)應用舉例——鞏固提高
I、直接應用 內化新知
問(wèn)題三 1、寫(xiě)出下列各圓的標準方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。
2、寫(xiě)出圓的圓心坐標和半徑。
我設計了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準備。
II、靈活應用 提升能力
問(wèn)題四 1、求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。
2、求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。
3、已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?
我設計了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎,學(xué)生會(huì )很快求出半徑,根據圓心坐標寫(xiě)出圓的標準方程。第二個(gè)小題有些困難,需要引導學(xué)生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個(gè)獨立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預設了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng )設了空間。最后我讓學(xué)生由第三小題的結論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現的過(guò)程,使探究氣氛達到高潮。
III、實(shí)際應用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(cháng)度(精確到0。01m)。
我選用了教材的例3,它是待定系數法求出圓的三個(gè)參數的又一次應用,同時(shí)也與引例相呼應,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養了學(xué)生建模的習慣和用數學(xué)的意識。
(四)反饋訓練——形成方法
問(wèn)題六 1、求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標準方程。
2、求圓過(guò)點(diǎn)的切線(xiàn)方程。
3、求圓過(guò)點(diǎn)的切線(xiàn)方程。
接下來(lái)是第四環(huán)節——反饋訓練。這一環(huán)節中,我設計三個(gè)小題作為鞏固性訓練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習數學(xué)的樂(lè )趣,成功的喜悅,找到自信,增強學(xué)習數學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導學(xué)生用數形結合的思想,結合初中已有的圓的知識進(jìn)行判斷,這樣的設計對培養學(xué)生思維的嚴謹性具有良好的效果。
(五)小結反思——拓展引申
1、課堂小結
把圓的標準方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結,提煉數形結合的思想和待定系數的方法
、賵A心為,半徑為r 的圓的標準方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標準方程為:。
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。
2、分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過(guò)圓上一點(diǎn)的切線(xiàn)方程。
3、激發(fā)新疑
問(wèn)題七 1、把圓的標準方程展開(kāi)后是什么形式?
2、方程表示什么圖形?
在本課的結尾設計這兩個(gè)問(wèn)題,作為對這節課內容的鞏固與延伸,讓學(xué)生體會(huì )知識的起點(diǎn)與終點(diǎn)都蘊涵著(zhù)問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設計意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設計:
橫向闡述教學(xué)設計
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
求圓的標準方程既是本節課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設了由淺入深的學(xué)習環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個(gè)參數的重要性,自然形成待定系數法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應用問(wèn)題,這是學(xué)生固有的難題,主要是因為應用問(wèn)題的題目冗長(cháng),學(xué)生很難根據問(wèn)題情境構建數學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實(shí)際問(wèn)題的一般模式,并嘗試應用該模式分析和解決第二個(gè)應用問(wèn)題——問(wèn)題五。這樣的設計,使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。
(二)學(xué)生主體 教師主導 探究主線(xiàn)
本節課的設計用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標準方程的推導到應用都是在問(wèn)題的指引、我的指導下,由學(xué)生探究完成的。另外,我重點(diǎn)設計了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗了科學(xué)研究和真理發(fā)現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅動(dòng)下,高效的完成本節的學(xué)習任務(wù)。
(三)培養思維 提升能力 激勵創(chuàng )新
為了培養學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設計了兩次由特殊到一般的學(xué)習思路,培養學(xué)生的歸納概括能力。在問(wèn)題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養了學(xué)生的創(chuàng )新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學(xué)預設,具體的教學(xué)過(guò)程還要根據學(xué)生在課堂中的具體情況適當調整,向生成性課堂進(jìn)行轉變。最后我以赫爾巴特的一句名言結束我的說(shuō)課,發(fā)揮我們的創(chuàng )造性,力爭“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
高中數學(xué)說(shuō)課稿 篇5
函數的單調性
今天我說(shuō)課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過(guò)程五方面逐一加以分析和說(shuō)明。
一、說(shuō)教材
1、教材的地位和作用
本節內容選自北師大版高中數學(xué)必修1,第二章第3節。函數是高中數學(xué)的課程,它是描述事物運動(dòng)變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學(xué)習奠定重要基礎。
2、學(xué)情分析
本節課的學(xué)生是高一學(xué)生,他們在初中階段,通過(guò)一次函數、二次函數、反比例函數的學(xué)習已經(jīng)對函數的增減性有了初步的感性認識。在高中階段,用符號語(yǔ)言刻畫(huà)圖形語(yǔ)言,用定量分析解釋定性結果,有利于培養學(xué)生的理性思維,為后續函數的學(xué)習作準備,也為利用倒數研究單調性的相關(guān)知識奠定了基礎。
教學(xué)目標分析
基于以上對教材和學(xué)情的分析以及新課標教學(xué)理念,我將教學(xué)目標分為以下三個(gè)部分:
1.知識與技能(1)理解函數的單調性和單調函數的意義;
。2)會(huì )判斷和證明簡(jiǎn)單函數的單調性。
2.過(guò)程與方法
。1)培養從概念出發(fā),進(jìn)一步研究性質(zhì)的意識及能力;
。2)體會(huì )數形結合、分類(lèi)討論的數學(xué)思想。
3.情感態(tài)度與價(jià)值觀(guān)
由合適的例子引發(fā)學(xué)生探求數學(xué)知識的欲望,突出學(xué)生的主觀(guān)能動(dòng)性,激發(fā)學(xué)生學(xué)習數學(xué)的興趣。
三、教學(xué)重難點(diǎn)分析
通過(guò)以上對教材和學(xué)生的分析以及教學(xué)目標,我將本節課的重難點(diǎn)
重點(diǎn):
函數單調性的概念,判斷和證明簡(jiǎn)單函數的單調性。
難點(diǎn):
1.函數單調性概念的認知
。1)自然語(yǔ)言到符號語(yǔ)言的轉化;
。2)常量到變量的轉化。
2.應用定義證明單調性的代數推理論證。
四、教法與學(xué)法分析
1、教法分析
基于以上對教材、學(xué)情的分析以及新課標的教學(xué)理念,本節課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數學(xué)在生活中的應用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養學(xué)生善于思考的能力。
2、學(xué)法分析
新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會(huì )怎樣學(xué)習,為終生學(xué)習奠定扎實(shí)的基礎。所以本節課我將引導學(xué)生通過(guò)合作交流、自主探索的方法理解函數的單調性及特征。
五、教學(xué)過(guò)程
為了更好的實(shí)現本課的三維目標,并突破重難點(diǎn),我設計以下五個(gè)環(huán)節來(lái)進(jìn)行我的教學(xué)。
。ㄒ唬┲R導入
溫故而知新,我將先從之前學(xué)習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數的圖像,然后讓學(xué)生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過(guò)程中不僅可以檢查學(xué)生掌握基本初等函數圖像的情況,而且符合學(xué)生的認知結構,通過(guò)學(xué)生自主探究,從知識產(chǎn)生、發(fā)展的過(guò)程中構建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習的積極主動(dòng)性。
。ǘ┲v授新課
1.問(wèn)題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個(gè)區間是上升的,在哪個(gè)區間是下降的?
通過(guò)學(xué)生熟悉的圖像,及時(shí)引導學(xué)生觀(guān)察,函數圖像上A點(diǎn)的運動(dòng)情況,引導學(xué)生能用自然語(yǔ)言描述出,隨著(zhù)x增大時(shí)圖像變化規律。讓學(xué)生大膽的去說(shuō),老師逐步修正、完善學(xué)生的說(shuō)法,最后給出正確答案。
2.觀(guān)察函數y=x2隨自變量x變化的情況,設置啟發(fā)式問(wèn)題:
。1)在y軸的右側部分圖象具有什么特點(diǎn)?
。2)如果在y軸右側部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當x1 。3)如何用數學(xué)符號語(yǔ)言來(lái)描述這個(gè)規律? 教師補充:這時(shí)我們就說(shuō)函數y=x2在(0,+∞)上是增函數。 。4)反過(guò)來(lái),如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢? 類(lèi)似地分析圖象在y軸的左側部分。 通過(guò)對以上問(wèn)題的分析,從正、反兩方面領(lǐng)會(huì )函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關(guān)鍵詞,如:區間內,任意,當x1 仿照單調增函數定義,由學(xué)生說(shuō)出單調減函數的定義。 教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個(gè)區間上的局部性質(zhì),也就是說(shuō),一個(gè)函數在不同的區間上可以有不同的單調性。 (我將給出函數y=x2,并畫(huà)出這個(gè)函數的圖像,讓學(xué)生觀(guān)察函數圖像的特點(diǎn),讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個(gè)過(guò)程中,學(xué)生把對圖像的感性認識轉化為了數學(xué)關(guān)系,這種從特殊到一般的學(xué)習過(guò)程有利于學(xué)生對概念的理解) 。ㄈ╈柟叹毩 1練習1:說(shuō)出函數f(x)=的單調區間,并指明在該區間上的單調性。x 練習2:練習2:判斷下列說(shuō)法是否正確 、俣x在R上的函數f(x)滿(mǎn)足f(2)>f(1),則函數是R上的增函數。 、诙x在R上的函數f(x)滿(mǎn)足f(2)>f(1),則函數是R上不是減函數。 1③已知函數y=,因為f(-1) 1我將給出一些具體的函數,如y=,f(x)=3x+2讓學(xué)生說(shuō)出函數的單調區間,并指明在該區間x 上的單調性。通過(guò)這種練習的方式,幫助學(xué)生鞏固對知識的掌握。 。ㄋ模w納總結 我先讓學(xué)生進(jìn)行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進(jìn)行補充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習情況有一定的了解,為下一節課的教學(xué)過(guò)程做好準備。 。ㄎ澹┎贾米鳂I(yè) 必做題:習題2-3A組第2,4,5題。 選做題:習題2-3B組第2題。 新課程理念告訴我們,不同的人在數學(xué)上可以獲得不同的發(fā)展,因此要設計不同程度要求的習題。 二次函數的圖像說(shuō)課稿 今天我說(shuō)課的題目是《二次函數的圖像》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設計五方面逐一加以分析和說(shuō)明。 一、教材分析 教材的地位和作用 本節內容選自北師大版高中數學(xué)必修1,第二章第4.1節。二次函數的圖像在教材中起著(zhù)承上啟下的作用。 學(xué)情分析 本節課的學(xué)生是高一學(xué)生,他們在初中的時(shí)候已經(jīng)學(xué)習過(guò)有關(guān)內容,為本節課的學(xué)習打下了基礎,另一方面,二次函數解析式中的系數由常數轉變?yōu)閰,使學(xué)生對二次函數的圖像由感性認識上升到理性認識,能培養學(xué)生利用數形結合思想解決問(wèn)題的能力。 二、教學(xué)目標分析 基于以上對教材和學(xué)情的分析以及新課標教學(xué)理念,我將教學(xué)目標分為以下三個(gè)部分: 1.知識與技能 理解二次函數中參數a,b,c,h,k對其圖像的影響; 2.過(guò)程與方法 通過(guò)體驗對二次函數圖像平移的研究方法,能遷移到其他函數圖像的研究。 3.情感態(tài)度與價(jià)值觀(guān) 通過(guò)本節的學(xué)習,進(jìn)一步體會(huì )數形結合思想的作用,感受到數學(xué)中數與形的辯證統一。 三、教學(xué)重難點(diǎn)分析 通過(guò)以上對教材和學(xué)生的分析以及教學(xué)目標,我將本節課的重難點(diǎn)確定如下 重點(diǎn): 二次函數圖像的平移變換規律及應用。 難點(diǎn): 探索平移對函數解析式的影響及如何利用平移變換規律求函數解析式,并能把平移變換規律遷移到其他函數。 四、教法與學(xué)法分析 1、教法分析 基于以上對教材、學(xué)情的分析以及新課改的要求,本節課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數學(xué)在生活中的應用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養學(xué)生善于思考的能力。 2、學(xué)法分析 新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會(huì )怎樣學(xué)習,為終生學(xué)習奠定扎實(shí)的基礎。所以本節課我將引導學(xué)生通過(guò)合作交流、自主探索的方法進(jìn)行學(xué)習。 五、教學(xué)過(guò)程 為了更好的實(shí)現本課的三維目標,并突破重難點(diǎn),我將設計以下五個(gè)環(huán)節來(lái)進(jìn)行我的教學(xué)。 。1)知識導入 溫故而知新,我將先從之前學(xué)習的知識引入,給出一些函數,比如y=x2、y=2x2,讓學(xué)生作出這些函數的圖像,然后讓學(xué)生比較這些函數圖像的相同點(diǎn)和不同點(diǎn),由此引入我的新課。一方面讓學(xué)生總結復習已有知識,為后面的學(xué)習做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè )體驗。 。2)講授新課 例1:畫(huà)出函數y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像 讓學(xué)生畫(huà)出他們的圖像并觀(guān)察函數圖像的特點(diǎn),再讓學(xué)生與多媒體課件展示的圖像進(jìn)行對比,得出結論:若二次函數的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。 前面的練習和例題,基本涵蓋了二次函數圖像平移變換的各種情況,啟發(fā)并引導了學(xué)生將實(shí)例的結論進(jìn)行總結,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不為0)的圖像變化過(guò)程,即a>0開(kāi)口向上,a<0開(kāi)口向下;h正左移,h負右移;k正上移,k負下移。在這個(gè)過(guò)程中,學(xué)生把對圖像的感性認識轉化為了數學(xué)關(guān)系,這種從特殊到一般的學(xué)習過(guò)程有利于學(xué)生對概念的理解, 。3)鞏固練習 我將組織學(xué)生進(jìn)行練習,完成課本44頁(yè)1-3題。通過(guò)這種練習的方式,幫助學(xué)生鞏固和加深二次函數中參數對圖像的影響。 。4)歸納總結 我先讓學(xué)生進(jìn)行小結,然后教師進(jìn)行補充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習情況有一定的了解,可以進(jìn)行適當反思,為下一節課的教學(xué)過(guò)程做好準備。 。5)布置作業(yè) 略 【教材分析】 1、本節教材的地位與作用 本節主要研究閉區間上的連續函數最大值和最小值的求法和實(shí)際應用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì )求某些函數的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有最大值和最小值”,以及會(huì )求可導函數的極值之后進(jìn)行學(xué)習的,學(xué)好這一節,學(xué)生將會(huì )求更多的函數的最值,運用本節知識可以解決科技、經(jīng)濟、社會(huì )中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問(wèn)題。這節課集中體現了數形結合、理論聯(lián)系實(shí)際等重要的數學(xué)思想方法,學(xué)好本節,對于進(jìn)一步完善學(xué)生的知識結構,培養學(xué)生用數學(xué)的意識都具有極為重要的意義。 2、教學(xué)重點(diǎn) 會(huì )求閉區間上連續開(kāi)區間上可導的函數的最值。 3、教學(xué)難點(diǎn) 高三年級學(xué)生雖然已經(jīng)具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優(yōu)化解題過(guò)程依據的理解會(huì )有較大的困難,所以這節課的難點(diǎn)是理解確定函數最值的方法。 4、教學(xué)關(guān)鍵 本節課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區間內全部可能的極值點(diǎn)。 【教學(xué)目標】 根據本節教材在高中數學(xué)知識體系中的地位和作用,結合學(xué)生已有的認知水平,制定本節如下的教學(xué)目標: 1、知識和技能目標 。1)理解函數的最值與極值的區別和聯(lián)系。 。2)進(jìn)一步明確閉區間[a,b]上的連續函數f(x),在[a,b]上必有最大、最小值。 。3)掌握用導數法求上述函數的最大值與最小值的方法和步驟。 2、過(guò)程和方法目標 。1)了解開(kāi)區間內的連續函數或閉區間上的不連續函數不一定有最大、最小值。 。2)理解閉區間上的連續函數最值存在的可能位置:極值點(diǎn)處或區間端點(diǎn)處。 。3)會(huì )求閉區間上連續,開(kāi)區間內可導的函數的最大、最小值。 3、情感和價(jià)值目標 。1)認識事物之間的的區別和聯(lián)系。 。2)培養學(xué)生觀(guān)察事物的能力,能夠自己發(fā)現問(wèn)題,分析問(wèn)題并最終解決問(wèn)題。 。3)提高學(xué)生的數學(xué)能力,培養學(xué)生的創(chuàng )新精神、實(shí)踐能力和理性精神。 【教法選擇】 根據皮亞杰的建構主義認識論,知識是個(gè)體在與環(huán)境相互作用的過(guò)程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。 本節課在幫助學(xué)生回顧肯定了閉區間上的連續函數一定存在最大值和最小值之后,引導學(xué)生通過(guò)觀(guān)察閉區間內的連續函數的幾個(gè)圖象,自己歸納、總結出函數最大值、最小值存在的可能位置,進(jìn)而探索出函數最大值、最小值求解的方法與步驟,并優(yōu)化解題過(guò)程,讓學(xué)生主動(dòng)地獲得知識,老師只是進(jìn)行適當的引導,而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節課主要選擇以合作探究式教學(xué)法組織教學(xué)。 【學(xué)法指導】 對于求函數的最值,高三學(xué)生已經(jīng)具備了良好的知識基礎,剩下的問(wèn)題就是有沒(méi)有一種更一般的方法,能運用于更多更復雜函數的求最值問(wèn)題?教學(xué)設計中注意激發(fā)起學(xué)生強烈的求知欲望,使得他們能積極主動(dòng)地觀(guān)察、分析、歸納,以形成認識,參與到課堂活動(dòng)中,充分發(fā)揮他們作為認知主體的作用。 【教學(xué)過(guò)程】 本節課的教學(xué),大致按照“創(chuàng )設情境,鋪墊導入——合作學(xué)習,探索新知——指導應用,鼓勵創(chuàng )新——歸納小結,反饋回授”四個(gè)環(huán)節進(jìn)行組織。 一、教材分析 。ㄒ唬┑匚慌c作用 《冪函數》選自高一數學(xué)新教材必修1第2章第3節。是基本初等函數之一,它不僅有著(zhù)廣泛的實(shí)際應用,而且起著(zhù)承前啟后的作用。從教材的整體安排看,學(xué)習了解冪函數是為了讓學(xué)生進(jìn)一步獲得比較系統的函數知識和研究函數的方法,為今后學(xué)習三角函數等其他函數打下良好的基礎.在初中曾經(jīng)研究過(guò)y=x,y=x2,y=x—1三種冪函數。這節內容,是對初中有關(guān)內容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節內容之后, 將把指數函數,對數函數,冪函數科學(xué)的組織起來(lái),體現充滿(mǎn)在整個(gè)數學(xué)中的組織化,系統化的精神。讓學(xué)生了解系統研究一類(lèi)函數的方法.這節課要特別讓學(xué)生去體會(huì )研究的方法,以便能將該方法遷移到對其他函數的研究. 。ǘ⿲W(xué)情分析 。1)學(xué)生已經(jīng)接觸的函數,確立利用函數的定義域、值域、奇偶性、單調性研究一個(gè)函數的意識 ,已初步形成對數學(xué)問(wèn)題的合作探究能力。 。2)雖然前面學(xué)生已經(jīng)學(xué)會(huì )用描點(diǎn)畫(huà)圖的方法來(lái)繪制指數函數,對數函數圖像,但是對于冪函數的圖像畫(huà)法仍然缺乏感性認識。 。3)學(xué)生層次參差不齊,個(gè)體差異比較明顯。 二、目標分析 新課標指出“三維目標”是一個(gè)密切聯(lián)系的有機整體。 。ㄒ唬┙虒W(xué)目標 。1)知識與技能 、偈箤W(xué)生理解冪函數的概念,會(huì )畫(huà)冪函數的圖象。 、谧寣W(xué)生結合這幾個(gè)冪函數的圖象,理解冪函圖象的變化情況和性質(zhì)。 。2)過(guò)程與方法 、僮寣W(xué)生通過(guò)觀(guān)察、總結冪函數的性質(zhì),培養學(xué)生概括抽象和識圖能力。 、谑箤W(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。 。3)情感態(tài)度與價(jià)值觀(guān) 、偻ㄟ^(guò)熟悉的例子讓學(xué)生消除對冪函數的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習興趣。 、诶枚嗝襟w,了解冪函數圖象的變化規律,使學(xué)生認識到現代技術(shù)在數學(xué)認知過(guò)程中的作用,從而激發(fā)學(xué)生的學(xué)習欲望。 、叟囵B學(xué)生從特殊歸納出一般的意識,培養學(xué)生利用圖像研究函數奇偶性的能力。并引導學(xué)生發(fā)現數學(xué)中的對稱(chēng)美,讓學(xué)生在畫(huà)圖與識圖中獲得學(xué)習的快樂(lè )。 。ǘ┲攸c(diǎn)難點(diǎn) 根據我對本節課的內容的理解,我將重難點(diǎn)定為: 重點(diǎn):從五個(gè)具體的冪函數中認識概念和性質(zhì) 難點(diǎn):從冪函數的圖象中概括其性質(zhì)。 三、教法、學(xué)法分析 。ㄒ唬┙谭 教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,教師要善于啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性,要有效地滲透數學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法。 1、引導發(fā)現比較法 因為有五個(gè)冪函數,所以可先通過(guò)學(xué)生動(dòng)手畫(huà)出函數的圖象,觀(guān)察它們的解析式和圖象并從式的角度和形的角度發(fā)現異同,并進(jìn)行比較,從而更深刻地領(lǐng)會(huì )冪函數概念以及五個(gè)冪函數的圖象與性質(zhì)。 2、借助信息技術(shù)輔助教學(xué) 由于多媒體信息技術(shù)能具有形象生動(dòng)易吸引學(xué)生注意的特點(diǎn),故此,可用多媒體制作引入情境,將學(xué)生引到這節課的學(xué)習中來(lái)。再利用《幾何畫(huà)板》畫(huà)出五個(gè)冪函數的圖象,為學(xué)生創(chuàng )設豐富的數形結合環(huán)境,幫助學(xué)生更深刻地理解冪函數概念以及在冪函數中指數的變化對函數圖象形狀和單調性的影響,并由此歸納冪函數的性質(zhì)。 3、練習鞏固討論學(xué)習法 這樣更能突出重點(diǎn),解決難點(diǎn),使學(xué)生既能夠進(jìn)行深入地獨立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來(lái)學(xué)生對這五個(gè)冪函數領(lǐng)會(huì )得會(huì )更加深刻,在這個(gè)過(guò)程中學(xué)生們分析問(wèn)題和解決問(wèn)題的能力得到進(jìn)一步的提高,班級整體學(xué)習氛氛圍也變得更加濃厚。 。ǘ⿲W(xué)法 本節課主要是通過(guò)對冪函數模型的特征進(jìn)行歸納,動(dòng)手探索冪函數的圖像,觀(guān)察發(fā)現其有關(guān)性質(zhì),再改變觀(guān)察角度發(fā)現奇偶函數的特征。重在動(dòng)手操作、觀(guān)察發(fā)現和歸納的過(guò)程。 由于冪函數在第一象限的特征是學(xué)生不容易發(fā)現的問(wèn)題,因此在教學(xué)過(guò)程中引導學(xué)生將抽象問(wèn)題具體化,借助多媒體進(jìn)行動(dòng)態(tài)演化,以形成較完整的知識結構。 四、教學(xué)過(guò)程分析 。ㄒ唬┙虒W(xué)過(guò)程設計 。1)創(chuàng )設情境,提出問(wèn)題。 新課標指出:“應該讓學(xué)生在具體生動(dòng)的情境中學(xué)習數學(xué)”。在本節課的教學(xué)中,從我們熟悉的生活情境中提出問(wèn)題,問(wèn)題的設計改變了傳統目的明確的設計方式,給學(xué)生最大的思考空間,充分體現學(xué)生主體地位。 問(wèn)題1:下列問(wèn)題中的函數各有什么共同特征?是否為指數函數? 由學(xué)生討論,總結,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1 這時(shí)學(xué)生觀(guān)察可能有些困難,老師提示可以用x表示自變量,用y表示函數值,上述函數式變成: 都是自變量的若干次冪的形式。都是形如 的函數。 揭示課題:今天這節課,我們就來(lái)研究:冪函數 。ㄒ唬┱n堂主要內容 。1)冪函數的概念 、賰绾瘮档亩x。 一般地,函數 叫做冪函數,其中x 是自變量,a是常數。 、趦绾瘮蹬c指數函數之間的區別。 冪函數——底數是自變量,指數是常數; 指數函數——指數是自變量,底數是常數。 。2)幾個(gè)常見(jiàn)冪函數的圖象和性質(zhì) 由同學(xué)們畫(huà)出下列常見(jiàn)的冪函數的圖象,并根據圖象將發(fā)現的性質(zhì)填入表格 根據上表的內容并結合圖象,總結函數的共同性質(zhì)。讓學(xué)生交流,老師結合學(xué)生的回答組織學(xué)生總結出性質(zhì)。 以上問(wèn)題的設計意圖:數形結合是一個(gè)重要的數學(xué)思想方法,它包含以數助形,和以形助數的思想。通過(guò)問(wèn)題設計讓學(xué)生著(zhù)手實(shí)際,借助行的生動(dòng)來(lái)闡明冪函數的性質(zhì)。 教師講評:冪函數的性質(zhì). 、偎械膬绾瘮翟冢0,+∞)上都有定義,并且圖像都過(guò)點(diǎn)(1,1). 、谌绻鸻>0,則冪函數的圖像通過(guò)原點(diǎn),并在區間〔0,+∞)上是增函數. 、廴绻鸻<0,則冪函數在(0,+∞)上是減函數,在第一象限內,當x從右邊趨向于原點(diǎn)時(shí),圖像在y軸右方無(wú)限地趨近y軸;當x趨向于+∞時(shí),圖像在x軸上方無(wú)限地趨近x軸. 、墚攁為奇數時(shí),冪函數為奇函數;當a為偶數時(shí),冪函數為偶函數。 以問(wèn)題設計為主,通過(guò)問(wèn)題,讓學(xué)生由已經(jīng)學(xué)過(guò)的指數函數,對數函數,描點(diǎn)作圖得到五個(gè)冪函數的圖像,但是我們應該知道繪制冪函數的圖像比繪制指數函數和對數函數的圖像更為復雜,因為冪函數隨著(zhù)冪指數的輕微變化會(huì )出現較大的變化,因此,在描點(diǎn)作圖之前,應引導學(xué)生對幾個(gè)特殊的冪函數的性質(zhì)先進(jìn)行初步的探究,如分析函數的定義域,奇偶性等,在根據研究結果和描點(diǎn)作圖畫(huà)出圖像,讓學(xué)生觀(guān)察所作圖像特征,并由圖象特征得到相應的函數性質(zhì),讓學(xué)生充分體會(huì )系統的研究方法。同時(shí)學(xué)生對于歸納性質(zhì)這一環(huán)節相對指數函數,對數函數的性質(zhì),學(xué)生會(huì )有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認識,而不必在一般冪函數上作過(guò)多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。 通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識識的再次深化。 。3)當堂訓練,鞏固深化 例題和練習題的選取應結合學(xué)生認知探究,鞏固本節課的重點(diǎn)知識,并能用知識加以運用。本節課選取主要選取了兩道例題。 例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數。這題先從“形”的角度判斷函數的單調區間和單調性,再用到定義從“數”的角度對函數的單調性進(jìn)行推理論證,培養學(xué)生的數形結合的數學(xué)思想和解決問(wèn)題的專(zhuān)業(yè)素養。 例2是補充例題,主要培養學(xué)生根據體例構造出函數,并利用函數的性質(zhì)來(lái)解決問(wèn)題的能力,從而加深學(xué)生對冪函數及其性質(zhì)的理解。注意:由于學(xué)生對冪函數還不是很熟悉,所以在講評中要刻意體現出冪函數y=x1。3是增函數與y=x—5/4的圖像的畫(huà)法,即再一次讓學(xué)生體會(huì )根據解析式來(lái)畫(huà)圖像解題這一基本思路 。4)小結歸納,回顧反思。 小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。我設計了三個(gè)問(wèn)題: 。1)通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識? 。2)通過(guò)本節課的學(xué)習,你最大的體驗是什么? 。3)通過(guò)本節課的學(xué)習,你掌握了哪些技能? 。ǘ┳鳂I(yè)設計 作業(yè)分為必做題和選做題,必做題對本節課學(xué)生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習氛圍的形成. 我設計了以下作業(yè): 。1)必做題 。2)選做題 。ㄈ┌鍟(shū)設計 板書(shū)要基本體現整堂課的內容與方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。 五、評價(jià)分析 學(xué)生學(xué)習的結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對冪函數是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。 謝謝! 1、教學(xué)目標: 一、借助單位圓理解任意角的三角函數的定義。 二、根據三角函數的定義,能夠判斷三角函數值的符號。 三、通過(guò)學(xué)生積極參與知識的"發(fā)現"與"形成"的過(guò)程,培養合情猜測的能力,從中感悟數學(xué)概念的嚴謹性與科學(xué)性。 四、讓學(xué)生在任意角三角函數概念的形成過(guò)程中,體會(huì )函數思想,體會(huì )數形結合思想。 2、教學(xué)重點(diǎn)與難點(diǎn): 重點(diǎn):任意角的正弦、余弦、正切的定義;三角函數值的符號。 難點(diǎn):任意角的三角函數概念的建構過(guò)程。 授課過(guò)程: 一、引入 在我們的現實(shí)世界中的許多運動(dòng)變化都有循環(huán)往復、周而復始的現象,這種變化規律稱(chēng)為周期性。如何用數學(xué)的方法來(lái)刻畫(huà)這種變化?從這節課開(kāi)始,我們要來(lái)學(xué)習刻畫(huà)這種規律的數學(xué)模型之一――三角函數。 二、創(chuàng )設情境 三角函數是與角有關(guān)的函數,在學(xué)習任意角概念時(shí),我們知道在直角坐標系中研究角,可以給學(xué)習帶來(lái)許多方便,比如我們可以根據角終邊的位置把它們進(jìn)行歸類(lèi),現在大家考慮:若在直角坐標系中來(lái)研究銳角,則銳角三角函數又可怎樣定義呢? 學(xué)生情況估計:學(xué)生可能會(huì )提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點(diǎn)P的坐標。 問(wèn)題: 1、銳角三角函數能否表示成第二種比值方式? 2、點(diǎn)P能否取在終邊上的其它位置?為什么? 3、點(diǎn)P在哪個(gè)位置,比值會(huì )更簡(jiǎn)潔?(引出單位圓的定義)。指出sina=mP的函數依舊表示一個(gè)比值,不過(guò)其分母為1而已。 練習:計算的各三角函數值。 三、任意角的三角函數的定義 角的概念已經(jīng)推廣道了任意角,那么三角函數的定義在任意角的范圍里改怎么定義呢? 嘗試:根據銳角三角函數的定義,你能?chē)L試著(zhù)給出任意角三角函數的定義嗎? 評價(jià)學(xué)生給出的定義。給出任意角三角函數的定義。 四、解析任意角三角函數的定義 三角函數首先是函數。你能從函數觀(guān)點(diǎn)解析三角函數嗎?(定義域) 對于確定的角a,上面三個(gè)函數值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點(diǎn)的坐標或坐標的比值為函數值的函數,我們將它們統稱(chēng)為三角函數。由于角的集合和實(shí)數集之間可以建立一一對應的關(guān)系,三角函數可以看成是自變量為實(shí)數的函數。 五、三角函數的應用。 1、已知角,求a的三角函數值。 2、已知角a終邊上的一點(diǎn)P(-3,-4),求各三角函數值。 以上兩道書(shū)上的例題,讓學(xué)生自習看書(shū),學(xué)生看書(shū)的同時(shí),老師提出問(wèn)題: 1、已知角如何求三角函數值? 2、利用角a的終邊上任意一點(diǎn)的坐標也可以定義三角函數,你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點(diǎn)?) 3、變式:已知角a終邊上點(diǎn)P(-3b,-4b),(b0),求角a的各三角函數值。 4、探究:三角函數的值在各象限的符號。 六、小結及作業(yè) 教案設計說(shuō)明: 新教材的教學(xué)理念之一是讓學(xué)生去體驗新知識的發(fā)生過(guò)程,這節《任意角三角函數》的教案,主要圍繞這一點(diǎn)來(lái)設計。 首先,角的概念推廣了,那么銳角三角函數的定義是否也該推廣到任意角的三角函數的定義呢?通過(guò)這個(gè)問(wèn)題,讓學(xué)生體會(huì )到新知識的發(fā)生是可能的,自然的。 其次,到底應該怎樣去合理定義任意角的三角函數呢?讓學(xué)生提出自己的想法,同時(shí)讓學(xué)生去辨證這個(gè)想法是否是科學(xué)的?因為一個(gè)概念是嚴謹的,科學(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數的定義有所沖突。在這個(gè)立-破的過(guò)程中,讓學(xué)生去體驗一個(gè)新的數學(xué)概念可能是如何形成,在形成的過(guò)程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數概念的理解。 再次,讓學(xué)生充分體會(huì )在任意角三角函數定義的推廣中,是如何將直角三角形這個(gè)"形"的問(wèn)題,轉換到直角坐標系下點(diǎn)的坐標這個(gè)"數"的過(guò)程的。培養數形結合的思想。 一、說(shuō)教材: 1、教材的地位與作用 導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節課里學(xué)生對導數的概念已經(jīng)有了充分的認識,本節課教材從形的角度即割線(xiàn)入手,用形象直觀(guān)的“逼近”方法定義了切線(xiàn),獲得導數的幾何意義,更有利于學(xué)生理解導數概念的本質(zhì)內涵. 這節課可以利用幾何畫(huà)板進(jìn)行動(dòng)畫(huà)演示,讓學(xué)生通過(guò)觀(guān)察、思考、發(fā)現、思維、運用形成完整概念. 通過(guò)本節的學(xué)習,可以幫助學(xué)生更好的體會(huì )導數是研究函數的單調性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內容。 2、教學(xué)的重點(diǎn)、難點(diǎn)、關(guān)鍵 教學(xué)重點(diǎn):導數的幾何意義、切線(xiàn)方程的求法以及“數形結合,逼近”的思想方法。 教學(xué)難點(diǎn):理解導數的幾何意義的本質(zhì)內涵 1) 從割線(xiàn)到切線(xiàn)的過(guò)程中采用的逼近方法; 2) 理解導數的概念,將多方面的意義聯(lián)系起來(lái),例如,導數反映了函數f(x)在點(diǎn)x附近的變化快慢,導數是曲線(xiàn)上某點(diǎn)切線(xiàn)的斜率,等等. 二、說(shuō)教學(xué)目標: 根據新課程標準的要求、學(xué)生的認知水平,確定教學(xué)目標如下: 1、知識與技能 : 通過(guò)實(shí)驗探求理解導數的幾何意義,理解曲線(xiàn)在一點(diǎn)的切線(xiàn)的概念,會(huì )求簡(jiǎn)單函數在某點(diǎn)的切線(xiàn)方程。 過(guò)程與方法: 經(jīng)歷切線(xiàn)定義的形成過(guò)程,培養學(xué)生分析、抽象、概括等思維能力;體會(huì )導數的思想及內涵,完善對切線(xiàn)的認識和理解 通過(guò)逼近、數形結合思想的具體運用,使學(xué)生達到思維方式的遷移,了解科學(xué)的思維方法。 3、情感態(tài)度與價(jià)值觀(guān): 滲透逼近、數形結合、以直代曲等數學(xué)思想,激發(fā)學(xué)生學(xué)習興趣,引導學(xué)生領(lǐng)悟特殊與一般、有限與無(wú)限,量變與質(zhì)變的辯證關(guān)系,感受數學(xué)的統一美,意識到數學(xué)的應用價(jià)值 三、說(shuō)教法與學(xué)法 對于直線(xiàn)來(lái)說(shuō)它的導數就是它的斜率,學(xué)生會(huì )很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過(guò)了圓錐曲線(xiàn),學(xué)生對曲線(xiàn)的切線(xiàn)的概念也有了一些認識,基于以上學(xué)情分析,我確定下列教法: 教法:從圓的切線(xiàn)的定義引入本課,再引導學(xué)生討論一般曲線(xiàn)的切線(xiàn)的定義,通過(guò)幾何畫(huà)板的動(dòng)畫(huà)演示,得出曲線(xiàn)的切線(xiàn)的“逼近”法的定義.同樣通過(guò)幾何畫(huà)板的實(shí)驗觀(guān)察得到導數的幾何意義和直觀(guān)感知“逼近”的數學(xué)思想.因此,我采用實(shí)驗觀(guān)察法、探究性研究教學(xué)和信息技術(shù)輔助教學(xué)法相結合,以突出重點(diǎn)和突破難點(diǎn); 學(xué)法:為了發(fā)揮學(xué)生的主觀(guān)能動(dòng)性,提高學(xué)生的綜合能力,本節課采取了 自主 、合作、探究的學(xué)習方法。 教具: 幾何畫(huà)板、幻燈片 四、說(shuō)教學(xué)程序 1.創(chuàng )設情境 學(xué)生活動(dòng)——問(wèn)題系列 問(wèn)題1 平面幾何中我們是怎樣判斷直線(xiàn)是否是圓的割線(xiàn)或切線(xiàn)的呢? 問(wèn)題2 如圖直線(xiàn)l是曲線(xiàn)C的切線(xiàn)嗎? (1)與 (2)與 還有直線(xiàn)與雙曲線(xiàn)的位置關(guān)系 問(wèn)題3 那么對于一般的曲線(xiàn),切線(xiàn)該如何定義呢? 【設計意圖】:通過(guò)類(lèi)比構建認知沖突。 學(xué)生活動(dòng)——復習回顧 導數的定義 【設計意圖】:從理論和知識基礎兩方面為本節課作鋪墊。 2.探索求知 學(xué)生活動(dòng)——試驗探究 問(wèn)一;求導數的步驟是怎樣的? 第一步:求平均變化率;第二步:當趨近于0時(shí),平均變化率無(wú)限趨近于的常數就是。 【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。 問(wèn)二;你能借助圖像說(shuō)說(shuō)平均變化率表示什么嗎?請在函數圖像中畫(huà)出來(lái)。 【設計意圖】:通過(guò)學(xué)生動(dòng)手實(shí)踐得到平均變化率表示割線(xiàn)PQ的斜率。 問(wèn)三;在的過(guò)程中,你能描述一下割線(xiàn)PQ的變化情況嗎?請在圖像中畫(huà)出來(lái)。 【設計意圖】:分別從“數”和“形”的角度描述的過(guò)程情況。從數的角度看,,Q();從形的角度看, 的過(guò)程中,Q點(diǎn)向P點(diǎn)無(wú)限趨近,割線(xiàn)PQ趨近于確定的位置,這個(gè)位置的直線(xiàn)叫做曲線(xiàn)在 處的切線(xiàn)。 探究一:學(xué)生通過(guò)幾何畫(huà)板的演示觀(guān)察割線(xiàn)的變化趨勢,教師引導給出一般曲線(xiàn)的切線(xiàn)定義。 【設計意圖】: 借助多媒體教學(xué)手段引導學(xué)生發(fā)現導數的幾何意義,使問(wèn)題變得直觀(guān),易于突破難點(diǎn);學(xué)生在過(guò)程中,可以體會(huì )逼近的思想方法。能夠同時(shí)從數與形兩個(gè)角度強化學(xué)生對導數概念的理解。 問(wèn)四;你能從上述過(guò)程中概括出函數在處的導數的幾何意義嗎? 【設計意圖】:引導學(xué)生發(fā)現并說(shuō)出:,割線(xiàn)PQ切線(xiàn)PT,所以割線(xiàn) PQ的斜率切線(xiàn)PT的斜率。因此,=切線(xiàn)PT的斜率。 五、教學(xué)評價(jià) 1、通過(guò)學(xué)生參加活動(dòng)是否積極主動(dòng),能否與他人合作探索,對學(xué)生的學(xué)習過(guò)程評價(jià); 2、通過(guò)學(xué)生對方法的選擇,對學(xué)生的學(xué)習能力評價(jià); 3、通過(guò)練習、課后作業(yè),對學(xué)生的學(xué)習效果評價(jià). 4、教學(xué)中,學(xué)生以研究者的身份學(xué)習,在問(wèn)題解決的過(guò)程中,通過(guò)自身的體驗對知識的認識從模糊到清晰,從直觀(guān)感悟到精確掌握; 5、本節課設計目標力求使學(xué)生體會(huì )微積分的基本思想,感受近似與精確的統一,運動(dòng)和靜止的統一,感受量變到質(zhì)變的轉化。希望利用這節課滲透辨證法的思想精髓. 說(shuō)教學(xué)目標 A、知識目標: 掌握等差數列前n項和公式的推導方法;掌握公式的運用。 B、能力目標: 。1)通過(guò)公式的探索、發(fā)現,在知識發(fā)生、發(fā)展以及形成過(guò)程中培養學(xué)生觀(guān)察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。 。2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認知規律,讓學(xué)生在實(shí)踐中通過(guò)觀(guān)察、嘗試、分析、類(lèi)比的方法導出等差數列的求和公式,培養學(xué)生類(lèi)比思維能力。 。3)通過(guò)對公式從不同角度、不同側面的剖析,培養學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。 C、情感目標:(數學(xué)文化價(jià)值) 。1)公式的發(fā)現反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。 。2)通過(guò)公式的運用,樹(shù)立學(xué)生"大眾教學(xué)"的思想意識。 。3)通過(guò)生動(dòng)具體的現實(shí)問(wèn)題,令人著(zhù)迷的數學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹(shù)立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數學(xué)的心理體驗,產(chǎn)生熱愛(ài)數學(xué)的情感。 說(shuō)教學(xué)重點(diǎn): 等差數列前n項和的公式。 說(shuō)教學(xué)難點(diǎn): 等差數列前n項和的公式的靈活運用。 說(shuō)教學(xué)方法: 啟發(fā)、討論、引導式。 教具: 現代教育多媒體技術(shù)。 教學(xué)過(guò)程 一、創(chuàng )設情景,導入新課。 師:上幾節,我們已經(jīng)掌握了等差數列的概念、通項公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數列的前n項和公式。提起數列求和,我們自然會(huì )想到德國偉大的數學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時(shí),一次教師布置了一道數學(xué)習題:"把從1到100的自然數加起來(lái),和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計算出來(lái)的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀(guān)察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。 例1,計算:1+2+3+4+5+6+7+8+9+10。 這道題除了累加計算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。 生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個(gè)11,得到55。 生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫(xiě)成 S=10+9+8+7+6+5+4+3+2+1。 上面兩式相加得2S=11+10+。。。。。。+11=10×11=110 10個(gè) 所以我們得到S=55, 即1+2+3+4+5+6+7+8+9+10=55 師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學(xué)的方法相類(lèi)似。 理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個(gè)101,所以1+2+3+。。。。。。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數列的哪一個(gè)性質(zhì)呢? 生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq。 二、教授新課(嘗試推導) 師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質(zhì),如何來(lái)導出它的前n項和Sn計算公式呢?根據上面的例子同學(xué)們自己完成推導,并請一位學(xué)生板演。 生4:Sn=a1+a2+。。。。。。an—1+an也可寫(xiě)成 Sn=an+an—1+。。。。。。a2+a1 兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1) n個(gè) =n(a1+an) 所以Sn=(I) 師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n—1)d代入公式(1)得 Sn=na1+ d(II) 上面(I)、(II)兩個(gè)式子稱(chēng)為等差數列的前n項和公式。公式(I)是基本的,我們可以發(fā)現,它可與梯形面積公式(上底+下底)×高÷2相類(lèi)比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學(xué)生總結:這些公式中出現了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應用。 三、公式的應用(通過(guò)實(shí)例演練,形成技能)。 1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計算: 。1)1+2+3+。。。。。。+n 。2)1+3+5+。。。。。。+(2n—1) 。3)2+4+6+。。。。。。+2n 。4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n 請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。 生5:直接利用等差數列求和公式(I),得 。1)1+2+3+。。。。。。+n= 。2)1+3+5+。。。。。。+(2n—1)= 。3)2+4+6+。。。。。。+2n==n(n+1) 師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學(xué)生發(fā)言解答。 生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開(kāi),可看成兩個(gè)等差數列,所以 原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n) =n2—n(n+1)=—n 生7:上題雖然不是等差數列,但有一個(gè)規律,兩項結合都為—1,故可得另一解法: 原式=—1—1—。。。。。!1=—n n個(gè) 師:很好!在解題時(shí)我們應仔細觀(guān)察,尋找規律,往往會(huì )尋找到好的方法。注意在運用Sn公式時(shí),要看清等差數列的項數,否則會(huì )引起錯解。 例3、(1)數列{an}是公差d=—2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。 生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4 又∵d=—2,∴a1=6 ∴S12=12 a1+66×(—2)=—60 生9:(2)由a1+a2+a3=12,a1+d=4 a8+a9+a10=75,a1+8d=25 解得a1=1,d=3 ∴S10=10a1+=145 師:通過(guò)上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個(gè)變量。已知三個(gè)變量,可利用構造方程或方程組求另外兩個(gè)變量(知三求二),請同學(xué)們根據例3自己編題,作為本節的課外練習題,以便下節課交流。 師:(繼續引導學(xué)生,將第(2)小題改編) 、贁盗衶an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n 、谌舸祟}不求a1,d而只求S10時(shí),是否一定非來(lái)求得a1,d不可呢?引導學(xué)生運用等差數列性質(zhì),用整體思想考慮求a1+a10的值。 2、用整體觀(guān)點(diǎn)認識Sn公式。 例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解) 師:來(lái)看第(1)小題,寫(xiě)出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現了什么? 生10:根據等差數列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。 師:對。ê(jiǎn)單小結)這個(gè)題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質(zhì)可求a1與an的和,于是這個(gè)問(wèn)題就得到解決。這是整體思想在解數學(xué)問(wèn)題的體現。 師:由于時(shí)間關(guān)系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學(xué)生觀(guān)察當d≠0時(shí),Sn是n的二次函數,那么從二次(或一次)的函數的觀(guān)點(diǎn)如何來(lái)認識Sn公式后,這留給同學(xué)們課外繼續思考。 最后請大家課外思考Sn公式(1)的逆命題: 已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=。數列{an}是否為等差數列,并說(shuō)明理由。 四、小結與作業(yè)。 師:接下來(lái)請同學(xué)們一起來(lái)小結本節課所講的內容。 生11:1、用倒序相加法推導等差數列前n項和公式。 2、用所推導的兩個(gè)公式解決有關(guān)例題,熟悉對Sn公式的運用。 生12:1、運用Sn公式要注意此等差數列的項數n的值。 2、具體用Sn公式時(shí),要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。 3、當已知條件不足以求此項a1和公差d時(shí),要認真觀(guān)察,靈活應用等差數列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。 師:通過(guò)以上幾例,說(shuō)明在解題中靈活應用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習方法。同時(shí)希望大家在學(xué)習中做一個(gè)有心人,去發(fā)現更多的性質(zhì),主動(dòng)積極地去學(xué)習。 本節所滲透的數學(xué)方法;觀(guān)察、嘗試、分析、歸納、類(lèi)比、特定系數等。 數學(xué)思想:類(lèi)比思想、整體思想、方程思想、函數思想等。 作業(yè):P49:13、14、15、17 【有關(guān)高中數學(xué)說(shuō)課稿范文錦集10篇】相關(guān)文章: 有關(guān)高中數學(xué)說(shuō)課稿范文錦集五篇08-09 有關(guān)高中數學(xué)說(shuō)課稿范文錦集9篇08-08 有關(guān)高中數學(xué)說(shuō)課稿范文錦集十篇08-18 有關(guān)高中數學(xué)說(shuō)課稿范文錦集七篇08-15 精選高中數學(xué)說(shuō)課稿范文錦集五篇08-12 篇二:高一數學(xué)必修一說(shuō)課稿
高中數學(xué)說(shuō)課稿 篇6
高中數學(xué)說(shuō)課稿 篇7
高中數學(xué)說(shuō)課稿 篇8
高中數學(xué)說(shuō)課稿 篇9
高中數學(xué)說(shuō)課稿 篇10