- 相關(guān)推薦
高中數學(xué)函數公式
高中數學(xué)函數公式是考試的考點(diǎn)之一,下面yjbys小編為大家精心整理的高中數學(xué)函數公式,歡迎大家閱讀與學(xué)習!
一、映射與函數:
(1)映射的概念: (2)一一映射:(3)函數的概念:
如:若 , ;問(wèn): 到 的映射有 個(gè), 到 的映射有 個(gè); 到 的函數有 個(gè),若 ,則 到 的一一映射有 個(gè)。
函數 的圖象與直線(xiàn) 交點(diǎn)的個(gè)數為 個(gè)。
二、函數的三要素:
相同函數的判斷方法:① ;② (兩點(diǎn)必須同時(shí)具備)
(1)函數解析式的求法:
、俣x法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法:
、 ,則 ; ② 則 ;
、 ,則 ; ④如: ,則 ;
、莺瑓(wèn)題的定義域要分類(lèi)討論;
如:已知函數 的定義域是 ,求 的定義域。
、迣τ趯(shí)際問(wèn)題,在求出函數解析式后;必須求出其定義域,此時(shí)的定義域要根據實(shí)際意義來(lái)確定。如:已知扇形的周長(cháng)為20,半徑為 ,扇形面積為 ,則 ;定義域為 。
(3)函數值域的求法:
、倥浞椒ǎ恨D化為二次函數,利用二次函數的特征來(lái)求值;常轉化為型如: 的形式;
、谀媲蠓(反求法):通過(guò)反解,用 來(lái)表示 ,再由 的取值范圍,通過(guò)解不等式,得出 的取值范圍;常用來(lái)解,型如: ;
、軗Q元法:通過(guò)變量代換轉化為能求值域的函數,化歸思想;
、萑怯薪绶ǎ恨D化為只含正弦、余弦的函數,運用三角函數有界性來(lái)求值域;
、藁静坏仁椒ǎ恨D化成型如: ,利用平均值不等式公式來(lái)求值域;
、邌握{性法:函數為單調函數,可根據函數的單調性求值域。
、鄶敌谓Y合:根據函數的幾何圖形,利用數型結合的方法來(lái)求值域。
求下列函數的值域:① (2種方法);
、 (2種方法);③ (2種方法);
三、函數的性質(zhì):
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個(gè)具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用于多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關(guān)于原點(diǎn)對稱(chēng),比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法
應用:把函數值進(jìn)行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個(gè)區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數的圖像,掌握函數圖像變換的一般規律。
常見(jiàn)圖像變化規律:(注意平移變化能夠用向量的語(yǔ)言解釋?zhuān)桶聪蛄科揭坡?lián)系起來(lái)思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經(jīng)過(guò) 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會(huì )結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱(chēng)變換 y=f(x)→y=f(-x),關(guān)于y軸對稱(chēng)
y=f(x)→y=-f(x) ,關(guān)于x軸對稱(chēng)
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱(chēng)
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱(chēng)。(注意:它是一個(gè)偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個(gè)重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關(guān)于直線(xiàn)x=a對稱(chēng);
更多相關(guān)文章推薦:
1.三角函數公式大全
5.初中物理公式總結
6.初中物理公式大全
【高中數學(xué)函數公式】相關(guān)文章:
Excel表格乘法函數公式大全09-19
高等數學(xué)函數公式大全03-23
三角函數公式大全07-21
高中數學(xué)《函數的概念》說(shuō)課稿11-20
中考復習三角函數公式大全08-17