高中數學(xué)說(shuō)課稿范文集錦十篇
作為一位杰出的教職工,編寫(xiě)說(shuō)課稿是必不可少的,說(shuō)課稿有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。說(shuō)課稿應該怎么寫(xiě)呢?以下是小編為大家收集的高中數學(xué)說(shuō)課稿10篇,僅供參考,歡迎大家閱讀。
高中數學(xué)說(shuō)課稿 篇1
大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。
一、教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生發(fā)現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學(xué)生會(huì )運用正弦定理解決兩類(lèi)基本的解三角形問(wèn)題。
能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習的興趣。
教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。
二、教法
根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
三、學(xué)法
指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四、教學(xué)過(guò)程
(一)創(chuàng )設情境(3分鐘)
“興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。
(二)猜想—推理—證明(15分鐘)
激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。 提問(wèn):那結論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿(mǎn)足關(guān)系
注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。
(三)總結--應用(3分鐘)
1.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。
2.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中
一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(五)課堂練習(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。
(六)小結反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關(guān)系。
2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。
3.會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。
五、教學(xué)反思
從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。
高中數學(xué)說(shuō)課稿 篇2
一.教材分析:集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。
二.目標分析:
教學(xué)重點(diǎn).難點(diǎn)
重點(diǎn):集合的含義與表示方法.
難點(diǎn):表示法的恰當選擇.
教學(xué)目標
l.知識與技能
(1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合的屬于關(guān)系;
(2)知道常用數集及其專(zhuān)用記號;
(3)了解集合中元素的確定性.互異性.無(wú)序性;
(4)會(huì )用集合語(yǔ)言表示有關(guān)數學(xué)對象;
2.過(guò)程與方法
(1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義.
(2)讓學(xué)生歸納整理本節所學(xué)知識.
3.情感.態(tài)度與價(jià)值觀(guān)
使學(xué)生感受到學(xué)習集合的必要性,增強學(xué)習的積極性.
三.教法分析
1.教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習.思考.交流.討論和概括,從而更好地完成本節課的教學(xué)目標.
2.教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué).
四.過(guò)程分析
(一)創(chuàng )設情景,揭示課題
1.教師首先提出問(wèn)題:(1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現在的班級。
(2)問(wèn)題:像"家庭"、"學(xué)校"、"班級"等,有什么共同特征?
引導學(xué)生互相交流.與此同時(shí),教師對學(xué)生的活動(dòng)給予評價(jià).
2.活動(dòng):(1)列舉生活中的集合的例子;
(2)分析、概括各實(shí)例的共同特征
由此引出這節要學(xué)的內容。
設計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為新知作好鋪墊
。ǘ┭刑叫轮,建構概念
1.教師利用多媒體設備向學(xué)生投影出下面7個(gè)實(shí)例:
(1)1-20以?xún)鹊乃匈|(zhì)數;
(2)我國古代的四大發(fā)明;
(3)所有的安理會(huì )常任理事國;
(4)所有的正方形;
(5)海南省在xxxx年9月之前建成的所有立交橋;
(6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);
(7)國興中學(xué)xxxx年9月入學(xué)的高一學(xué)生的全體.
2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?
3.每個(gè)小組選出--位同學(xué)發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義.
一般地,指定的某些對象的全體稱(chēng)為集合(簡(jiǎn)稱(chēng)為集).集合中的每個(gè)對象叫作這個(gè)集合的元素.
4.教師指出:集合常用大寫(xiě)字母A,B,c,D,...表示,元素常用小寫(xiě)字母...表示.
設計意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習的興趣,培養學(xué)生樂(lè )于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導學(xué)生閱讀教材中的相關(guān)內容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導,解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無(wú)序性.只要構成兩個(gè)集合的元素是一樣的,我們就稱(chēng)這兩個(gè)集合相等.
2.教師組織引導學(xué)生思考以下問(wèn)題:
判斷以下元素的全體是否組成集合,并說(shuō)明理由:
(1)大于3小于11的偶數;
(2)我國的小河流.
讓學(xué)生充分發(fā)表自己的建解.
3.讓學(xué)生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說(shuō)明理由.教師對學(xué)生的學(xué)習活動(dòng)給予及時(shí)的評價(jià).
4.教師提出問(wèn)題,讓學(xué)生思考
(1)如果用A表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.[來(lái)源:Z,xx,k.com]
如果是集合A的元素,就說(shuō)屬于集合A,記作.
如果不是集合A的元素,就說(shuō)不屬于集合A,記作.
(2)如果用A表示"所有的安理會(huì )常任理事國"組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數學(xué)符號分別表示.
(3)讓學(xué)生完成教材第6頁(yè)練習第1題.
5.教師引導學(xué)生回憶數集擴充過(guò)程,然后閱讀教材中的相交內容,寫(xiě)出常用數集的記號.并讓學(xué)生完成習題1.1A組第1題.
6.教師引導學(xué)生閱讀教材中的相關(guān)內容,并思考.討論下列問(wèn)題:
(1)要表示一個(gè)集合共有幾種方式?
(2)試比較自然語(yǔ)言.列舉法和描述法在表示集合時(shí),各自有什么特點(diǎn)?適用的對象是什么?
(3)如何根據問(wèn)題選擇適當的集合表示法?
使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì )它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。
(四)鞏固深化,反饋矯正
教師投影學(xué)習:
(1)用自然語(yǔ)言描述集合{1,3,5,7,9};
(2)用例舉法表示集合
(3)試選擇適當的方法表示下列集合:教材第6頁(yè)練習第2題.
設計意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì )三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業(yè)[來(lái)源:Zxxk.com]
小結:在師生互動(dòng)中,讓學(xué)生了解或體會(huì )下例問(wèn)題:
1.本節課我們學(xué)習了哪些知識內容?
2.你認為學(xué)習集合有什么意義?
3.選擇集合的表示法時(shí)應注意些什么?
設計意圖:通過(guò)回顧,對概念的發(fā)生與發(fā)展過(guò)程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書(shū)面作業(yè):第13頁(yè)習題1.1A組第4題.
2.元素與集合的關(guān)系有多少種?如何表示?類(lèi)似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過(guò)預習教材.
五.板書(shū)分析
PPT
集合的含義與表示
定義例1
集合×××××××
××××××××××××××
元素×××××××
×××××××例2
元素與集合的關(guān)系×××××××
××××××××××××××
作業(yè)××××××××××××××
高中數學(xué)說(shuō)課稿 篇3
1.教材分析
1-1教學(xué)內容及包含的知識點(diǎn)
(1)本課內容是高中數學(xué)第二冊第七章第三節《兩條直線(xiàn)的位置關(guān)系》的最后一個(gè)內容
(2)包含知識點(diǎn):點(diǎn)到直線(xiàn)的距離公式和兩平行線(xiàn)的距離公式
1-2教材所處地位、作用和前后聯(lián)系
本節課是兩條直線(xiàn)位置關(guān)系的最后一個(gè)內容,在此之前,有對兩線(xiàn)位置關(guān)系的定性刻畫(huà):平行、垂直,以及對相交兩線(xiàn)的定量刻畫(huà):夾角、交點(diǎn)。在此之后,有圓錐曲線(xiàn)方程,因而本節既是對前面兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)的復習,又是為后面計算點(diǎn)線(xiàn)距離(在直線(xiàn)和圓錐曲線(xiàn)構成的組合圖形中)提供一套工具。
可見(jiàn),本課有承前啟后的作用。
1-3教學(xué)大綱要求
掌握點(diǎn)到直線(xiàn)的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點(diǎn)到直線(xiàn)的距離公式。在近年的高考中,通常以直線(xiàn)和圓錐曲線(xiàn)構成的組合圖形為背景,判斷直線(xiàn)和圓錐曲線(xiàn)的位置或構成三角形求高,涉及絕對值,直線(xiàn)垂直,最小值等。
1-5教學(xué)目標及確定依據
教學(xué)目標
(1)掌握點(diǎn)到直線(xiàn)的距離的概念、公式及公式的推導過(guò)程,能用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。
(2)培養學(xué)生探究性思維方法和由特殊到一般的研究能力。
(3)認識事物之間相互聯(lián)系、互相轉化的辯證法思想,培養學(xué)生轉化知識的能力。
(4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。
確定依據:
中華人民共和國教育部制定的《全日制普通高級中學(xué)數學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說(shuō)明》(20xx年)
1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
。1)重點(diǎn):點(diǎn)到直線(xiàn)的距離公式
確定依據:由本節在教材中的地位確定
。2)難點(diǎn):點(diǎn)到直線(xiàn)的距離公式的推導
確定依據:根據定義進(jìn)行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現。
分析“嘗試性題組”解題思路可突破難點(diǎn)
。3)關(guān)鍵:實(shí)現兩個(gè)轉化。一是將點(diǎn)線(xiàn)距離轉化為定點(diǎn)到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點(diǎn)的距離。
2.教法
2-1發(fā)現法:本節課為了培養學(xué)生探究性思維目標,在教學(xué)過(guò)程中,使老師的主導性和學(xué)生的主體性有機結合,使學(xué)生能夠愉快地自覺(jué)學(xué)習,通過(guò)學(xué)生自己練習“嘗試性題組”,引導、啟發(fā)學(xué)生分析、發(fā)現、比較、論證等,從而形成完整的數學(xué)模型。
確定依據:
(1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習原則,最佳動(dòng)機原則,階段漸進(jìn)性原則。
(2)事物之間相互聯(lián)系,相互轉化的辯證法思想。
2-2教具:多媒體和黑板等傳統教具
3.學(xué)法
3-1發(fā)現法:豐富學(xué)生的數學(xué)活動(dòng),學(xué)生經(jīng)過(guò)練習、觀(guān)察、分析、探索等步驟,自己發(fā)現解決問(wèn)題的方法,比較論證后得到一般性結論,形成完整的數學(xué)模型,再運用所得理論和方法去解決問(wèn)題。
一句話(huà):還課堂以生命力,還學(xué)生以活力。
3-2學(xué)情:
。1)知識能力狀況,本節為兩線(xiàn)位置關(guān)系的最后一個(gè)內容,在這之前學(xué)生已經(jīng)系統的學(xué)習了直線(xiàn)方程的各種形式,有對兩線(xiàn)位置關(guān)系的定性認識和對兩線(xiàn)相交的定量認識,為本節推證公式涉及到直線(xiàn)方程、兩線(xiàn)垂直、兩線(xiàn)交點(diǎn)作好了知識儲備。同時(shí)學(xué)生對解析幾何的實(shí)質(zhì)中,用坐標系溝通直線(xiàn)與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。
。2)心理特點(diǎn):又見(jiàn)“點(diǎn)到直線(xiàn)的距離”(初中已學(xué)習定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢(xún)動(dòng)機由此而生。
。3)生活經(jīng)驗:數學(xué)源于生活,生活中的點(diǎn)線(xiàn)距隨處可見(jiàn),怎樣將實(shí)際問(wèn)題數學(xué)化,是每個(gè)追求成長(cháng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數學(xué)活動(dòng)能夠讓他們真正參與,體驗過(guò)程,錘煉意志,培養能力。
3-3學(xué)具:直尺、三角板
3. 教學(xué)程序
時(shí),此時(shí)又怎樣求點(diǎn)A到直線(xiàn)
的距離呢?
生: 定性回答
點(diǎn)明課題,使學(xué)生明確學(xué)習目標。
創(chuàng )設“不憤不啟,不悱不發(fā)”的學(xué)習情景。
練習
比較
發(fā)現
歸納
討論
的距離為d
(1) A(2,4),
。簒 = 3, d=_____
(2) A(2,4),
。簓 = 3,d=_____
(3) A(2,4),
。簒 – y = 0,d=_____
嘗試性題組告訴學(xué)生下手不難,還負責特例檢驗,從而增強學(xué)生參與的信心。
請三個(gè)同學(xué)上黑板板演
師: 請這三位同學(xué)分別說(shuō)說(shuō)自己的解題思路。
生: 回答
教學(xué)機智:應沉淀為三種思路:一,根據定義轉化為定點(diǎn)到垂足的距離;二,利用等積法轉化為直角三角形中三個(gè)頂點(diǎn)之間的距離;三,利用直角三角形中的邊角關(guān)系。
視回答的情況,老師進(jìn)行肯定、修正或補充提問(wèn):“還有其他不同的思路嗎”。
說(shuō)解題思路,一是讓學(xué)生清晰有條理的表達自己的思考過(guò)程,二是其求解過(guò)程提示了證明的途徑(根據定義或畫(huà)坐標線(xiàn)時(shí)正好交出一個(gè)直角三角形)
師:很好,剛才我們解決了定點(diǎn)到特殊直線(xiàn)的距離問(wèn)題,那么,點(diǎn)P(x0,y0)到一般直線(xiàn)
。篈x+By+C=0(A,B≠0)的距離又怎樣求?
教學(xué)機智:如學(xué)生反應不大,則補充提問(wèn):上面三個(gè)題的解題思路對這個(gè)問(wèn)題有啟示嗎?
生:方案一:根據定義
方案二:根據等積法
方案三: ......
設置此問(wèn),一是使學(xué)生的認知由特殊向一般轉化,發(fā)現可能的方法,二是讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索和創(chuàng )造,感受數學(xué)的生機和樂(lè )趣。
師生一起進(jìn)行比較,鎖定方案二進(jìn)行推證。
“師生共作”體現新型師生觀(guān),且//時(shí),又怎樣求這兩線(xiàn)的距離?
生:計算得線(xiàn)線(xiàn)距離公式
師:板書(shū)點(diǎn)到直線(xiàn)的距離公式,兩平行線(xiàn)間距離公式
“沒(méi)有新知識,新知識均是舊知識的組合”,創(chuàng )設此問(wèn)可發(fā)揮學(xué)生的創(chuàng )造性,增加學(xué)生的成就感。
反思小結
經(jīng)驗共享
。 分 鐘)
師: 通過(guò)以上的學(xué)習,你有哪些收獲?(知識,能力,情感)。有哪些疑問(wèn)?誰(shuí)能答這些疑問(wèn)?
生: 討論,回答。
對本節課用到的技能,數學(xué)思維方法等進(jìn)行小結,使學(xué)生對本節知識有一個(gè)整體的認識。
共同進(jìn)步,各取所長(cháng)。
練習
。ㄎ 分 鐘)
P53 練習 1, 2,3
熟練的用公式來(lái)求點(diǎn)線(xiàn)距離和線(xiàn)線(xiàn)距離。
再度延伸
。ㄒ 分 鐘)
探索其他推導方法
“帶著(zhù)問(wèn)題進(jìn)課堂,帶著(zhù)更多的問(wèn)題出課堂”,讓學(xué)生真正學(xué)會(huì )學(xué)習。
4. 教學(xué)評價(jià)
學(xué)生完成反思性學(xué)習報告,書(shū)寫(xiě)要求:
(1) 整理知識結構
(2) 總結所學(xué)到的基本知識,技能和數學(xué)思想方法
(3) 總結在學(xué)習過(guò)程中的經(jīng)驗,發(fā)明發(fā)現,學(xué)習障礙等,說(shuō)明產(chǎn)生障礙的原因
(4) 談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。
作用:
(1) 通過(guò)反思使學(xué)生對所學(xué)知識系統化。反思的過(guò)程實(shí)際上是學(xué)生思維內化,知識深化和認知牢固化的一個(gè)心理活動(dòng)過(guò)程。
(2) 報告的寫(xiě)作本身就是一種創(chuàng )造性活動(dòng)。
(3) 及時(shí)了解學(xué)生學(xué)習過(guò)程中的知識缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿(mǎn)意度和效果,以便作出及時(shí)調整,及時(shí)進(jìn)行補償性教學(xué)。
5. 板書(shū)設計
(略)
6. 教學(xué)的反思總結
心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。
高中數學(xué)說(shuō)課稿 篇4
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質(zhì)的第2小節。
奇偶性是函數的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。因此,本節課起著(zhù)承上啟下的重要作用。
2、學(xué)情分析
從學(xué)生的認知基礎看,學(xué)生在初中已經(jīng)學(xué)習了軸對稱(chēng)圖形和中心對稱(chēng)圖形,并且有了一定數量的簡(jiǎn)單函數的儲備。同時(shí),剛剛學(xué)習了函數單調性,已經(jīng)積累了研究函數的基本方法與初步經(jīng)驗。
從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗型向抽象理論型轉變,能夠用假設、推理來(lái)思考和解決問(wèn)題、
3、教學(xué)目標
基于以上對教材和學(xué)生的分析,以及新課標理念,我設計了這樣的教學(xué)目標:
【知識與技能】
1、能判斷一些簡(jiǎn)單函數的奇偶性。
2、能運用函數奇偶性的代數特征和幾何意義解決一些簡(jiǎn)單的問(wèn)題。
【過(guò)程與方法】
經(jīng)歷奇偶性概念的形成過(guò)程,提高觀(guān)察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態(tài)度與價(jià)值觀(guān)】
通過(guò)自主探索,體會(huì )數形結合的思想,感受數學(xué)的對稱(chēng)美。
從課堂反應看,基本上達到了預期效果。
4、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):函數奇偶性的概念和幾何意義。
幾年的教學(xué)實(shí)踐證明,雖然函數奇偶性這一節知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了考慮函數定義域的問(wèn)題。因此,在介紹奇、偶函數的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把函數的奇偶性概念設計為本節課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強本節課重點(diǎn)問(wèn)題的講解。
難點(diǎn):奇偶性概念的數學(xué)化提煉過(guò)程。
由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數學(xué)化提煉過(guò)程設計為本節課的難點(diǎn)。
二、教法與學(xué)法分析
1、教法
根據本節教材內容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認知規律,遵循教師為主導,學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用以引導發(fā)現法為主,直觀(guān)演示法、類(lèi)比法為輔。教學(xué)中,精心設計一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng )設問(wèn)題情景,誘導學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),從而培養思維能力。從課堂反應看,基本上達到了預期效果。
2、學(xué)法
讓學(xué)生在觀(guān)察一歸納一檢驗一應用的學(xué)習過(guò)程中,自主參與知識的發(fā)生、發(fā)展、形成的過(guò)程,從而使學(xué)生掌握知識。
三、教學(xué)過(guò)程
具體的教學(xué)過(guò)程是師生互動(dòng)交流的過(guò)程,共分六個(gè)環(huán)節:設疑導入、觀(guān)圖激趣;指導觀(guān)察、形成概念;學(xué)生探索、領(lǐng)會(huì )定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學(xué)以致用。下面我對這六個(gè)環(huán)節進(jìn)行說(shuō)明。
。ㄒ唬┰O疑導入、觀(guān)圖激趣
由于本節內容相對獨立,專(zhuān)題性較強,所以我采用了開(kāi)門(mén)見(jiàn)山導入方式,直接點(diǎn)明要學(xué)的內容,使學(xué)生的思維迅速定向,達到開(kāi)始就明確目標突出重點(diǎn)的效果。
用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱(chēng)美。再讓學(xué)生觀(guān)察幾個(gè)特殊函數圖象。通過(guò)讓學(xué)生觀(guān)察圖片導入新課,既激發(fā)了學(xué)生濃厚的學(xué)習興趣,又為學(xué)習新知識作好鋪墊。
。ǘ┲笇в^(guān)察、形成概念
在這一環(huán)節中共設計了2個(gè)探究活動(dòng)。
探究1 、2 數學(xué)中對稱(chēng)的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開(kāi)探究。這個(gè)探究主要是通過(guò)學(xué)生的自主探究來(lái)實(shí)現的,由于有圖片的鋪墊,絕大多數學(xué)生很快就說(shuō)出函數圖象關(guān)于Y軸(原點(diǎn))對稱(chēng)。接著(zhù)學(xué)生填表,從數值角度研究圖象的這種特征,體現在自變量與函數值之間有何規律? 引導學(xué)生先把它們具體化,再用數學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現兩個(gè)函數的對稱(chēng)性反應到函數值上具有的特性, ()然后通過(guò)解析式給出嚴格證明,進(jìn)一步說(shuō)明這個(gè)特性對定義域內任意一個(gè) 都成立。 最后給出偶函數(奇函數)定義(板書(shū))。
在這個(gè)過(guò)程中,學(xué)生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗。
。ㄈ 學(xué)生探索、領(lǐng)會(huì )定義
探究3 下列函數圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱(chēng)。(突破了本節課的難點(diǎn))
。ㄋ模┲R應用,鞏固提高
在這一環(huán)節我設計了4道題
例1判斷下列函數的奇偶性
選例1的第(1)及(3)小題板書(shū)來(lái)示范解題步驟,其他小題讓學(xué)生在下面完成。
例1設計意圖是歸納出判斷奇偶性的步驟:
(1) 先求定義域,看是否關(guān)于原點(diǎn)對稱(chēng);
(2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。
例2 判斷下列函數的奇偶性:
例3 判斷下列函數的奇偶性:
例2、3設計意圖是探究一個(gè)函數奇偶性的可能情況有幾種類(lèi)型?
例4(1)判斷函數的奇偶性。
。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫(huà)出它在y軸左邊的圖象嗎?
例4設計意圖加強函數奇偶性的幾何意義的應用。
在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。通過(guò)這些問(wèn)題的解決,學(xué)生對函數的奇偶性認識、理解和應用都能提升很大一個(gè)高度,達到當堂消化吸收的效果。
。ㄎ澹┛偨Y反饋
在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現了啟發(fā)式、問(wèn)題式教學(xué)法的特色。
在本節課的最后對知識點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導學(xué)生總結出本節課應積累的解題經(jīng)驗。知識在于積累,而學(xué)習數學(xué)更在于知識的應用經(jīng)驗的積累。所以提高知識的應用能力、增強錯誤的預見(jiàn)能力是提高數學(xué)綜合能力的很重要的策略。
。┓謱幼鳂I(yè),學(xué)以致用
必做題:課本第36頁(yè)練習第1-2題。
選做題:課本第39頁(yè)習題1、3A組第6題。
思考題:課本第39頁(yè)習題1、3B組第3題。
設計意圖:面向全體學(xué)生,注重個(gè)人差異,加強作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達到不同的人在數學(xué)上得到不同的發(fā)展。
高中數學(xué)說(shuō)課稿 篇5
一、教材分析:
1.教材所處的地位和作用:
本節內容在全書(shū)和章節中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數學(xué)教材數學(xué)2第一章空間幾何體3節內容。在此之前學(xué)生已學(xué)習了空間幾何體的結構、三視圖和直觀(guān)圖為基礎,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是在空間幾何中,占據重要的地位。以及為其他學(xué)科和今后的學(xué)習打下基礎。
2.教育教學(xué)目標:
根據上述教材分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:
知識與能力:
。1)了解柱體、錐體、臺體的表面積.
。2)能用公式求柱體、錐體、臺體的表面積。
。3)培養學(xué)生空間想象能力和思維能力
過(guò)程與方法:
讓學(xué)生經(jīng)歷幾何體的表面積的實(shí)際求法,感知幾何體的形狀,培養學(xué)生對數學(xué)問(wèn)題的轉化化歸能力。
情感、態(tài)度與價(jià)值觀(guān):
通過(guò)學(xué)習,是學(xué)生感受到幾何體表面積的求解過(guò)程,激發(fā)學(xué)生探索、創(chuàng )新意識,增強學(xué)習積極性。
3.重點(diǎn),難點(diǎn)以及確定依據:
本著(zhù)新課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):柱,錐,臺的表面積公式的推導
教學(xué)難點(diǎn):柱,錐,臺展開(kāi)圖與空間幾何體的轉化
二、教法分析
1.教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現教學(xué)目標。在教學(xué)過(guò)程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟澱n的特點(diǎn):應著(zhù)重采用合作探究、小組討論的教學(xué)方法。
2.教學(xué)方法及其理論依據:堅持“以學(xué)生為主體,以教師為主導”的原則,根據學(xué)生的心理發(fā)展規律,采用學(xué)生參與程度高的探究式討論教學(xué)法。在學(xué)生親自動(dòng)手去給出各種幾何體的表面積的計算方法,特別注重不同解決問(wèn)題的方法,提問(wèn)不同層次的學(xué)生,面向全體,使基礎差的學(xué)生也能有表現機會(huì ),培養其自信心,激發(fā)其學(xué)習熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎上得到發(fā)展。啟發(fā)學(xué)生從書(shū)本知識回到社會(huì )實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數學(xué)知識,學(xué)習基礎性的知識和技能,在教學(xué)中積極培養學(xué)生學(xué)習興趣和動(dòng)機,明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。
三.學(xué)情分析
我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。
。1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習方式,定能激發(fā)學(xué)生興趣,有效地培養學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散
。2)動(dòng)機和興趣上:明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力
最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:
四、教學(xué)過(guò)程分析
。1)由一段動(dòng)畫(huà)視頻引入:豐富生動(dòng)的吸引學(xué)生的注意力,調動(dòng)學(xué)生學(xué)習積極性
。2)由引入得出本課新的所要探討的問(wèn)題——幾何體的表面積的計算。
。3)探究問(wèn)題。完全將主動(dòng)權教給學(xué)生,讓學(xué)生主動(dòng)去探究,得到解決問(wèn)題的思路,鍛煉學(xué)生動(dòng)手能力,解決實(shí)際問(wèn)題能力。
。4)總結結論,強化認識。知識性的內容小結,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐步培養學(xué)生良好的個(gè)性品質(zhì)目標。
。5)例題及練習,見(jiàn)學(xué)案。
。6)布置作業(yè)。
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,
。7)小結。讓學(xué)生總結本節課的收獲。老師適時(shí)總結歸納。
高中數學(xué)說(shuō)課稿 篇6
一、教學(xué)目標
1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義.
2.經(jīng)歷從銳角三角函數定義過(guò)度到任意角三角函數定義的推廣過(guò)程,體驗三角函數概念的產(chǎn)生、發(fā)展過(guò)程.領(lǐng)悟直角坐標系的工具功能,豐富數形結合的經(jīng)驗.
3.培養學(xué)生通過(guò)現象看本質(zhì)的唯物主義認識論觀(guān)點(diǎn),滲透事物相互聯(lián)系、相互轉化的辯證唯物主義世界觀(guān).
4.培養學(xué)生求真務(wù)實(shí)、實(shí)事求是的科學(xué)態(tài)度.
二、重點(diǎn)、難點(diǎn)、關(guān)鍵
重點(diǎn):任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法.
難點(diǎn):把三角函數理解為以實(shí)數為自變量的函數.
關(guān)鍵:如何想到建立直角坐標系;六個(gè)比值的確定性(α確定,比值也隨之確定)與依賴(lài)性(比值隨著(zhù)α的變化而變化).
三、教學(xué)理念和方法
教學(xué)中注意用新課程理念處理傳統教材,學(xué)生的數學(xué)學(xué)習活動(dòng)不僅要接受、記憶、模仿和練習,而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導者、合作者的作用,引導學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程.
根據本節課內容、高一學(xué)生認知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節課采用"啟發(fā)探索、講練結合"的方法組織教學(xué).
四、教學(xué)過(guò)程
[執教線(xiàn)索:
回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關(guān)系)--問(wèn)題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優(yōu)化認知:用直角坐標系研究銳角三角函數--探索發(fā)展:對任意角研究六個(gè)比值(與角之間的關(guān)系:確定性、依賴(lài)性,滿(mǎn)足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習--回顧小結--布置作業(yè)]
。ㄒ唬⿵土曇、回想再認
開(kāi)門(mén)見(jiàn)山,面對全體學(xué)生提問(wèn):
在初中我們初步學(xué)習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學(xué)習了角度制和弧度制,這節課該研究什么呢?
探索任意角的三角函數(板書(shū)課題),請同學(xué)們回想,再明確一下:
。ㄇ榫1)什么叫函數?或者說(shuō)函數是怎樣定義的?
讓學(xué)生回想后再點(diǎn)名回答,投影顯示規范的定義,教師根據回答情況進(jìn)行修正、強調:
傳統定義:設在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有唯一確定的值和它對應,那么就說(shuō)y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域.
現代定義:設A、B是非空的數集,如果按某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)映射?:A→B為從集合A到集合B的一個(gè)函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域.
設計意圖:
函數和三角函數是一般和特殊的關(guān)系,是共性和個(gè)性的關(guān)系,學(xué)生已經(jīng)學(xué)習了函數的概念,因此對三角函數的學(xué)習就是一個(gè)從一般到特殊的演繹的過(guò)程,也是以具體函數豐富函數概念的過(guò)程.教學(xué)經(jīng)驗表明:學(xué)生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對函數概念進(jìn)行回想再認,目的在于明確函數概念的本質(zhì),為演繹學(xué)習任意角三角函數概念作好知識和認知準備.
。ㄇ榫2)我們在初中通過(guò)銳角三角形的邊角關(guān)系,學(xué)習了銳角的正弦、余弦、正切等三個(gè)三角函數.請回想:這三個(gè)三角函數分別是怎樣規定的?
學(xué)生口述后再投影展示,教師再根據投影進(jìn)行強調:
設計意圖:
學(xué)生在初中學(xué)習了銳角的三角函數概念,現在學(xué)習任意角的三角函數,又是一種推廣和拓展的過(guò)程(類(lèi)似于從有理數到實(shí)數的擴展).溫故知新,要讓學(xué)生體會(huì )知識的產(chǎn)生、發(fā)展過(guò)程,就要從源頭上開(kāi)始,從學(xué)生現有認知狀況開(kāi)始,對銳角三角函數的復習就必不可少.
。ǘ┮熹亯|、創(chuàng )設情景
。ㄇ榫3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!
留時(shí)間讓學(xué)生獨立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導.
能推廣嗎?怎樣推廣?針對剛才的問(wèn)題點(diǎn)名讓學(xué)生回答.用角的對邊、臨邊、斜邊比值的說(shuō)法顯然是受到阻礙了,由于4.1節已經(jīng)以直角坐標系為工具來(lái)研究任意角了,學(xué)生一般會(huì )想到(否則教師進(jìn)行提示)繼續用直角坐標系來(lái)研究任意角的三角函數.
設計意圖:
從學(xué)生現有知識水平和認知能力出發(fā),創(chuàng )設問(wèn)題情景,讓學(xué)生產(chǎn)生認知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng )造"征程.
教師對學(xué)生回答情況進(jìn)行點(diǎn)評后布置任務(wù)情景:請同學(xué)們用直角坐標系重新研究銳角三角函數定義!
師生共做(學(xué)生口述,教師板書(shū)圖形和比值):
把銳角α安裝(如何安裝?角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點(diǎn)P,作Pm⊥x軸于m,構造一個(gè)RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長(cháng)|oP∣=r.
根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個(gè)比值,并補充對應列出三個(gè)倒數比值:
設計意圖:
此處做法簡(jiǎn)單,思想重要.為了順利實(shí)現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節已經(jīng)以直角坐標系為工具來(lái)研究任意角了,學(xué)生自然能想到仍然以直角坐標系為工具來(lái)研究任意角的三角函數.初中以直角三角形邊角關(guān)系來(lái)定義銳角三角函數,現在要用坐標系來(lái)研究,探索的結論既要滿(mǎn)足任意角的情形,又要包容初中銳角三角函數定義.這是一個(gè)認識的飛躍,是理解任意角三角函數概念的關(guān)鍵之一,也是數學(xué)發(fā)現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學(xué)生在以后學(xué)習中對某些知識進(jìn)行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實(shí)數到復數的擴展等).
。ㄇ榫4)各個(gè)比值與角之間有怎樣的關(guān)系?比值是角的函數嗎?
追問(wèn):銳角α大小發(fā)生變化時(shí),比值會(huì )改變嗎?
先讓學(xué)生想象思考,作出主觀(guān)判斷,再用幾何畫(huà)板動(dòng)畫(huà)演示,同時(shí)作好解釋說(shuō)明:保持r不變,讓P繞原點(diǎn)o旋轉即α在銳角范圍內變化,六個(gè)比值隨之變化的直觀(guān)形象。結論是:比值隨α的變化而變化.
引導學(xué)生觀(guān)察圖3,聯(lián)系相似三角形知識,
探索發(fā)現:
對于銳角α的每一個(gè)確定值,六個(gè)比值都是
確定的,不會(huì )隨P在終邊上的移動(dòng)而變化.
得出結論(強調):當α為銳角時(shí),六個(gè)比值隨α的變化而變化;但對于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì )隨P在終邊上的移動(dòng)而變化.所以,六個(gè)比值分別是以角α為自變量、以比值為函數值的函數.
設計意圖:
初中學(xué)生對函數理解較膚淺,這里在學(xué)生思維的最近發(fā)展區進(jìn)一步研究初中學(xué)過(guò)的銳角三角函數,在思維上更上了一個(gè)層次,扣準函數概念的內涵,突出變量之間的依賴(lài)關(guān)系或對應關(guān)系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關(guān)鍵,也是在認知上把三角函數知識納入函數知識結構的關(guān)鍵.這樣做能夠使學(xué)生有效地增強函數觀(guān)念.
。ㄈ┓治鰵w納、自主定義
。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?
水到渠成,師生共同進(jìn)行探索和推廣:
對于一個(gè)任意角α,它的終邊所在位置包括下列兩類(lèi)共八種情形(投影展示并作分析):
終邊分別在四個(gè)象限的情形:終邊分別在四個(gè)半軸上的情形:
;
。ㄖ赋觯翰划(huà)出角的方向,表明角具有任意性)
怎樣刻畫(huà)任意角的三角函數呢?研究它的六個(gè)比值:
。ò鍟(shū))設α是一個(gè)任意角,在α終邊上除原點(diǎn)外任意取一點(diǎn)P(x,y),P與原點(diǎn)o之間的距離記作r(r=>0),列出六個(gè)比值:
α=kππ/2時(shí),x=0,比值y/x、r/x無(wú)意義;
α=kπ時(shí),y=0,比值x/y、r/y無(wú)意義.
追問(wèn):α大小發(fā)生變化時(shí),比值會(huì )改變嗎?
先讓學(xué)生想象思考,作出主觀(guān)判斷,再用幾何畫(huà)板動(dòng)畫(huà)演示,同時(shí)作好解釋說(shuō)明:使r保持不變,P繞原點(diǎn)o逆時(shí)針、順時(shí)針旋轉即角α變化,六個(gè)比值隨之改變的直觀(guān)形象。結論是:各比值隨α的變化而變化.
再引導學(xué)生利用相似三角形知識,探索發(fā)現:對于任意角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì )隨P在終邊上的移動(dòng)而變化.
綜上得到(強調):當角α變化時(shí),六個(gè)比值隨之變化;對于確定的角α,六個(gè)比值(如果存在的話(huà))都不會(huì )隨P在角α終邊上的改變而改變,六個(gè)比值是確定的(對應的多值性即誘導公式一留到下節課分析).
因此,六個(gè)比值分別是以角α為自變量、以比值為函數值的函數.
根據歷史上的規定,對比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復合板書(shū)):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個(gè)整體,相當于函數記號f(x).其它幾個(gè)三角函數也如此
投影顯示圖六,指導學(xué)生分析其對應關(guān)系,進(jìn)一步體會(huì )其函數內涵:
。▓D六)
指導學(xué)生識記六個(gè)比值及函數名稱(chēng).
教師指出:正弦、余弦、正切、余切、正割、余割六個(gè)函數統稱(chēng)為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學(xué)習正弦、余弦、正切三個(gè)函數的相關(guān)知識和方法,對于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求).
引導學(xué)生進(jìn)一步分析理解:
已知角的集合與實(shí)數集之間可以建立一一對應關(guān)系,對于每一個(gè)確定的實(shí)數,把它看成一個(gè)弧度數,就對應著(zhù)唯一的一個(gè)角,從而分別對應著(zhù)六個(gè)唯一的三角函數值.因此,(板書(shū))三角函數可以看成是以實(shí)數為自變量的函數,這將為以后的應用帶來(lái)很多方便.
設計意圖:
把角的終邊分別在四個(gè)象限、四條半軸上的情形全作出來(lái),有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數定義域作準備.動(dòng)畫(huà)演示比值與角之間的依賴(lài)性與確定性關(guān)系,深化理解三角函數內涵.引導學(xué)生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務(wù).由于學(xué)生剛學(xué)弧度制,對弧度制的理解有待于在以后的學(xué)習應用中逐步感悟,因此部分學(xué)生對"三角函數可以看成是以實(shí)數為自變量的函數"的理解有半信半疑之感,有待通過(guò)后續的應用加深理解.
。ㄋ模┨剿鞫x域
。ㄇ榫6)(1)函數概念的三要素是什么?
函數三要素:對應法則、定義域、值域.
正弦函數sinα的對應法則是什么?
正弦函數sinα的對應法則,實(shí)質(zhì)上就是sinα的定義:對α的每一個(gè)確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.
(2)布置任務(wù)情景:什么是三角函數的定義域?請求出六個(gè)三角函數的定義域,填寫(xiě)下表:
三角函數
sinα
cosα
tanα
cotα
cscα
secα
定義域
引導學(xué)生自主探索:
如果沒(méi)有特別說(shuō)明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍.
關(guān)于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實(shí)數集R.
對于tanα=y/x,α=kππ/2時(shí)x=0,y/x無(wú)意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........
教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.
。P(guān)于值域,到后面再學(xué)習).
設計意圖:
定義域是函數三要素之一,研究函數必須明確定義域.指導學(xué)生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進(jìn)對三角函數概念的掌握.
。ㄎ澹┓柵袛、形象識記
。ㄇ榫7)能判斷三角函數值的正、負嗎?試試看!
引導學(xué)生緊緊抓住三角函數定義來(lái)分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:
。ㄍ玫谜、異號得負)
sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負
設計意圖:
判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學(xué)生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關(guān)鍵.
。┚毩曥柟、理解記憶
1、自學(xué)例1:已知角α的終邊經(jīng)過(guò)點(diǎn)P(2,-3),求α的六個(gè)三角函數值.
要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書(shū)面表達格式,鞏固定義.
課堂練習:
p19題1:已知角α的終邊經(jīng)過(guò)點(diǎn)P(-3,-1),求α的六個(gè)三角函數值.
要求心算,并提問(wèn)中下學(xué)生檢驗,--------
點(diǎn)評:角α終邊上有無(wú)窮多個(gè)點(diǎn),根據三角函數的定義,只要知道α終邊上任意一個(gè)點(diǎn)的坐標,就可以計算這個(gè)角的三角函數值(或判斷其無(wú)意義).
補充例題:已知角α的終邊經(jīng)過(guò)點(diǎn)P(x,-3),cosα=4/5,求α的其它五個(gè)三角函數值.
師生探索:已知y=-3,要求其它五個(gè)三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.
2、自學(xué)例2:求下列各角的六個(gè)三角函數值:(1)0;(2)π/2;(3)3π/2.
提問(wèn),據反饋信息作點(diǎn)評、修正.
師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢?取定哪一點(diǎn)呢?任意點(diǎn)、還是特殊點(diǎn)?要靈活,只要能夠算出三角函數值,都可以。
取特殊點(diǎn)能使計算更簡(jiǎn)明。課堂練習:p19題2.(改編)填表:
角α(角度)
0°
90°
180°
270°
360°
角α(弧度)
sinα
cosα
tanα
處理:要求取點(diǎn)用定義求解,針對計算過(guò)程提問(wèn)、點(diǎn)評,理解鞏固定義.
強調:終邊在坐標軸上的角叫軸線(xiàn)角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線(xiàn)角的三角函數值,要結合三角函數定義記熟這些值.
設計意圖:
及時(shí)安排自學(xué)例題、自做教材練習題,一般性與特殊性相結合,進(jìn)行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過(guò)課堂積極主動(dòng)的練習活動(dòng)進(jìn)行思維訓練,把"培養學(xué)生分析解決問(wèn)題的能力"貫穿在每一節課的課堂教學(xué)始終.
。ㄆ撸┗仡櫺〗Y、建構網(wǎng)絡(luò )
要求全體學(xué)生根據教師所提問(wèn)題進(jìn)行總結識記,提問(wèn)檢查并強調:
1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說(shuō)任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點(diǎn)與坐標原點(diǎn)重合,---,在終邊上任意取定一點(diǎn)P,---)
2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------)
3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----)
設計意圖:
遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時(shí)總結識記主要內容是上策.此處以問(wèn)題形式讓學(xué)生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時(shí)建構知識網(wǎng)絡(luò ),優(yōu)化知識結構,培養認知能力.
。ò耍┎贾谜n外作業(yè)
1.書(shū)面作業(yè):習題4.3第3、4、5題.
2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學(xué)習他對科學(xué)的摯著(zhù)精神和堅忍不拔的頑強毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況.
教學(xué)設計說(shuō)明
一、對本節教材的理解
三角函數是描述周期運動(dòng)現象的重要的數學(xué)模型,有非常廣泛的應用.
星星之火,可以燎原.
直角三角形簡(jiǎn)單樸素的邊角關(guān)系,以直角坐標系為工具進(jìn)行自然地推廣而得到簡(jiǎn)明的任意角的三角函數定義,緊緊扣住三角函數定義這個(gè)寶貴的源泉,自然地導出三角函數線(xiàn)、定義域、符號判斷、值域、同角三角函數關(guān)系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線(xiàn)斜率公式、極坐標、部分曲線(xiàn)的參數方程等),定義還是直接解決某些問(wèn)題的工具,三角函數知識是物理學(xué)、高等數學(xué)、測量學(xué)、天文學(xué)的重要基礎.
三角函數定義必然是學(xué)好全章內容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續內容的學(xué)習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點(diǎn)就是定義本身.
二、教學(xué)法加工
數學(xué)教材通常用抽象概括的形式化的數學(xué)書(shū)面語(yǔ)言闡述其知識和方法,教師只有通過(guò)教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀(guān),"將數學(xué)的學(xué)術(shù)形態(tài)轉化為教育形態(tài)"(張奠宙語(yǔ)),引導學(xué)生積極主動(dòng)地進(jìn)行思考活動(dòng),直接參與體驗數學(xué)知識產(chǎn)生發(fā)展的背景、過(guò)程,返璞歸真,揭示本質(zhì),體會(huì )其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數學(xué)知識和方法,有效地發(fā)展智力、培養能力.
在本節教材中,三角函數定義是重點(diǎn),三角函數線(xiàn)是難點(diǎn),為了較好地突出重點(diǎn)和突破難點(diǎn),分散重點(diǎn)和難點(diǎn),同時(shí)兼顧例題、課堂練習的協(xié)調匹配,將不按教材順序來(lái)進(jìn)行教學(xué),第一課時(shí)安排三角函數的定義(突出重點(diǎn))、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時(shí)安排三角函數線(xiàn)、p15練習(突破難點(diǎn))、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時(shí).
教學(xué)經(jīng)驗表明,三角函數定義"簡(jiǎn)單易記",學(xué)生很容易輕視它,不少學(xué)生機械記憶、一知半解.本課例堅持"教師主導、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結合"的常規教學(xué)方法,在學(xué)生的最近發(fā)展區圍繞學(xué)生的學(xué)習目標設計了一系列符合學(xué)生認知規律的程序,通過(guò)多媒體輔助教學(xué)動(dòng)畫(huà)演示比值與角之間的依賴(lài)關(guān)系,拓展思維活動(dòng)時(shí)空,力求使學(xué)生全員主動(dòng)參與,積極思考,體會(huì )定義產(chǎn)生、發(fā)展的過(guò)程,通過(guò)思維過(guò)程來(lái)理解知識、培養能力.
將六個(gè)比值放在一起來(lái)研究,同時(shí)給出六個(gè)三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學(xué)中注意區分就行了.
教學(xué)中關(guān)于符號sinα、cosα、tanα的出場(chǎng)安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關(guān)系;另外可以先研究六個(gè)比值與α之間的函數關(guān)系,然后再對六個(gè)比值取名給出記法.后者更能突出函數內涵,揭示三角函數本質(zhì).本課例采用后者組織教學(xué).
三、教學(xué)過(guò)程分析(見(jiàn)穿插在教案中的設計意圖).
高中數學(xué)說(shuō)課稿 篇7
各位老師:
大家好!
我叫***,來(lái)自**。我說(shuō)課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時(shí)安排為兩個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教法與學(xué)法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著(zhù)前面學(xué)過(guò)的隨機事件的概率及其性質(zhì),又是以后學(xué)習條件概率的基礎,起到承前啟后的作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):理解古典概型及其概率計算公式。
難點(diǎn):古典概型的判斷及把一些實(shí)際問(wèn)題轉化成古典概型。
二、教學(xué)目標分析
1.知識與技能目標
。1)通過(guò)試驗理解基本事件的概念和特點(diǎn)
。2)在數學(xué)建模的過(guò)程中,抽離出古典概型的兩個(gè)基本特征,推導出古典概型下的概率的計算公式。
2、過(guò)程與方法:
經(jīng)歷公式的推導過(guò)程,體驗由特殊到一般的數學(xué)思想方法。
3、情感態(tài)度與價(jià)值觀(guān):
。1)用具有現實(shí)意義的實(shí)例,激發(fā)學(xué)生的學(xué)習興趣,培養學(xué)生勇于探索,善于發(fā)現的創(chuàng )新思想。
。2)讓學(xué)生掌握"理論來(lái)源于實(shí)踐,并把理論應用于實(shí)踐"的辨證思想。
三、教法與學(xué)法分析
1、教法分析:根據本節課的特點(diǎn),采用引導發(fā)現和歸納概括相結合的教學(xué)方法,通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程,觀(guān)察對比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,來(lái)激發(fā)學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習活動(dòng)中來(lái)。
2、學(xué)法分析:學(xué)生在教師創(chuàng )設的問(wèn)題情景中,通過(guò)觀(guān)察、類(lèi)比、思考、探究、概括、歸納和動(dòng)手嘗試相結合,體現了學(xué)生的主體地位,培養了學(xué)生由具體到抽象,由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度。
、鍎(chuàng )設情景、引入新課
在課前,教師布置任務(wù),以小組為單位,完成下面兩個(gè)模擬試驗:
試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個(gè)數學(xué)小組至少完成20次(最好是整十數),最后由代表匯總;
試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數,要求每個(gè)數學(xué)小組至少完成60次(最好是整十數),最后由代表匯總。
在課上,學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結果和感受,并提出兩個(gè)問(wèn)題。
1.用模擬試驗的方法來(lái)求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進(jìn)行大量的試驗,并且求出來(lái)的結果是頻率,而不是概率。
2.根據以前的學(xué)習,上述兩個(gè)模擬試驗的每個(gè)結果之間都有什么特點(diǎn)?]
「設計意圖」通過(guò)課前的模擬實(shí)驗,讓學(xué)生感受與他人合作的重要性,培養學(xué)生運用數學(xué)語(yǔ)言的能力。隨著(zhù)新問(wèn)題的提出,激發(fā)了學(xué)生的求知欲望,通過(guò)觀(guān)察對比,培養了學(xué)生發(fā)現問(wèn)題的能力。
、嫠伎冀涣、形成概念
學(xué)生觀(guān)察對比得出兩個(gè)模擬試驗的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說(shuō)明,加深對新概念的理解。
[基本事件有如下的兩個(gè)特點(diǎn):
。1)任何兩個(gè)基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設計意圖」讓學(xué)生從問(wèn)題的相同點(diǎn)和不同點(diǎn)中找出研究對象的對立統一面,這能培養學(xué)生分析問(wèn)題的能力,同時(shí)也教會(huì )學(xué)生運用對立統一的辯證唯物主義觀(guān)點(diǎn)來(lái)分析問(wèn)題的一種方法。教師的注解可以使學(xué)生更好的把握問(wèn)題的關(guān)鍵。
例1從字母a、b、c、d中任意取出兩個(gè)不同字母的試驗中,有哪些基本事件?
先讓學(xué)生嘗試著(zhù)列出所有的基本事件,教師再講解用樹(shù)狀圖列舉問(wèn)題的優(yōu)點(diǎn)。
「設計意圖」將數形結合和分類(lèi)討論的思想滲透到具體問(wèn)題中來(lái)。由于沒(méi)有學(xué)習排列組合,因此用列舉法列舉基本事件的個(gè)數,不僅能讓學(xué)生直觀(guān)的感受到對象的總數,而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數這一難點(diǎn)
觀(guān)察對比,發(fā)現兩個(gè)模擬試驗和例1的共同特點(diǎn):
讓學(xué)生先觀(guān)察對比,找出兩個(gè)模擬試驗和例1的共同特點(diǎn),再概括總結得到的結論,教師最后補充說(shuō)明。
[經(jīng)概括總結后得到:
。1)試驗中所有可能出現的基本事件只有有限個(gè);(有限性)
。2)每個(gè)基本事件出現的可能性相等。(等可能性)
我們將具有這兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。
「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀(guān)點(diǎn)分析問(wèn)題的能力,充分體現了數學(xué)的化歸思想。啟發(fā)誘導的同時(shí),訓練了學(xué)生觀(guān)察和概括歸納的能力。通過(guò)列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。
、缬^(guān)察分析、推導方程
問(wèn)題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
教師提出問(wèn)題,引導學(xué)生類(lèi)比分析兩個(gè)模擬試驗和例1的概率,先通過(guò)用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯(lián)系,最后概括總結得出古典概型計算任何事件的概率計算公式:
「設計意圖」鼓勵學(xué)生運用觀(guān)察類(lèi)比和從具體到抽象、從特殊到一般的辯證唯物主義方法來(lái)分析問(wèn)題,同時(shí)讓學(xué)生感受數學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點(diǎn)。
提問(wèn):
。1)在例1的實(shí)驗中,出現字母"d"的概率是多少?
。2)在使用古典概型的概率公式時(shí),應該注意什么?
「設計意圖」教師提問(wèn),學(xué)生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
、枥}分析、推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個(gè)選項中選擇一個(gè)正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會(huì )做,他隨機的選擇一個(gè)答案,問(wèn)他答對的概率是多少?
學(xué)生先思考再回答,教師對學(xué)生沒(méi)有注意到的關(guān)鍵點(diǎn)加以說(shuō)明。
「設計意圖」讓學(xué)生明確決概率的計算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。鞏固學(xué)生對已學(xué)知識的掌握。
例3同時(shí)擲兩個(gè)骰子,計算:
。1)一共有多少種不同的結果?
。2)其中向上的點(diǎn)數之和是5的結果有多少種?
。3)向上的點(diǎn)數之和是5的概率是多少?
先給出問(wèn)題,再讓學(xué)生完成,然后引導學(xué)生分析問(wèn)題,發(fā)現解答中存在的問(wèn)題。引導學(xué)生用列表來(lái)列舉試驗中的基本事件的總數。
「設計意圖」利用列表數形結合和分類(lèi)討論,既能形象直觀(guān)地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學(xué)生運用數形結合的思想,提高發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強學(xué)生數學(xué)思維情趣,形成學(xué)習數學(xué)知識的積極態(tài)度。
、樘骄克枷、鞏固深化
問(wèn)題思考:為什么要把兩個(gè)骰子標上記號?如果不標記號會(huì )出現什么情況?你能解釋其中的原因嗎?
要求學(xué)生觀(guān)察對比兩種結果,找出問(wèn)題產(chǎn)生的原因。
「設計意圖」通過(guò)觀(guān)察對比,發(fā)現兩種結果不同的根本原因是--研究的問(wèn)題是否滿(mǎn)足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現了學(xué)生的主體地位,逐漸養成自主探究能力。
、昕偨Y概括、加深理解
1.基本事件的特點(diǎn)
2.古典概型的特點(diǎn)
3.古典概型的概率計算公式
學(xué)生小結歸納,不足的地方老師補充說(shuō)明。
「設計意圖」使學(xué)生對本節課的知識有一個(gè)系統全面的認識,并把學(xué)過(guò)的相關(guān)知識有機地串聯(lián)起來(lái),便于記憶和應用,也進(jìn)一步升華了這節課所要表達的本質(zhì)思想,讓學(xué)生的認知更上一層。
、氩贾米鳂I(yè)
課本練習1、2、3
「設計意圖」進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠學(xué)以致用,加深對本節課的理解。
高中數學(xué)說(shuō)課稿 篇8
各位評委:下午好!
我叫 ,來(lái)自 。今天我說(shuō)課的課題《 》(第 課時(shí))。下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設計五方面逐一加以分析和說(shuō)明。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
《 》是人教版出版社 第 冊、第 單元的內容!丁芳仁 在知識上的延伸和發(fā)展,又是本章 的運用與鞏固,也為下一章 教學(xué)作鋪墊,起著(zhù)鏈條的作用。同時(shí),這部分內容較好地反映了 的內在聯(lián)系和相互轉化,蘊含著(zhù)歸納、轉化、數形結合等豐富的數學(xué)思想方法,能較好地培養學(xué)生的觀(guān)察能力、概括能力、探究能力及創(chuàng )新意識。
概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。
。ǘ、學(xué)情分析
通過(guò)前一階段的'教學(xué),學(xué)生對 的認識已有了一定的認知結構,主要體現在三個(gè)層面:
知識層面:學(xué)生在已初步掌握了 。
能力層面:學(xué)生在初步已經(jīng)掌握了用
初步具備了 思想。 情感層面:學(xué)生對數學(xué)新內容的學(xué)習有相當的興趣和積極性。但探究問(wèn)題的能力以及合作交流等方面發(fā)展不夠均衡.
。ㄈ┙虒W(xué)課時(shí)
本節內容分 課時(shí)學(xué)習。(本課時(shí),品味數學(xué)中的和諧美,體驗成功的樂(lè )趣。)
二、教學(xué)目標分析
根據教學(xué)大綱的要求、本節教材的特點(diǎn)和高中生的認知規律,本節課的教學(xué)目標確定為:
知識與技能:
過(guò)程與方法:
情感態(tài)度:
。ɡ纾簞(chuàng )設問(wèn)題情景,激發(fā)學(xué)生觀(guān)察、分析、探求的學(xué)習激情、強化學(xué)生參與意識及主體作用。在自主探究與討論交流過(guò)程中,培養學(xué)生的合作意識和創(chuàng )新精神. 通過(guò) 對立統一關(guān)系的認識,對學(xué)生進(jìn)行辨證唯物主義教育)
在探索過(guò)程中,培養獨立獲取數學(xué)知識的能力。在解決問(wèn)題的過(guò)程中,讓學(xué)生感受到成功的喜悅,樹(shù)立學(xué)好數學(xué)的信心。在解答數學(xué)問(wèn)題時(shí),讓學(xué)生養成理性思維的品質(zhì)。
三、重難點(diǎn)分析
重點(diǎn)確定為:
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解
其本質(zhì)就是
本節課的難點(diǎn)確定為:
要突破這個(gè)難點(diǎn),讓學(xué)生歸納
作鋪墊。
四、教法與學(xué)法分析
。ㄒ唬⿲W(xué)法指導
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì )學(xué)是目的。因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習方法,這樣做增加了學(xué)生自主參與,合作交流的機會(huì ),教給了學(xué)生獲取知識的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì )逐步感受到數學(xué)的美,會(huì )產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習數學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應素質(zhì)教育下培養“創(chuàng )新型”人才的需要。
。ǘ┙谭ǚ治
本節課設計的指導思想是:現代認知心理學(xué)--建構主義學(xué)習理論。
建構主義學(xué)習理論認為:應把學(xué)習看成是學(xué)生主動(dòng)的建構活動(dòng),學(xué)生應與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。
本節課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設計教學(xué)過(guò)程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實(shí)現。
五、說(shuō)教學(xué)過(guò)程
本節課的教學(xué)設計充分體現以學(xué)生發(fā)展為本,培養學(xué)生的觀(guān)察、概括和探究能力,遵循學(xué)生的認知規律,體現理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng )設,激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì )走向會(huì )學(xué),由被動(dòng)答題走向主動(dòng)探究。
。ㄒ唬﹦(chuàng )設情景………………….
。ǘ┍扰f悟新………………….
。ㄈw納提煉…………………
。ㄋ模⿷眯轮,熟練掌握 …………………
。ㄎ澹┛偨Y…………………
。┳鳂I(yè)布置…………………
。ㄆ撸┌鍟(shū)設計…………………
以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專(zhuān)家批評指正。謝謝
著(zhù)名美國數學(xué)家和數學(xué)教育家波利亞 包括“弄清問(wèn)題”、“擬定計劃”、“實(shí)現計劃”和“回顧反思”四大步驟的解題全過(guò)程,它們就好比是尋找和發(fā)現解法的思維過(guò)程進(jìn)行分解,使我們對解題的思維過(guò)程看得見(jiàn),摸得著(zhù),易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?
高中數學(xué)說(shuō)課稿 篇9
一、說(shuō)教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類(lèi)型函數,本節課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數的概念,并進(jìn)一步體會(huì )函數是刻畫(huà)變量之間關(guān)系的數學(xué)模型,從中體會(huì )函數的模型思想。因此本節課重點(diǎn)是理解和領(lǐng)悟反比例函數的概念,所滲透的數學(xué)思想方法有:類(lèi)比,轉化,建模。
2.學(xué)情分析:對八年級學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對函數,正比例函數,一次函數的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數時(shí),還可能存在一些思維障礙,如學(xué)生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結出反比例函數的概念,因此,本節課的難點(diǎn)是理解和領(lǐng)悟反比例函數的概念。
二、說(shuō)教學(xué)目標
根據本人對《數學(xué)課程標準》的理解與分析,考慮學(xué)生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實(shí)的情境和已有的知識經(jīng)驗出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數概念的理解。
2.經(jīng)歷抽象反比例函數概念的過(guò)程,領(lǐng)會(huì )反比例函數的意義,理解反比例函數的概念。
三、說(shuō)教法
本節課從知識結構呈現的角度看,為了實(shí)現教學(xué)目標,我建立了“創(chuàng )設情境→建立模型→解釋知識→應用知識”的學(xué)習模式,這種模式清晰地再現了知識的生成與發(fā)展的過(guò)程,也符合學(xué)生的認知規律。于是,從教學(xué)內容的性質(zhì)出發(fā),我設計了如下的課堂結構:創(chuàng )設出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現新知,把上述問(wèn)題進(jìn)行類(lèi)比,導出概念,獲得新知,最后總結評價(jià)、內化新知。
四、說(shuō)學(xué)法
我認為學(xué)生將實(shí)際問(wèn)題轉化成函數的能力是有限的,所以我借助多媒體輔助教學(xué),指導學(xué)生通過(guò)類(lèi)比、轉化、直觀(guān)形象的觀(guān)察與演示,親身經(jīng)歷函數模型的轉化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng )造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。
好學(xué)教育:
因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著(zhù)問(wèn)題的深入而跳躍。
高中數學(xué)說(shuō)課稿 篇10
各位領(lǐng)導、專(zhuān)家、同仁:您們好!
我說(shuō)課的內容是高中數學(xué)第二冊(上冊)第七章《直線(xiàn)和圓的方程》中的第六節“曲線(xiàn)和方程”的第一課時(shí),下面我的說(shuō)課將從以下幾個(gè)方面進(jìn)行闡述:
一、教材分析
教材的地位和作用
“曲線(xiàn)和方程”這節教材揭示了幾何中的形與代數中的數相統一的關(guān)系,為“作形判數”與“就數論形”的相互轉化開(kāi)辟了途徑,這正體現了解析幾何這門(mén)課的基本思想,對全部解析幾何教學(xué)有著(zhù)深遠的影響。學(xué)生只有透徹理解了曲線(xiàn)和方程的意義,才算是尋得了解析幾何學(xué)習的入門(mén)之徑。如果以為學(xué)生不真正領(lǐng)悟曲線(xiàn)和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說(shuō)是一種“舍本逐題”的偏見(jiàn),應該認識到這節“曲線(xiàn)和方程”的開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!
根據以上分析,確立教學(xué)重點(diǎn)是:“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;難點(diǎn)是:怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程。
二、教學(xué)目標
根據教學(xué)大綱的要求以及本教材的地位和作用,結合高二學(xué)生的認知特點(diǎn)確定教學(xué)目標如下:
知識目標:
1、了解曲線(xiàn)上的點(diǎn)與方程的解之間的一一對應關(guān)系;
2、初步領(lǐng)會(huì )“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;
3、學(xué)會(huì )根據已有的情景資料找規律,進(jìn)而分析、判斷、歸納結論;
4、強化“形”與“數”一致并相互轉化的思想方法。
能力目標:
1、通過(guò)直線(xiàn)方程的引入,加強學(xué)生對方程的解和曲線(xiàn)上的點(diǎn)的一一對應關(guān)系的認識;
2、在形成曲線(xiàn)和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀(guān)察、分析、討論等數學(xué)活動(dòng)過(guò)程,探索出結論,并能有條理的闡述自己的觀(guān)點(diǎn);
3、能用所學(xué)知識理解新的概念,并能運用概念解決實(shí)際問(wèn)題,從中體會(huì )轉化化歸的思想方法,提高思維品質(zhì),發(fā)展應用意識。
情感目標:
1、通過(guò)概念的引入,讓學(xué)生感受從特殊到一般的認知規律;
2、通過(guò)反例辨析和問(wèn)題解決,培養合作交流、獨立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng )新的科學(xué)精神。
三、重難點(diǎn)突破
“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念是本節的重點(diǎn),這是由于本節課是由直觀(guān)表象上升到抽象概念的過(guò)程,學(xué)生容易對定義中為什么要規定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線(xiàn)、拋物線(xiàn)等實(shí)際模型,積累了感性認識的基礎,所以可用舉反例的方法來(lái)解決困惑,通過(guò)反例揭示“兩者缺一”與直覺(jué)的矛盾,從而又促使學(xué)生對概念表述的嚴密性進(jìn)行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來(lái)解釋曲線(xiàn)和方程的對應關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程是本節的難點(diǎn)。因為學(xué)生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線(xiàn)建立方程的時(shí)候,不驗證方程的解為坐標的點(diǎn)在曲線(xiàn)上,就斷然得出所求的是曲線(xiàn)方程。這種現象在高考中也屢見(jiàn)不鮮。為了突破難點(diǎn),本節課設計了三種層次的問(wèn)題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線(xiàn)的方程。通過(guò)這些例題讓學(xué)生再一次體會(huì )“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標系后平面內的點(diǎn)和有序實(shí)數對之間建立了一一對應關(guān)系,已有了用方程(有時(shí)以函數式的形式出現)表示曲線(xiàn)的感性認識(特別是二元一次方程表示直線(xiàn)),現在要進(jìn)一步研究平面內的曲線(xiàn)和含有兩個(gè)變數的方程之間的關(guān)系,是由直觀(guān)表象上升到抽象概念的過(guò)程,對學(xué)生有相當大的難度。學(xué)生在學(xué)習時(shí)容易產(chǎn)生的問(wèn)題是,不理解“曲線(xiàn)上的點(diǎn)的坐標都是方程的解”和“以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)”這兩句話(huà)在揭示“曲線(xiàn)和方程”關(guān)系時(shí)各自所起的作用。本節課的教學(xué)目標也只能是初步領(lǐng)會(huì ),要求學(xué)生能答出曲線(xiàn)和方程間必須滿(mǎn)足兩個(gè)關(guān)系時(shí)才能稱(chēng)作“曲線(xiàn)的方程”和“方程的曲線(xiàn)”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區別。
五、教法分析
新課程強調教師要調整自己的角色,改變傳統的教育方式,教師要由傳統意義上的知識的傳授者和學(xué)生的管理者,轉變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡(jiǎn)單的教書(shū)匠轉變?yōu)閷?shí)踐的研究者,或研究的實(shí)踐者,在教育方式上,也要體現出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習的主人而不是知識的奴隸,基于此,本節課遵循了概念學(xué)習的四個(gè)基本步驟,重點(diǎn)采用了問(wèn)題探究和啟發(fā)式相結合的教學(xué)方法。
從實(shí)例、到類(lèi)比、到推廣的問(wèn)題探究,它對激發(fā)學(xué)生學(xué)習興趣,培養學(xué)習能力都十分有利。啟發(fā)引導學(xué)生得出概念,深化概念,并應用它去討論、研究和解決問(wèn)題。在生生合作,師生互動(dòng)中解決問(wèn)題,為提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力打下了基礎。
利用多媒體輔助教學(xué),節省了時(shí)間,增大了信息量,增強了直觀(guān)形象性。
六、學(xué)法分析
基礎教育課程改革要求加強學(xué)習方式的改變,提倡學(xué)習方式的多樣化,各學(xué)科課程通過(guò)引導學(xué)生主動(dòng)參與,親身實(shí)踐,獨立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識的能力,分析和解決問(wèn)題的能力,以及交流合作的能力,基于此,本節課從實(shí)例引入→類(lèi)比→推廣→得概念→概念挖掘深化→具體應用→作業(yè)中的研究性問(wèn)題的思考,始終讓學(xué)生主動(dòng)參與,親身實(shí)踐,獨立思考,與合作探究相結合,在生生合作,師生互動(dòng)中,使學(xué)生真正成為知識的發(fā)現者和知識的研究者。
七、教學(xué)過(guò)程分析
1、感性認識階段——以舊帶新、提出課題
【高中數學(xué)說(shuō)課稿范文集錦十篇】相關(guān)文章:
關(guān)于高中數學(xué)說(shuō)課稿范文集錦十篇08-18
有關(guān)高中數學(xué)說(shuō)課稿集錦十篇08-03
實(shí)用的高中數學(xué)說(shuō)課稿范文集錦十篇08-19
高中數學(xué)經(jīng)典說(shuō)課稿范文06-24
高中數學(xué)說(shuō)課稿范文集錦10篇07-26
關(guān)于高中數學(xué)說(shuō)課稿范文匯編十篇08-19