百分數知識點(diǎn)總結
百分數在數學(xué)中是經(jīng)常會(huì )用到的知識,那么我們應該掌握的百分數知識點(diǎn)又有什么呢?下面百分數知識點(diǎn)總結是小編想跟大家分享的,歡迎大家瀏覽。
百分數知識點(diǎn)總結 1
1.百分數的定義:表示一個(gè)數是另一個(gè)數的百分之幾的數,叫做百分數,百分數也叫做百分率或百分比。
百分數表示兩個(gè)數之間的比率關(guān)系,不表示具體的數量,無(wú)單位名稱(chēng)。
例如:25%的意義:表示一個(gè)數是另一個(gè)數的25%。
2.百分數通常不寫(xiě)成分數形式,而在原來(lái)分子后面加上“%”來(lái)表示。分子部分可為小數、整數,可以大于100,小于100或等于100。
3.小數與百分數互化的規則:
把小數化成百分數,只要把小數點(diǎn)向右移動(dòng)兩位,同時(shí)在后面添上百分號;(加向右)
把百分數化成小數,只要把百分號去掉,同時(shí)把小數點(diǎn)向左移動(dòng)兩位。(去向左)
4.百分數與分數互化的規則:
把分數化成百分數,通常先把分數化成小數(除不盡的保留三位小數),再把小數化成百分數;
把百分數化成分數,先把百分數改寫(xiě)成分數,能約分的要約成最簡(jiǎn)分數。
5、常用的分數、小數及百分數的互化
6.百分率公式:求百分率就是求一個(gè)數是另一個(gè)數的百分之幾。(算式要加×100%,包括濃度、利潤率)
百分數的意義
如果要真正地理解百分數的意義和正確地使用它是存在著(zhù)許多的問(wèn)題。雖然大多數人都知道百分數,但是在平時(shí)生活中卻似乎不常使用分數,實(shí)際上只要細心就會(huì )發(fā)現,其實(shí)生活中處處存在著(zhù)百分數的例子比如超市的折扣就是百分數的應用。初中教育的考試測試中,雖然不是直接地對百分數的意義進(jìn)行考察,但是,運用各種題型,掌握各種類(lèi)型的百分數的題目,并且能真正地運用它,是非常重要的。下面進(jìn)行簡(jiǎn)單的描述。
百分數的意義是能在生產(chǎn)生活中能將事物占總體的比例形容的更加完整,讓省去許多不必要的言語(yǔ),簡(jiǎn)易而恰當。下面有幾種情況值得了解。
舉例來(lái)說(shuō):(一),百分數雖然是以100為分母,但是分子的數也可以大于100的。這是很多人不了解的,以為分子大于100是不可能的,但是卻是確確實(shí)實(shí)存在的。如200%表示的是原本數字的2倍關(guān)系。舉例子來(lái)說(shuō):一個(gè)書(shū)店上半年的存利潤是10萬(wàn)元,而下半年的存利潤是12萬(wàn)元,那么則可以表示成“上半年存利潤比下半年的存利潤增加20%即120%”。(二)百分數有時(shí)也會(huì )造成誤會(huì ),這就要我們認真地去區分。例如:不少人認為一個(gè)百分比的上升會(huì )被相同下降的百分比所消。舉一個(gè)例子來(lái)說(shuō):10增加50%,就等于10+5=15,,而如果從15下降50%則為15-7.5=7.5.最終的結果是小于10.這樣的誤區是因為不了解百分數的意義。
總的來(lái)說(shuō),掌握了百分數的意義是什么對做題和生活算數都有幫助,對于一些概念的掌握不是單純的死記硬背,而要真正地了解它。那么怎樣才能真的.了解它?就只有細心的去分析百分數的具體應用,多做這方面的練習,從而更多的了解百分數在生活中的具體應用,然后熟練描述生活中涉及百分數的事件,這樣才能變得不再是百分數的未知者,從而對百分數的意義了解的更加透徹。
百分數知識點(diǎn)總結 2
一、百分數的意義:表示一個(gè)數是另一個(gè)數的百分之幾。
注:百分數是專(zhuān)門(mén)用來(lái)表示一種特殊的倍比關(guān)系的,表示兩個(gè)數的比,所以,百分數又叫百分比或百分率,百分數不能帶單位。
1、百分數和分數的區別和聯(lián)系:
。1)聯(lián)系:都可以用來(lái)表示兩個(gè)量的倍比關(guān)系。
。2)區別:意義不同:百分數只表示倍比關(guān)系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關(guān)系,還能帶單位表示具體數量。
百分數的分子可以是小數,分數的分子只以是整數。
注:百分數在生活中應用廣泛,所涉及問(wèn)題基本和分數問(wèn)題相同,分母是100的分數并不是百分數,必須把分母寫(xiě)成“%”才是百分數,所以“分母是100的分數就是百分數”這句話(huà)是錯誤的!%”的兩個(gè)0要小寫(xiě),不要與百分數前面的數混淆。一般來(lái)講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長(cháng)了百分之幾等可以超過(guò)100%。一般出粉率在70、80%,出油率在30、40%。
2、小數、分數、百分數之間的互化
。1)百分數化小數:小數點(diǎn)向左移動(dòng)兩位,去掉“%”。
。2)小數化百分數:小數點(diǎn)向右移動(dòng)兩位,添上“%”。
。3)百分數化分數:先把百分數寫(xiě)成分母是100的分數,然后再化簡(jiǎn)成最簡(jiǎn)分數。
。4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然后化成百分數。
。5)小數化分數:把小數成分母是10、100、1000等的分數再化簡(jiǎn)。
。6)分數化小數:分子除以分母。
二、百分數應用題
1、求常見(jiàn)的百分率如:達標率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個(gè)數是另一個(gè)數的百分之幾
2、求一個(gè)數比另一個(gè)數多(或少)百分之幾,實(shí)際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來(lái)表示增加、或減少的幅度。
求甲比乙多百分之幾(甲-乙)÷乙
求乙比甲少百分之幾(甲-乙)÷甲
3、求一個(gè)數的百分之幾是多少一個(gè)數(單位“1”)×百分率
4、已知一個(gè)數的百分之幾是多少,求這個(gè)數部分量÷百分率=一個(gè)數(單位“1”)
5、折扣折扣、打折的意義:幾折就是十分之幾也就是百分之幾十
6、納稅繳納的稅款叫做應納稅額。
。☉{稅額)÷(總收入)=(稅率)
。☉{稅額)=(總收入)×(稅率)
7、利率
。1)存入銀行的錢(qián)叫做本金。
。2)取款時(shí)銀行多支付的錢(qián)叫做利息。
。3)利息與本金的比值叫做利率。
利息=本金×利率×時(shí)間
稅后利息=利息-利息的應納稅額=利息-利息×5%
注:國債和教育儲蓄的利息不納稅
8、百分數應用題型分類(lèi)
。1)求甲是乙的百分之幾——(甲÷乙)×100%=×100%=百分之幾
。2)求甲比乙多(少)百分之幾——×100%=×100%
例
、偌资50,乙是40,甲是乙的百分之幾?(50是40的百分之幾?)50÷40=125%②甲是50,乙是40,乙是甲的百分之幾?(40是50的百分之幾?)40÷50=80%③乙是40,甲是乙的125%,甲數是多少?(40的125%是多少?)40×125%=50④甲是50,乙是甲的80%,乙數是多少?(50的80%是多少?)50×80%=40
、菀沂40,乙是甲的80%,甲數是多少?(一個(gè)數的80%是40,這個(gè)數是多少?)40÷80%=50
、藜资50,甲是乙的125%,乙數是多少?(一個(gè)數的125%是50,這個(gè)數是多少?)50÷125%=40
、呒资50,乙是40,甲比乙多百分之幾?(50比40多百分之幾?)(50-40)÷40×100%=25%⑧甲是50,乙是40,乙比甲少百分之幾?(40比50少百分之幾?)(50-40)÷50×100%=20%⑨甲比乙多25%,多10,乙是多少?10÷25%=40
、饧妆纫叶25%,多10,甲是多少?10÷25%+10=50
乙比甲少20%,少10,甲是多少?10÷20%=50
乙比甲少20%,少10,乙是多少?10÷20%-10=40
乙是40,甲比乙多25%,甲數是多少?(什么數比40多25%?)40×(1+25%)=50甲是50,乙比甲少20%,乙數是多少?(什么數比50多25%?)50×(1-20%)=40乙是40,比甲少20%,甲數是多少?(40比什么數少20%?)40÷(1-20%)=50甲是50,比乙多25%,乙數是多少?(50比什么數多25%?)40÷(1+25%)=40
百分數知識點(diǎn)總結 3
分數與百分數的應用
基本概念與性質(zhì):
分數:把單位“1”平均分成幾份,表示這樣的一份或幾份的數。
分數的性質(zhì):分數的分子和分母同時(shí)乘以或除以相同的數(0除外),分數的大小不變。
分數單位:把單位“1”平均分成幾份,表示這樣一份的數。
百分數:表示一個(gè)數是另一個(gè)數百分之幾的數。
常用方法:
、倌嫦蛩季S方法:從題目提供條件的反方向(或結果)進(jìn)行思考。
、趯季S方法:找出題目中具體的量與它所占的率的直接對應關(guān)系。
、坜D化思維方法:把一類(lèi)應用題轉化成另一類(lèi)應用題進(jìn)行解答。最常見(jiàn)的是轉換成比例和轉換成倍數關(guān)系;把不同的標準(在分數中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見(jiàn)的處理方法是確定不同的標準為一倍量。
、芗僭O思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進(jìn)行調整,求出最后結果。
、萘坎蛔兯季S方法:在變化的各個(gè)量當中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。
、尢鎿Q思維方法:用一種量代替另一種量,從而使數量關(guān)系單一化、量率關(guān)系明朗化。
、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規律進(jìn)行處理。
、酀舛扰浔确ǎ阂话銘糜诳偭亢头至慷及l(fā)生變化的狀況。
百分數知識點(diǎn)總結 4
(一)、折扣和成數
1、折扣:用于商品,現價(jià)是原價(jià)的百分之幾,叫做折扣。通稱(chēng)“打折”。
幾折就是十分之幾,也就是百分之幾十。例如:八折=8/10=80%,
六折五=6.5/10=65/100=65%
解決打折的問(wèn)題,關(guān)鍵是先將打的折數轉化為百分數或分數,然后按照求比一個(gè)數多(少)百分之幾(幾分之幾)的數的解題方法進(jìn)行解答。
商品現在打八折:現在的售價(jià)是原價(jià)的80%
商品現在打六折五:現在的售價(jià)是原價(jià)的65%
2、成數:
幾成就是十分之幾,也就是百分之幾十。例如:一成=1/10=10%
八成五=8.5/10=85/100=80%
解決成數的問(wèn)題,關(guān)鍵是先將成數轉化為百分數或分數,然后按照求比一個(gè)數多(少)百分之幾(幾分之幾)的數的解題方法進(jìn)行解答。
這次衣服的進(jìn)價(jià)增加一成:這次衣服的進(jìn)價(jià)比原來(lái)的進(jìn)價(jià)增加10%
今年小麥的收成是去年的八成五:今年小麥的收成是去年的85%
(二)、稅率和利率
1、稅率
(1)納稅:納稅是根據國家稅法的有關(guān)規定,按照一定的比率把集體或個(gè)人收入的一部分繳納給國家。
(2)納稅的意義:稅收是國家財政收入的主要來(lái)源之一。國家用收來(lái)的稅款發(fā)展經(jīng)濟、科技、教育、文化和國防安全等事業(yè)。
(3)應納稅額:繳納的稅款叫做應納稅額。
(4)稅率:應納稅額與各種收入的比率叫做稅率。
(5)應納稅額的計算方法:
應納稅額=總收入×稅率
收入額=應納稅額÷稅率
2、利率
(1)存款分為活期、整存整取和零存整取等方法。
(2)儲蓄的意義:人們常常把暫時(shí)不用的錢(qián)存入銀行或信用社,儲蓄起來(lái),這樣不僅可以支援國家建設,也使得個(gè)人用錢(qián)更加安全和有計劃,還可以增加一些收入。
(3)本金:存入銀行的錢(qián)叫做本金。
(4)利息:取款時(shí)銀行多支付的錢(qián)叫做利息。
(5)利率:利息與本金的比值叫做利率。
(6)利息的計算公式:
利息=本金×利率×時(shí)間
利率=利息÷時(shí)間÷本金×100%
(7)注意:如要上利息稅(國債和教育儲藏的利息不納稅),則:
稅后利息=利息-利息的應納稅額=利息-利息×利息稅率=利息×(1-利息稅率)
稅后利息=本金×利率×時(shí)間×(1-利息稅率)
購物策略:
估計費用:根據實(shí)際的問(wèn)題,選擇合理的估算策略,進(jìn)行估算。
購物策略:根據實(shí)際需要,對常見(jiàn)的幾種優(yōu)惠策略加以分析和比較,并能夠最終選擇最為優(yōu)惠的方案
數學(xué)最小的數是什么
要回答這個(gè)問(wèn)題,我們首先看一下“幾位數”的概念:在一個(gè)數中數字的個(gè)數是幾(其最左端的數字不為0),這個(gè)數就是幾位數。關(guān)于幾位數的定義中,最左端的數字不為0是關(guān)鍵條件。就像我們分數定義中,明確規定分母不為0一樣,否則沒(méi)意義。
在整數中,最小的計數單位是1(個(gè)),當0單獨存在時(shí),它不占有數位。當0出現在一個(gè)幾位數的末尾或中間時(shí),它起到的只是“占位”的作用,表示該位上沒(méi)有計數單位。
假設0也算一位數的話(huà),那么最小的兩位數是“10”還是“00”呢?00是沒(méi)有兩位數的意義的。
所以,一位數是由一個(gè)不是0這個(gè)數字寫(xiě)出的數,只要幾位數的意義不變,最小的一位數仍然是1。
數學(xué)三位數乘兩位數知識點(diǎn)
速度×時(shí)間=路程
單價(jià)×數量=總價(jià)
工作效率×工作時(shí)間=工作總量
路程÷時(shí)間=速度
總價(jià)÷單價(jià)=數量
工作總量÷工作時(shí)間=工作效率
路程÷速度=時(shí)間
總價(jià)÷數量=單價(jià)
工作總量÷工作效率=工作時(shí)間
積的變化規律:一個(gè)因數不變,另一個(gè)因數乘或除以幾,積也乘或除以幾(零除外)
一個(gè)因數乘幾,另一個(gè)因數除以幾,積不變(零除外)。
兩位數乘三位數,積最多五位數,最少四位數
估算原則:便于口算、接近準確數、能解決實(shí)際問(wèn)題(估大或估小)
【百分數知識點(diǎn)總結】相關(guān)文章:
小升初數學(xué):分數與百分數知識點(diǎn)07-17
關(guān)于小升初分數與百分數的應用知識點(diǎn)07-17
小升初數學(xué)知識點(diǎn)之分數與百分數07-17
小升初數學(xué)知識點(diǎn)整理 :分數與百分數12-08
小升初必備數學(xué)知識點(diǎn):小數、百分數、分數12-08
分數和百分數的應用小升初數學(xué)知識點(diǎn)06-29