- 相關(guān)推薦
非負矩陣譜半徑估計的研究
摘 要
本文目標為討論非負矩陣譜半徑估計1類(lèi)方法。在蓋爾圓盤(pán)定理及Frobenius界值定理基礎上,對這類(lèi)方法給出不同程度的改進(jìn),使新界值更精確。
利用Perron補的概念,提出非負不可約矩陣譜半徑界值的1個(gè)新的估計算法。該算法利用Perron補保持原矩陣的非負不可約性及譜半徑的性質(zhì),使新得到的矩陣最大行和變小,最小行和變大,從而得到比Frobenius界值定理更精確的界。詳細論述算法思想并給予嚴格證明。給出適當的數值例子,比較新算法相對于Frobenius界值定理的改進(jìn)效果,最后簡(jiǎn)要評價(jià)各算法,并討論矩陣特征問(wèn)題的研究方法。
關(guān)鍵詞 非負矩陣;譜半徑;界;估計;Perron補
Abstract
This paper focuses on discussion of a class of estimation methods for spectral radius of nonnegative Matrix.based on Gerschgorin Disk theory and Frobenius’theory,these methods improve the former theories and provide sharper bounds.
Furthermore,the concept of Perron complement is introduced a new estimating method for spectral radius of nonnegative irreducible matrix is proposed and explained in detail.A new matrix dereved preserves the spectral radius while its minimun row sum increases and its minimun row sum decreases.Detail designing method and strict proof are provided with illustration of numerical examples.Finally,these algorithms’characters and the studying methods for matrix eigenproblems are also briefly discussed.
Keywords nonnegative Matrix;spectral radius;bounds;estimation;Perron complement
【非負矩陣譜半徑估計的研究】相關(guān)文章:
負商譽(yù)研究03-21
淺析軟件項目過(guò)程管理矩陣模型研究與實(shí)踐03-01
均勻圓陣下的DOA估計算法研究03-07
非晶絲SI效應的研究03-07
重載小半徑曲線(xiàn)鋼軌最佳磨耗率及鋼軌打磨參數研究03-04
有關(guān)鋼琴背譜中遺忘現象的研究03-18